用户名: 密码: 验证码:
有机质对除草剂扑草净环境行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类已进入“环境时代”,环境问题引起了全世界人们的广泛关注。生态恶化其主要根源就是化学品的污染,特别是有机污染物的污染。随着现代农业生产中化学农药的广泛、大量的应用,虽然能大大降低作物遭受病、虫、草害而造成的经济损失,但农药长期大量的使用使得食品、饲料、水、土壤、空气等环境中的农药残留量持续增加,经食物链进入动物体,危害人类健康,并严重威胁着生态环境。农业土壤中残留农药的解吸、运移及其生物毒性严重影响生态环境及农产品安全质量,其环境行为受到广泛关注。有机肥料含有大量有机质,是改良土壤,培肥地力不可替代和不可缺少的物质。有机质是地表环境有毒污染物的重要化学络合剂和吸附剂,通过与进入环境中有毒有机污染物质的相互作用,使有机污染物的存留和形态结构发生变化,从而影响它们的迁移转化、毒性、生物地球化学循环及归宿。因此,有机质与污染物相互作用是关乎环境污染评价、预测、修复治理及其与人类健康关系研究的重要科学问题。
     本文在现有研究的基础上,选用了农地中常用的两种代表性的有机肥(无害污泥和水稻秸秆)为水溶性有机物(Dissolved organic matter, DOM)的提取原料,以猪粪堆肥(PMC)和无害污泥(SL)为外源固态有机物料的代表,以除草剂扑草净为农药研究的对象,通过一系列物理、化学和生物学等试验,研究了DOM及外源固态有机物料施入土壤后,对土壤中残留农药扑草净环境行为的影响,并对有关的机理进行了探讨。以期为农药污染土壤的防控及修复提供科学数据。
     通过标准批量平衡法、土柱淋溶法和土壤薄层层析法,研究了两种来源DOM对除草剂扑草净在土壤中的吸附-解吸与迁移行为的影响,并对两种DOM的理化性质进行了表征。试验结果表明,DOM能明显抑制土壤对扑草净的吸附,增强土壤中扑草净的解吸,促进扑草净在土壤中的迁移。浓度为160 mg DOC L-1的污泥(SL2)和水稻秸秆(ST2) DOM可分别使土壤中扑草净的吸附量比对照减少了71.0%和71.8%,使迁移出土体的扑草净总量由对照中的22.5%,增大到36.9%(SL2)和52.5%(ST2)。其Rf值由0.1823(对照)增大为0.2147(SL2)和0.2376(ST2)。在所研究的扑草净和DOM浓度范围内,来源于水稻秸秆的DOM(ST)比来源于污泥DOM(SL)作用显著,而且DOM浓度越高影响越显著。说明农业土壤中水溶性有机物能明显活化土壤中除草剂扑草净,增强其活动性。对两种来源的DOM进行了元素分析,结果显示与来源于污泥的DOM (SL)相比,来源于水稻秸秆的DOM(ST)组分中含有较高比例的含氮官能团和更多的不饱和结构。灰分的测定结果表明,水稻秸秆比污泥DOM中含有更多的有机组分。这表明来源于水稻秸秆的DOM更容易与农药扑草净相互作用,因此对扑草净环境行为的影响就更显著。
     通过标准批量平衡法试验和土柱淋溶试验,研究了两种外源添加的固态有机物料对除草剂扑草净在土壤中吸附-解吸行为和迁移行为的影响,并采用元素分析、红外光谱学技术研究两种外源固态有机物料的理化性质,以及外源固态有机物料的施用对于土壤理化性质的影响。结果表明:与不添加外源有机物料的对照相比,两种供试有机物料污泥和猪粪堆肥(SL和PMC)的施用均能明显增强扑草净在土壤上的吸附,而降低扑草净在土壤中的解吸,抑制扑草净在土壤中的迁移。如土壤中加入污泥后Kf值分别比对照增大了49.6%(SL-1)和95.2%(SL-2),添加2.5%和5.0%猪粪堆肥的土壤对扑草净的吸附能力是对照土壤的3.1~3.3倍。在整个淋滤过程中不同处理的土壤中迁移出土体的扑草净总量由对照中的85.8%减少到62.9%(SL-1),57.9%(SL-2), 35.2%(PMC-1)和29.2%(PMC-2)。在所研究的扑草净和外源有机物料的添加浓度范围内,猪粪堆肥(PMC)都比污泥(SL)作用显著,并且对于同种有机物料高浓度比低浓度影响显著。两种外源有机物料的元素分析结果显示与污泥(SL)相比,猪粪堆肥(PMC)组分中含有较高比例的含氮官能团和更多的不饱和结构。灰分测定结果表明,猪粪堆肥比污泥中含有更多的有机组分。元素分析、红外光谱学技术研究结果表明外源有机物料的加入使土壤中有机质含量得到提高,使土壤质量得到改善。
     采用室内生长箱盆栽试验方法,在土培条件下,研究了在0~24 mg kg-1扑草净浓度范围内对小麦幼苗生长的影响。结果表明,扑草净抑制了小麦的生长。小麦叶片中的叶绿素含量对扑草净胁迫较敏感,低浓度的扑草净(4 mg kg-1)导致叶绿素含量的大幅度降低。小麦组织中TBARS含量明显增大,表明植物体脂质过氧化水平受到扑草净氧化胁迫的诱导而升高。为了进一步了解小麦对扑草净胁迫的生物化学反应机制,分析了小麦叶片和根系中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽转移酶(GST)等抗氧化酶的活力变化。试验结果表明,小麦叶、根中抗氧化酶POD、SOD、APX和GST活力,在较低浓度的扑草净处理下,均显著升高,分别在扑草净浓度为8~12 mg kg-1处理下达到较高水平,在较高浓度扑草净处理(16~24 mg kg-1)处理下酶活力水平又呈下降趋势。而小麦根系中CAT活性在低浓度扑草净处理时(4 mg kg-1)即表现为受到抑制,且随着扑草净浓度的加大逐渐降低。为深入探讨酶活力的变化情况,采用聚丙烯酰胺凝胶电泳技术,测定了扑草净处理的小麦组织中SOD、POD和CAT的同工酶酶谱。结果发现这种诱导作用导致小麦叶和根中同工酶的表达量增加,并与酶活力测定结果完全吻合。为了进一步确证扑草净处理导致的氧化胁迫对小麦抗氧化酶的基因表达量的影响,我们选取了具有代表性变化的SOD和GST酶,检测分析了小麦叶片和根系中Cu/Zn-SOD和GST的基因表达变化情况与不同扑草净处理的关系。
     研究了外源有机物料作用下扑草净对小麦幼苗的毒性影响。在土培条件下,研究了土壤中添加8 mg kg-1扑草净和5%猪粪堆肥对小麦吸收扑草净和抗氧化系统的影响,并对其影响机制进行了初步探讨。结果显示:处理10 d后,PMC使小麦叶和根中的扑草净含量减少,使扑草净胁迫诱导下小麦叶和根中MDA含量和O2·-和H2O2的累积量降低,叶绿素含量升高,表明PMC的施用缓解了扑草净对小麦植株的氧化损伤。扑草净胁迫下使小麦SOD、POD、CAT、APX、GST和GR的活力显著增高,PMC的施入降低了扑草净诱导上述酶活力水平,说明PMC的添加缓解了扑草净诱导的氧化胁迫。采用RT-PCR半定量分析方法对抗氧化胁迫酶SOD和GST及HO-1基因进行了转录表达分析;又通过琼脂糖电泳检测得到DNA Ladder来考察了PMC对扑草净诱导的细胞程序性死亡的影响,发现PMC的施用延迟了扑草净导致的小麦植株程序性细胞死亡。其原因:一方面,PMC发挥其有机肥的功效,可通过促进小麦生长,激活小麦的解毒酶系统,提高植株对除草剂的耐受性;另一方面,也可以通过降低扑草净的迁移性,从而降低了小麦幼苗植株对扑草净的吸收,即降低了其生物有效性,也就缓解了其对小麦幼苗造成的胁迫,抑制了活性氧大量蓄积,减轻脂质过氧化作用对植株带来的伤害。
     综上所述,添加外源DOM可抑制土壤对农药扑草净的吸附,促进土壤中残留扑草净的解吸,从而增强了土壤中农药的移动性,活化了土壤中的残留农药,促进了农药扑草净向水体的迁移和植物的吸收,从而加剧了土壤中残留的农药对地下水及农作物造成污染的风险。而外源固态有机物料的施用不仅能够作为有机肥为植物生长提供养分,而且能够提高土壤中有机质含量,改善土壤质量,促进土壤中残留扑草净的吸附,从而削弱了土壤中农药的移动性,抑制了农药扑草净向水体的迁移和植物的吸收,使土壤中残留农药钝化,从而缓解了土壤中残留农药对地下水及农作物造成污染的风险,外源有机物料,能明显降低土壤中扑草净的生物有效性,使其对作物的毒害作用明显降低。
Application of pesticides has greatly improved the quality and quantity of agricultural production for world growing population. However, with increasing utility of pesticldes, great concerns about their adverse effects on non-target organisms, including human beings, have arised. Extensive use of chemicals in conventional agricultural practices has resulted in continuous environmental pollution. In fact, the contamination of herbicides (or their residues) in ecosystems has become one of the serious environmental problems, which is linked to the crop production, quality, and human health. Since the majority of pesticides occur in the soil medium, the residues of pesticides constitute the major sources that not only contaminate the groundwater by downward movement but are adsorbed by crops as well. Soil organic matter (SOM) is recognized as the key factor affecting the behavior and fate of organic pollutants in soils. Addition of organic amendments to soils changes the SOM content and thus may greatly affect pesticide adsorption/desorption processes. In this dissertation, the influence and its mechanisms of exogenous DOMs and organic amendments on behaviors of prometryne in soils were investigated. Main original conclusions are shown as follows:
     Batch experiments, soil columns and soil plate were conducted to study the effect of DOM on the sorption/desorption and mobility of prometryne in soils. Basic physicochemical properties of two dissolved organic matter were also determined. The results showed that sorption capacity in one soil type for prometryne was significantly reduced by application of DOM, whereas desorption and migration of prometryne was notably promoted by DOM treatments. Compared to the control, the addition of DOMs at 160 mg DOC L-1 (SL2, ST2) decreased the prometryne adsorption by71.0% and 71.8% respectively. Whereas, the application of DOMs at 160 mg DOC L-1 (SL2, ST2) increased the recoveries of prometryne from 22.5%(control) to 36.9%(SL2) and 52.5%(ST2), also increased the Rf values for prometryne mobility in soils from 0.1823 (control) to 0.2147 (SL2) and 0.2376 (ST2). As compared to DOM extracted from sludge, DOM from straw had a stronger effect on behavior of prometryne in soils. This effect could be intensified when high concentration of DOM was added. The results of C, H, N and ash contents analysis indicated that that DOM (ST) contained more organic matters and unsaturated structures than DOM (SL). That suggested DOM could activate prometryne in agriculture soils and increase its activity.
     Batch experiments and soil columns were also conducted to clarify the effect of pig manure compost (PMC) and lakebed sludge (SL) on sorption/desorption and mobility of prometryne in soils. Elemental analysis and FT-IR spectra techniques were applied to determine the physicochemical properties and group components of the two organic amendments. They were also used to monitor the effect of the organic amendments on the basic physicochemical properties of soils. Sorption capacity in soils for prometryne was significantly promoted by application of organic amendments, whereas desorption and migration of prometryne was drastically reduced by organic amendments. Compared to the control, the addition of SL increased the Kf values by 49.6%(SL-1) and 95.2%(SL-2). Similarly, the Kf values for treatments with the addition of PMC were 3.1-3.3 times compared with the control. Whereas, the application of organic amendments (SL and PMC) decreased the recoveries of prometryne from 85.8%(control) to 62.9%(SL-1),57.9% (SL-2),35.2%(PMC-1) and 29.2%(PMC-2). Organic amendments could decrease the activity of prometryne in agriculture soils. As compared to sludge, pig manure compost had a stronger effect on behavior of prometryne in soils. Analysis of C, H, N and ash contents revealed that PMC contained more organic matter and unsaturated structures than SL.
     The soil pot experiment was employed to investigate prometryne-induced biological toxicity in wheat (Triticum aestivum). Wheat plants were grown in soils with prometryne at 0-24 mg kg-1 soil. The growth of wheat treated with prometryne was inhibited. Chlorophyll content significantly was decreased even at the low level of prometryne (4 mg kg-1 soil). Accumulation of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation was increased, suggesting oxidative damage to the plants. The prometryne-induced oxidative stress triggered significant changes in activities of a variety of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST). Activities of the enzymes showed a general increase at low prometryne concentrations, but decrease at high levels. Analysis of non-denaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. To get an insight into the molecular response, a qRT-PCR-based assay was performed to analyze the transcript abundance of Cu/Zn-SOD and GST with prometryne exposure. Our analysis showed that both genes were up-regulated in expression with a pattern similar to the activities of the enzymes. Therefore, we concluded that that prometryne-induced biological toxicity was responsible for the disturbance of the growth and antioxidant defensive systems in wheat plants.
     Accumulation of prometryne and biological responses of wheat plants as affected by pig manure compost (PMC) was investigated. Compared to prometryne toxicity in the absence of PMC, treament of prometryne at 5% PMC reduced prometryne.and thiobarbituric acid reactive substances (TBARS) accumulation in plants, O2- and H2O2 accumulation in leaves, but increased chlorophyll content in leaves. To further understand the putative role of PMC in alleviating prometryne-induced oxidative injury, we measured the activities of several antioxidant enzymes and observed that PMC application decreased the prometryne-induced activities of ascorbate peroxidases, glutathione reductases, glutathione-S-transferases, peroxidase and superoxide dismutase in prometryne-treated seedlings. However, an increased catalase activity was observed in seedling root under the same condition. In this case, PMC probably reduced the oxidative injury by enhanced CAT activities for removal of H2O2. Because excessively accumulated prometryne triggers oxidative damage to plants, the biochemical and molecular responses of several major enzymes and its gene expression were determined. Analysis of SOD, GST and HO-1 using RT-PCR revealed that PMC might mediate detoxification of prometryne at molecular as well as physiological levels in wheat plants. DNA degradation was assayed to confirm the effect of PMC on prometryne-initiated programmed cell death (PCD). Our result indicated that PMC delivers protection against prometrnye injury and prevents DNA fragmentation. Although the mechanism is not fully understood, it is convincingly illustrated by our current study that, PMC amendment is able to mitigate the prometryne-induced toxicity, providing a sound strategy in both agronomic and environmental aspects.
引文
[1]Cheng. H H. Pesticides in the soil enviroment:processes, impacts, and modeling[M]. Published by Soil Science Society of America, Inc. Madison, Wisconsin, USA,1990,7-50
    [2]Xing B S, Chen Z Q. Spectroscopic evidence for condensed domains in soil organic matter[J]. Soil Sci.,1999,164(1):40-47
    [3]Peter C J, Weber J B. Adsorption mobility and efficacy of alachlor and metolachlor as influenced by soil properties[J]. Weed Sci.,1985,33(6):874-881
    [4]占伟,吴文忠,徐盈.有机有毒污染物在土壤及底泥系统中的吸附懈吸行为研究进展[J].环境科学进展,1998,6(3):1-13
    [5]Weber W J Jr, McGinley P M, Katz L E. Sorption phenomena in subsurface systems:concepts, models and effects on contaminant fate and transport[J]. Wat. Res.1991,25 (5):499-528
    [6]杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社,1999
    [7]王连声.有机污染化学[M].北京:高等教育出版社,2004:47-51
    [8]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工科技与开发,2004,33(1):12-16
    [9]Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations [J]. Environ. Sci. Technol.,1998,32:338-343
    [10]Smith J A, Galan A. Sorption of nonionic organic contaminants to single and dual cation bentonites from water[J]. Environ. Sci.Technol.1995,2993:685-692
    [11]Chiou C T, Kile D E, Rutherford D W, Sheng G B. Sorption of selected organic compounds from water to peat soil and its humic-acid and humic fractions[J]. Environ. Sci.Technol.2000,34: 1254-1258
    [12]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素—吸附和脱附[J].中国环境科学,1996,16(1):25-30
    [13]罗玲.硫肟醚菊酯在土壤中的吸附行为及机理研究[D].湖南:湖南农业大学硕士学位论文,2004
    [14]杨炜春,王琪全,刘维屏.除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J].环境科学,2000,21(4):94-97
    [15]Spark K M, Swift R S. Effect of soil composition and dissolved organic matter on pesticide sorption[J]. Sci. Total Environ.,2002,298 (1/3):147-161
    [16]Mathava K, Ligy P. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils[J]. Chemosphere,2006,62(7):1064-1077
    [17]Sinthalapadi T M, Atmakuru R. Adsorption and degradation of sulfosulfuron in soils[J]. Environ. Monit. Assess.,2007,127(1/3):97-103
    [18]Koskinen W C. Pesticides in the soil environment [J]. Soil Sci. Soc.Am. J.,1990,2:51-77
    [19]Werkheiser W O, Anderson S J. Effect of soil properties and surfactant on primisulfuron sorption [J]. J. Environ. Qual.,1996,25(4):809-814
    [20]秦传玉,赵勇胜,刘娜,孙艳.阿特拉津在土壤中的吸附行为[J].环境污染与防治,2007,3:165-167
    [21]Torrents A. The sorption nonionic pesticides onto clays and the influnce of natural organic carbon[J]. Chemosphere,1997.35(7):1549-1565
    [22]Raman S, Krishna M, Chandrasekhar Rao P. Adsorption-desorption of atrazine on four soils of Hyderabad[J]. Water Air Soil Poll.,1988,40 (1):177
    [23]Pusino A, Liu W, Gessa C. Dimepiperate adsorption and hydrolysis on Al (super 3+)-, Fe (super 3+) , Ca (super 2+)-, and Na (super+)-montmorillonite[J]. Clay Clay Miner.,1993,41 (3):335-340
    [24]Harter R D, Curve-fit errors in Langmuir adsorption maxma[J]. Soil Sci.Soc. Am J.,1984,48(4): 749-752
    [25]H H麦尔尼科夫,A N沃尔科夫,O A科罗特科娃.农药与环境[M].北京:化学工业出版社,1985
    [26]冉隆松.化学农药在土壤中的转化[J].内蒙古农业科技,1994,(1):26
    [27]赵玲,马永军.有机氯农药残留对土壤环境的影响[J].土壤,2001,(6):309-311
    [28]马君贤.化学农药在土壤中的迁移与转化[J].黑龙江环境通报.2007,31(1):79-81
    [29]王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版).2002,23(1):91-96,101.
    [30]Labbs V, Amelung W, Pinto A, Altstaedt A, Zech W. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados[J]. Chemospere,2000,41:1441-1449
    [31]Bergstrom L, Stenstrom J.化学物质在土壤中的环境归宿[J].Ambio.,1998,27(1):16-22
    [32]蔡道基,杨佩芝,龚瑞忠,陈锐,江希流,张爱云,蒋新明.化学农药环境安全评价实验准则[M].北京:国家环境保护局,1989
    [33]王超,阮晓红,朱亮.污染物在非饱和土壤中迁移规律的试验研究[J].河海大学学报,1996,24(2):7-13
    [34]张瑾,闫书军.农药在土壤中淋溶迁移影响因素研究进展[J].安徽建筑工业学院学报(自然科学版),2008,16(4):38-45
    [35]Krzyszowska A J, Allen R D, Viqueira G F. Assessment of the fate of two herbieides in a wyorning rangeland soil:column studies[J]. J. Environ. Qual.,1994,23:1051
    [36]Guenzi W D., Pesticides in soil & water [M]. Soil Sci. Soc. of Am., Inc. Publisher,1974
    [37]吴瑞娟,金卫根,邱峰芳.化学农药在土壤中的迁移转化[J].河北农业科学,2008,12(3):122-123
    [38]安凤春,莫汉宏,杨克武,刘晔,徐晓白.农药在土壤中迁移的研究方法[J].环境化学,1994,13(3):214-217
    [39]Lichtinstein E P. Movement of insecticides in soils under leaching and non-leaching condition[J]. Ecol. Entomol.,1958,51:380-383
    [40]Sanchez-Camazano M, Sanchez-Martin M J, Poveda E, Iglesias-Jimenez E. Study of the effect of exogenous organic matter on the mobility of pesticides in soils using soil thin-layer chromatography [J]. J. Chromatogr. A,1996,754:279-284
    [41]Paul K, Paul A B, Alistair B A B. Column studies to investigate the fate of veterinar antibiotics in clay soils following slurry application to agricultural land [J]. Chemosphere,2005,60:497-507
    [42]Simonnich S L, Hites R A. Organic pollutant accumulation in vegetation[J]. Environ. Sci. Technol., 1995,29,2905-2914
    [43]Schnoor J L, Licht L A, Mc Cutcheon S C. Phytoremediation of conteminated soils and sediments. Environ. Sci. Technol.,1995,29:318-323
    [44]Li H, Sheng G, Sheng W, Xu O. Uptake of trifiuralin and Lindane from water by Ryegrass [J]. Chemosphere,2002,48:335-341
    [45]Harms H, Langebartels C. Standardized plant cell suspension test systems for an ecotoxicologic evaluation of the metabolic fate of xenobiotics[J]. Plant Sci.,1986,5:157-165
    [46]Raveton M, Ravanel P, Serre A M, Nurita F, Tissuta M. Kinetics of uptake and metabolism of atrazine in model plant systems[J]. Pestic Sci.,1997,49:157-163
    [47]黄晓梅,钱翌,朱建雯.有机磷农药对土壤呼吸的影响[J].安徽农业科学,2007,35(7):1976-1977
    [48]胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展,1998,7(5):14-22
    [49]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报,1998,4(3):201-210
    [50]Flores-Cespedes F, Femandez-Perez, Villafranca-Sanchez M, Gonzalez-Pradas E. Cosorption study of organic pollutants and dissolved organic matter in a soil[J]. Environ. Poll.,2006,142:449-456
    [51]占新华,周立祥,万寅婧,蒋廷惠.水溶性有机物对植物吸收菲的影响及其机制研究[J].环境科学,2006,27(9):1884-1888
    [52]Williams C F, Letey J, Farmer W J. Estimating the potential for facilitated transport of Napropamide by dissolved organic matter[J]. Soil Sci. Soc. Am. J.,2006.70(1):24-30
    [53]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J]. 生态学杂志,1999,18(3):32-38
    [54]Kalbitz K, Soling S, Park J H, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soil[J]. Soil Sci.,2000,165(4):277-300
    [55]Martin H, Chanting N Y. Dissolved and water-extractable organic matter in soils:a review on the influence of land use and management practices[J]. Geoderma,2003,113(3/4):357-380
    [56]Hockaday W C, Grannas A M, Kim S, Hatcher P G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J]. Org. Geochem.,2006,37(4):501-510
    [57]卢萍,杨林章.陆地生态系统中人为因素对DOM影响研究进展[J].生态学杂志,2005,24(11):1308-1313
    [58]Kalbitz K, Schwesig D, Rethemeyer J. Stabilization of dissolved organic matter by sorption to the mineral soil[J]. Soil Bio. Biochem.,2005,37(7):1319-1331
    [59]Baham J, Sposito G. Proton and metal complexion by water-soluble ligands extracted from anaerobically digested sewage sludg[J]. J. Environ. Qual.,1986,15(3):239-244
    [60]Klaus K. Sorption of natural organic matter fractions to goethite(a-FeOOH):effect of chemical composition as revealed by liquid-state 13C-NMR and wet-chemical analysis[J]. Org. Geochem., 2003,34:1569-1579
    [61]Geraldine D K, Clemens P, Gerhard J. Elemental composition of dissolved organic matter and bacterioplankton production in the Faroe-Shetland Channel (NorthAtlantic)[J]. Deep-Sea Res. Pt. I, 2005,52:85-97
    [62]Huo S L, Xi B D, Yu H C, He L S, Fan S L, Liu H L. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. J. Environ. Sci.,2008,20:492-498
    [63]Leenheer J A. Comprehensive approach to preparative isolation and fraction of dissolved organic carbon from naturalwaters and wastewaters[J]. Environ. Sci. & Tech.,1981,15(5):578-587
    [64]Gregorich E G, Liang B C, Drury C F. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agriculture soils[J]. Soil Biol. Biochem.,2000,32:581-587
    [65]代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报,2004,41(5):721-727
    [66]Homann P S, Grigal D F. Molecular weight distribution of soluble organics from laboratory-manipulated surface soils[J]. Soil Sci. Soc. Am. J.,1992,56:1305-1310
    [67]Donald R G, Anderson D M, Stewart J W B. Potential role of dissolved organic carbon in phosphorus transport in forested soil [J]. Soil Sci. Soc.Am. J.,1993,57:1611-1618
    [68]Elabd H, Jury W A, Cliath M M. Spatial variability of pesticide absorption parameters [J]. Environ. Sci. Technol., 1986,20:256-260
    [69]Gerstl Z, Yaron B. Behavior of bromacil and napromide in soils I. Adsorption and degradation[J]. Soil Sci. Soc. Am. J.,1983,47:474-478
    [70]Sposito G, Martin-Neto L, Yang A. Atrazine complication by soil humic acids[J]. J. Environ. Qual., 1996,25:1203-1209
    [71]Chiou C T, Malcolm R L, Brinton T I, Kile D E. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids[J]. Environ. Sci. Technol.,1986,20: 502-508
    [72]Madhun Y A,Young J L, Freed V H. Binding of herbicide by water-soluble organic materials from soil[J]. J. Environ. Qual.,1986,15:64-68
    [73]Klaus U, Mohamed S,Volk M, Spiteller M. Interaction of aquatic humic substances with anliazine and its derivatives:The nature of the bound residues[J]. Chemosphere,1998,37(2):341-361
    [74]Maxin C R, Kogel-Knaber I. Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter[J]. Eur. J. Soil Sci.,1995,46:193-204
    [75]Kogel-Knaber I, Totsche K U. Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils[J]. Phys. Chem. Earth.,1998, 23(2):179-185
    [76]丁应祥,朱琰,黄剑聆.有机污染物在土壤-水体系中的分配理论[J].农村生态环境,1997,(2):42-45
    [77]Caron G, Suffet I, Belton T. Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds[J]. Chemosphere,1985,14:993-1000
    [78]Hassett J P, Anderson M A. Effects of dissolved organic matter on adsorption of hydrophobic organic compound by river and sewage-borne particles[J]. Water Res.,1982,16:681-686
    [79]凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330
    [80]Yaron D, Zeev A, Benny C. Sorption-desorption behavior of atrazine in soils irrigated with reclaimed wastewater[J]. Soil Sci. Soc. Am. J.,2005,69(6):1703-1710
    [81]Barriuso E, Baer U, Caivet R. Dissolved organic matters and adsorption-desorption of dimefuron, atrazine and carbetamide by soils[J]. J. Environ. Qual.,1992,21:359-367
    [82]马爱军,周立祥,何任红.水溶性有机物对草萘胺在土壤中吸附与迁移的影响[J].环境科学,2006,27(2):355-359
    [83]张雪英,周立祥,王世梅,卢晓丹.施用污泥堆肥及其水溶性有机物对土壤中荧蒽解吸-淋滤的影响[J].环境科学学报,2008,28(10):2018-2023
    [84]Kogel-Knaber I, Totsche K U. Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matters[J]. J. Environ. Qual.,2000,21:906-916
    [85]吴文铸,占新华,周立祥.水溶性有机物对土壤吸附-解吸菲的影响[J].环境科学,2007,2:45-49
    [86]Nelson S D, Letey J, Farmer W J. Facilitated transport of napropamide by dissolved organic matter in sewage sludge-amended soil[J]. J. Environ. Qual.,1998,27:1194-1200
    [87]Totsche K U, Danzer J, Kogel-Knaber I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments[J]. J. Environ. Qual.,1997,26: 1090-1100
    [88]Moona J W, Goltzb M N. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater[J]. J. Contam. Hydrol.,2003,60(3/4): 307-326
    [89]Ling W T, Xu J M,Gao Y Z. Effects of dissolved organic matter from sewage sludge on the atrazine sorption by soils[J]中国科学C辑(英文版),2005(S1):109-116
    [90]McCarthy J F, Jimenez B D. Interactions between polycyclic aromatic hydrocarbons and dissolved humic materials:Binding and dissociation[J]. Environ. Sci. Technol.,1985,19:1067-1072
    [91]Chiou C T, Porter P E, Schmedding D W. Partition equilibria of nonionic organic compounds between soil organic matter and water[J]. Environ. Sci. Technol.,1983,17:227-231
    [92]Lee D Y, Farmer W J. Dissolved organic matter interaction with napropamide and four other nonionic pesticides[J]. J. Environ. Qual.,1989,18:468-474
    [93]Carringer R D, Weber J B, MonacoT J. Adsorption-desorption of selected pesticides by organic matter and montmorillonite[J]. J. Agri.&Food Chem.,1975,23:569-572
    [94]Henry V M. Association of hydrophobic organic contaminants with soluble organic matter: Evaluation of the database of Kdoc values[J]. Adv. Environ. Res.,2002,6:577-593
    [95]McCarthy J F, Roberson L E, Burrus L W. Association of benzo(a)pyrene with dissolved organic matter:Prediction of dome from structural and chemical properties of the organic matter[J]. Chemosphere,1989,19:1911-1920
    [96]毛知耘.肥料学[M].中国农业出版社,1997
    [97]全国肥料和土壤调理剂标准化技术委员会,中化化工标准化所,中国标准出版社第二编辑室.肥料和土壤调理剂标准汇编[M],中国标准出版社,2005
    [98]李芳柏,廖宗文.试论我国有机无机肥料的配合使用[J].热带亚热带土壤科学,1996,5(3): 167-172
    [99]刘经荣.水稻土有机无机肥料配合的效应[J].江西农业大学学报,1990,12(1):37-42
    [100]沈其荣.土壤肥料科学通论[M].北京:高等教育出版社,2001
    [101]林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,9(1):6-18
    [102]袁玲,杨邦俊,黄建国,郑兰君,刘学成.长期施用有机肥和化肥对土壤有机质和氮素的影响[J].西南农业大学学报,1993,15(4):314-317
    [103]Odell R T, Melsted S W, Walker W M. Changes in orgnic carbon and nitrogen of morrow plot soils under different treatments,1904~1973[J]. Soil Sci.,1984,137 (3):160-170
    [104]Ndayeyamiye A, Cote D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties.Canadian Journal of soil science[J].1989,69(1):39-47
    [105]林增泉,翁文钰,蒋和,林炎金,刘振兴.连续十年施肥对水稻土肥力的影响[J].福建省农科院学报,1991,6(1):35-44
    [106]宋光煜,赵红霞.有机肥对水稻土根层生态的效应[J].土壤学报,1993,30(2):131-136
    [107]武翻江,张树清,罗志桢.有机-无机复混肥在日光温室无公害蔬菜上的应用[J].土壤肥料,2004(4):22-24
    [108]Zaidi A, Khan M S, Amil M D. Interactive effect of rhizotrophic icro-organisms on yield and nutrient uptake of chickpea.(Cicer arietinum L)[J]. Eur. J. Agron.,2003,19(1):15-21
    [109]Benitez E, Melgar R, Sainz H, Gomez M, Nogalez R. Enzyme activities in the rhizosphere of pepper grown with olive cake mulches[J]. Soil Bio. Biochem.,2000,32(13):1829-1835
    [110]徐淑芬,史芝文,杨丽娟,朱祥春,姜福臣.施有机肥对烟叶Vc含量的影响[J].农业与技术,1996(1):42-43
    [111]Casale W L, Minassian V, Menge J A. Urban and agricultural wastes for use as mulches on avocado and citrus and for delivery of microbial biocontrol agents[J]. J. Hortic. Sci.,1995(70): 315-332
    [112]张旭东,须湘成,陈恩凤.施用猪粪培肥十壤后十壤氨基酸含量的变化[J].土壤通报,1989(6):260-263,248
    [113]浙江农业大学主编.植物营养与肥料.北京:农业出版社,1991,123
    [114]刘鹏程,丘华吕.不同方式秸杆还田培肥土壤的模拟试验[J].土壤肥料,1994(6):19-23
    [115]胡艳霞,孙振钧,程文玲.蚯蚓养殖及蚯蚓粪对植物土传病害抑制作用的研究进展[J].应用生态学报,2003,14(2):296-300
    [116]Lazarovits G, Tenuta M, Conn K L. Organic amendments as a disease control strategy for soilborne disease of high-value agricultural crops[J]. Australas. Plant Path.,2001(30):111-117
    [117]罗安程,孙羲.章永松.有机肥对大麦生长的影响及其可能机制[J].土壤通报,1994,25(5):219-221
    [118]Bittman S, Forge T A, Kowalenko C G. Respinses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manureslurry and fertilizer[J]. Soil Biol. Biochem., 2005(37):613-623
    [119]Zhou Y Y, Chen H R, Fan J H. Genetic diversity and disease control in rice[J]. Nature,2000, 406(5797):718-722
    [120]张广臣,叶景学,张晓明.有机肥对茄子生长发育及抗病性的影响[J].吉林农业大学学报,2003,25(1):66-70
    [121]Worknih F, Van Bruggen A H. Suppresion of corky rot of to tomatoes in soils from organic farms associated with soil microbial activity and nitrogen status of soil and tomato tissue[J]. Phytopathology,1995(84):688-694
    [122]Abawi G S, Widmer T L. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops[J]. Appl. Soil Ecol.,2000(15):37-47
    [123]Gamliel A, Austerweil M, Kritzman G. Non-chemical approach to soilborne pest management organic amendments[J]. Crop Prot.,2000(19):847-853
    [124]Tenuta M, Lazarovits G. Ammonia and nitrous acid from nitrogenous amendments kill microsclerotia of Verticillium dahliae[J]. Phytopathology,2002(92):255-264
    [125]Wu F C, Tanoue E. Isolation and partial characterization ofdissolved copper-complexing ligands in streamwaters[J]. Environ. Sci. Technol.,2001,35:3646-3652
    [126]Wu F C, Tanoue E. Molecular mass distribution and fluorescence characteristics of dissolved organic ligands for copper(II)in Lake Biwa, Japan[J]. Org. Geochem.,2001,32:11-20
    [127]Wu F C, Tanoue E. Geochemical characterization of organic ligands for copper (Ⅱ) in diferent molecular size fractions in Lake Biwa, Japan[J]. Org. Geochem.,2001,32:1311-1318
    [128]Smith D S, Wu F C. Preface:Metal interactions with natural organic matter[J]. Appl. Geochem., 2007,22:1567.
    [129]陈静生.水环境化学[M].北京:高等教育出版社,1987
    [130]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社,1998
    [131]陶澍,骆永明,朱利中,王学军,曹军,李本纲,徐福留,张枝焕.典型微量有机污染物的区域环境过程[J].环境科学学报,2006,260:168-171
    [132]傅家谟,盛国英.环境有机地球化学初探[J].地学前缘,1996,3(2):127-132
    [133]Means J C, Wood S G, Hassett J J, Banwart W L. Sorption of polynuclear aromatic hydrocarbons by sediments and soils[J]. Environ. Sci. Technol.,1980,14:1524-1528
    [134]何耀武,区自清.孙铁珩.多环芳烃类化合物在土壤上的吸附[J].应用生态学报,1995,6:423-427
    [135]Xing B, McGill W B, Dudas M J. Cross-correlation of polari~ curves to predict partition coefficient of nonionic organic contaminants[J]. Environ. Sci. Technol.,1994,28:1929-1933
    [136]曹红英,陶澍,王喜龙,曹军,李本,徐福留,刘文新,沈伟然,秦宝平,孙韧.天津地区菲的空间分异多介质归趋模型[J].环境科学,2003,24(5):54-59
    [137]Xing B. The effect of the quality of soil organic matter onsorption of naphthalene[J]. Chemosphere, 1997,35:633-642
    [138]Chin Y P, Aiken G R, Danielsen K M. Binding pyrene to aquatic and commercial humic substances:The role of molecular weight and aromaticity[J]. Environ. Sci. Technol.,1997,31: 1630-1635
    [139]Chefetz B, Deshmukh A P, Hatcher P G, Guthrie E A. Pyrene sorption by natural organic matter[J]. Environ. Sci. Technol.,2000,34:2925-2930
    [140]Salloum M J, Chefetz B, Hatcher P G. Phenanthrene sorption by aliphatic—rich natural organic matter[J]. Environ. Sci. Technol.,2002,36:1953-1958
    [141]Gunasekara A S, Xing B. Sorption and desorption of naphthalene by soil organic matter: importance of aromatic and aliphatic components[J]. J. Environ. Qual.,2003,32:240-246
    [142]Drolet C, Banton O, Lafrance P, Villeneuve J P. Assessing the fate of polynuclear aromatic hydrocarbo ns from oily waste land spreading by modelling[J]. Can. J. Civil Eng.,1996,23: 211-217
    [143]Lueking A D, Huang W, Soderstrom-Schwarz S, Kim M, Weber W J Jr. Relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability[J]. J. Environ. Qual.,2000,29:317-323
    [144]Bogan BW, Sullivan W R. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil[J]. Chemosphere,2003, 52:1717-1726
    [145]Conte P, Zena A, Pilidis G, Piccolo A. Increased retention of polycyclic aromatic hydrocarbons in soils induced by soll treatment with humic substances[J]. Environ. Pollut.,2001,112:27-31
    [146]Perminova I V, Grechishcheva N Y, Kovalevskii D V, Kudryavtsev A V, Peosyan V S, Matorin D N. Quantification and prediction of the detoxifying properties ofhumic substances related to their chemical binding to polycyclic aromatic hydrocarbons[J]. Environ. Sci. Technol.,2001,35: 3841-3848
    [147]Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles:Influence on biodegradability and biotoxicity[J]. Appl. Microbiol. Biot.,1992,36: 689-696
    [148]Conte P, Agretto A, Spaccini R, Piccolo A. Soil remediation:Humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environ. Pollut.,2005,135:515-522
    [1]郑立庆,方娜,周庆祥,刘立群.农药在土壤中的吸附及其影响因素[J].安徽农业科学,2001,35(21):6573-6575
    [2]Flury M. Experimental Evidence of Transport of Pesticides through Field Soils-A Review[J]. J. Environ. Qual.,1996,25:25-45
    [3]温志良,莫大伦.土壤污染研究现状与趋势[J].重庆环境科学,2000,22(3):55-57
    [4]Redoudo M J. Dissipation and distribution of atrazine, simazine, chlorpyrifos, and tetradifon residues in citrus orchard soil[J]. Arch. Environ. Contam. Toxicol.,1997,32(4):346-352
    [5]乔雄梧.农药在土壤中的环境行为[J].农药科学与管理,1999(增刊):12-20
    [6]吴鑫,杨红,周立祥.可溶性有机物对扑草净水溶解度和正辛醇/水分配系数的影响[J].分析化学,2004,32(4):552
    [7]Lee D Y, Farmer W J. Dissolved organic matter interaction with napropamide and four other nonionic pesticides [J]. J. Environ. Qual.,1989,18:468-474
    [8]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素—吸附和脱附[J].中国环境科学,1996,161:25-30
    [9]Paul C, Simo O P, Chiachia C L. Phorate and terbufos adsorption onto four tropical soils [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,240:55-61
    [10]宋宁慧.水溶性有机物对除草剂绿麦隆环境行为的影响及其机制研究[D].江苏:南京农业大学博士学位论文,2009
    [11]Celis R, Barriuso E, Houot S. Sorption and desorption of atrazine by sludgeamended soil:dissolved organic matter effects [J]. J. Environ. Qual.,1998,27:1348-1356
    [12]Li S N, Sun Y, Yang T, Huangpu W G. Relationship between mobility factors (Rf) of two hydrophobic btermiticides and selected field and artificial soil parameters [J]. Sci. Total Environ., 2007,388:206-213
    [13]曹军.除草剂扑草净在土壤环境中的行为研究[D].江苏:南京农业大学硕士学位论文,2008
    [14]Akkanen J, Kukkonen J. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter[J]. Environ. Toxicol. Chem.,2003,22:518-524
    [15]Flores-Cespedes F, Gonzalez-Pradas E, Fernandez-Perez M, Villafranca-Sanchez M. Socias-Viciana M, Urena-Amate M D. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil[J]. J. Environ. Qual.,2002,31:880-888
    [16]Zhou L X, Yang H, Shen Q L, Wong M H, Wong J W C. Fraction and characterization of dissolved organic matter derived from sewage sludge and compost sludge[J]. Environ. Technol., 2000,21:765-771
    [17]杨炜春,王琪全,刘维屏.除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J].环境科学,2000,21(4):94-97
    [18]秦传玉,赵勇胜,刘娜,孙艳.阿特拉津在土壤中的吸附行为[J].环境污染与防治,2007,3:165-167
    [19]Torrents A. The sorption nonionic pesticides onto clays and the influnce of natural organic carbon[J]. Chemosphere,1997.35(7):1549-1565
    [20]Gerstl Z, Yaron B. Behavior of bromacil and napromide in soils:Ⅰ.adsorption and degradationfJ]. Soil Sci. Soc. Am. J.,1983,47:474-478
    [21]Zhou L X, Wong J W C. Microbical decomposition of organic matter and its control during a sorption experiment [J]. J. Environ. Qual.,2000,29:1852-1856
    [22]Chiou C T, Malcolm R L, Brinton T I, Kile D E. Water solubility enhancement of some organic pollutants and pesticide by dissolved humic and fulic acids[J]. Environ. Sci. Technol.,1986,20: 502-508
    [23]Celis R, Barriuso E, Houot S. Effect of liquid sewage addition on atrazine sorption and desorption by soil[J]. Chemosphere,1998,37(6):1091-1107
    [24]Raber B, Koel-Knaber I, Setin C, Klem D. Partltioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils[J]. Chemosphere,1998,36(1):79-97
    [25]Raber B, Koel-Knaber I. Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons[J]. Eur. J. Soil Sci.,1997,29:906-916
    [26]陈广.不同极性和不同分子量溶解性有机质对土壤中除草剂扑草净迁移行为的影响[D].江苏:南京农业大学硕士学位论文,2009
    [27]McCarthy J F, Roberson L E, Burrus L W. Association of benzo(a)pyrene with dissolved organic matter:Prediction of dome from structural and chemical properties of the organic matter[J]. Chemosphere,1989,19:1911-1920
    [28]Li K, Xing B S, William A T. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching[J]. Environ. Pollut.,2005,134:187-194
    [29]安凤春,莫汉宏,杨克武,杨兴波,刘晔.单甲脒等农药的土壤薄层层析行为[J].环境化学, 1995,14(01):25-31
    [30]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学.1999,19(5):392-396
    [31]Brickell J L, Keinath T M. The effect of surfactants on the sorption partition coefficients of naphthalene on aquifer soils[J]. Water Sci. Technol.,1991,23:455-463
    [32]Kile D E, Chiou C T. Water solubility enhancements of DDT and Trichlorobenzene by some surfactants below and above the criticalmicelle concentration[J]. Environ. Sci. Technol.,1989,23: 832-838
    [33]Santos-Buelga M D, Sanchez-Martin M J, Sanchez-Camazano M. Effect of dissolved organic matter on the adsorption of Ethofumesate by soils and their components[J]. Chemosphere,1992,25: 727-734
    [34]Huo S L, Xi B D, Yu H C, He L S, Fan S L, Liu H L. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages [J]. Journal of Environmental Sciences-China,2008, 20,492-498
    [1]U. S. Environmental Protection Agency, Pesticide in Ground Water Database:National Water Quality Inventory:1990. Report to Congress. USEPA, Washington DC,1992
    [2]张朝贤.农田化学除草剂与可持续发展[J].农业农药,1998,37(4):8-10
    [3]刘维屏,季瑾.吸附,脱附-农药在土壤-水环境中归宿的主要支配因素[J].中国环境科学,1996,16(1):25-30
    [4]Alexander M. How toxic are toxic chemicals in soils[J]. Environ. Sci. Technol.,1995,29(11): 2713-2717
    [5]王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版),2002,23(1):91-96,101
    [6]Sigua G C, Adjei M, Rechcigl J. Cumulative and residual effects of repeated sewage sludge applications:forage productivity and soil quality implications in south Florida, USA[J]. Environ. Sci. Pollut. Res.,2005,12:80-88
    [7]Majumdar K, Singh N. Effect of soil amendments on sorption and mobility of metribuzin in soils[J]. Chemsphere,2007,66:630-637
    [8]李芳柏,廖宗文.试论我国有机无机肥料的配合使用[J].热带亚热带土壤科学,1996,5(3):167-172
    [9]刘经荣.水稻土有机无机肥料配合的效应[J].江西农业大学学报,1990,12(1):37-42
    [10]沈其荣.土壤肥料科学通论[M].北京:高等教育出版社,2001
    [11]葛诚.微生物肥料概述[J].土壤肥料,1993,8:43-47
    [12]丁应祥,朱淡,黄剑聆.有机污染物在土壤-水休系中的分配理论[J].农村生态环境,1997,13(3):42-45
    [13]Mingelgrin U, Gerstl Z. Reevaluation of Partitioning as a mechanism of Nonionie Chemicals adsorpdon in soils[J]. J. Environ. Qual.,1983,12:1-11
    [14]乔雄梧.农药在土壤中的环境行为[J].农药科学与管理,1999(增刊):12-20
    [15]Wang Q, Yang W, Liu W. Adsorption of acetanilide herbicides on soils and its correlation with soil properties[J]. Pestic. Sci.,1999,55:1103-1108
    [16]Singh N. Organic manure and urea effect on metalochlor transport through packed soil columns[J]. J. Environ. Qual.,2003,32:1743-1749
    [17]张伟,王进军,张忠明,秦纂.烟嘧磺隆在土壤中的吸附及土壤性质的相关性研究[J].农药学学报,2006,8(3):265-271
    [18]Hamaker J W, Thompson, J M. Adsorption of organic chemicals in the soil environment. p.49-144. In J.W. Hamaker and CAI Goring (ed.). Organic chemicals in the soil environment, vol.1. Marcel Decker Inc., New York.1972
    [19]Gao J P, Spitzauer M J, Kettrup A. Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I:Equilibrium assessments, effect of organic carbon content and pH[J]. Water Res.,1998,32(5):1662-1672
    [20]Benny C, Yitzhak I B, Tamara P. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments[J]. Water Res.,2004,38:4383-4394
    [21]曹军.除草剂扑草净在土壤环境中的行为研究[D].江苏:南京农业大学硕士学位论文,2008
    [22]杨炜春,刘维屏,马云,刘惠君.扑草净和扑灭通在土壤中吸附及其与色谱热力学函数的相 关性[J].土壤学报,2002,39(5):693-697
    [23]Cox L, Velarde P, Cabrera A, Hermosin M C, Cornejo J. Dissolved organic carbon interactions with sorption and leaching of diuron in organic-amended soils[J]. Eur. J. Soil Sci.,2007,58:714-721
    [24]Dolaptsoglou C, Karpouzas D G, Menkissoglu-Spiroudi U, Eleftherohorinos L, Voudrias E A. Influence of Different Organic Amendments on the Degradation, Metabolism, and Adsorption of Terbuthylazine[J]. J. Environ. Qual.,2007,36:1793-1802
    [25]Redondo-Gomez S, Cox L, Cornejo J, Figueroa E. Combined effect of diuron and simazine on photosystem Ⅱ photochemistry in a sandy soil and soil amended with solid olive-mill waste[J]. Journal of Environmental Science and Health Part B,2007,42:249-254
    [26]Si Y B, Zhang J, Wang S Q, Zhang L, Zhou D M. Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China[J]. Geoderma 2006,130: 66-76
    [27]Coffey D L, Warren G F. Inactivation of Herbicides by Activated Carbon and Other Sorbents[J]. Weed Sci.,1969,17:16-19
    [28]Bellin C A, Connor G A O, Jin Y, Sorption and Pentachlorophenol in Sludge-Amended Soils[J]. J. Environ. Qual.,1990,19:603-608
    [29]Gonzalez-Pradas E, Villafranca-Sanchez M, Fernandez-Perez M, Socias-Viciana M, Urena-Amate M D. Sorption and leaching of diuron on natural and peat-amended calcareous soils from Spain[J]. Water Res.,1998,32:2814-2820
    [30]Guo L, Bicki T J, Felsot A S, Hinesly T D. Sorption and movement of alachlor in soils modified by carbon rich waste[J]. J. Environ. Qual.,1993,22:186-194
    [31]Socias-Viciana M, Fernandez-Perez M, Villafrance-Sanchez M, Gonzalez-Pradas E, Flores-Cespedes F. Sorption and leaching of atrazine in natural and peat-amended calcareous soils from Spain[J]. J. Agric. Food Chem.1999,47:1236-1241
    [32]Huo S L, Xi B D, Yu H C, He L S, Fan S L, Liu H L. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages [J]. Journal of Environmental Sciences-China,2008, 20,492-498
    [33]Wu J G, Zeng G F, Wang D M, Xi S Q, Jiang Y, Wang M H, Geng Y H. Fourier Transform Infrared Spectroscopic Study on Composted Corn Leaf Residue[J]. Chinese Journal of Analytical Chemistry, 1997,25(12):1395-1400
    [34]Koji N, Solomon P H.100 Cases of Infrared Spectroscopic Analysis[M]. Beijing:Science Press, 1984,8
    [1]Blanchoud H, Moreau-Guigon E, Farrugia F, Chevreuil M, Mouchel J M. Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed [J]. Sci.Total Environ.,2007,375:168-79
    [2]Clark G M, Goolsby D A. Occurrence and load of selected herbicides and metabolites in the lower Mississippi river[J]. Sci. Total Environ.2000; 248:101-13
    [3]Greene J C, Bartels G L, Warren-Hicks W J. Protocols for short-term toxicity screening of hazardous waste sites[J]. USA Environmental Protection Agency.1998. EPA/600/3-88/029
    [4]Knoke K, Marwood T M, Cassidy M B, Lee H, Trevors J T, Liu D, Seech A G. A comparison of five bioassays to monitor toxicity during bioremediation of pentachlorophenol-contaminated soil [J]. Water Air Soil Poll.,1999,110:157-169
    [5]Karpinski S, Reynolds H, Karpinksa B, Wingsle G, Cressen G, Mullineaux P. Systemic-signaling and acclimation in response to excess excitation energy in Arabidopsis[J]. Science,1999,284: 654-657
    [6]Pei Z M, Murata Y, Benning G, Thiomine S, Klusener B, Allen G J, Grill E, Scroeder J I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J]. Nature, 2000,406:731-734
    [7]Srivalli B, Vishanathan C, Renu K C. Antioxidant defense in response to abiotic stresses in plants[J]. J. Plant Biol.,2003,30:121-139
    [8]Dewez D, Geoffroy L, Vernet G, Popovic R. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus[J]. Aquat. Toxicol.,2005,74:150-159
    [9]Peixoto F, Alves-Fernandes D, Santos D, Fontanhas-Fernandes A. Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus[J]. Pestic. Biochem. Physiol.,2006,85:91-96
    [10]Song N H, Yang Z M, Zhou L X, Wu X, Yang H. Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum[J]. J Environ. Sci.,2006,17:101-108
    [11]Wu X Y, von Tiedemann A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone[J]. Environ. Pollut.,2002,116:37-47
    [12]Yin X L, Jiang L, Song N H, Yang H. Toxic Reactivity of Wheat (Triticum aestivum) Plants to Herbicide Isoproturon[J]. J. Agric. Food. Chem.,2008,56:4825-4831
    [13]Chevreau E, Leuliette S, Gallet M. Inheritance and linkage of isozyme loci in pear (Pyrus communis L.)[J]. Theor. Appl. Genet.,1997,94:498-506
    [14]胡能书,万贤国编.同工酶技术及其应用[M].长沙:湖南科学技术出版社,]985:3-105
    [15]Porra R J, Thompson R A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvent verifications of the concentration of chlorophyll standards by atomic absorption spectroscopy [J]. Biochem. Bioph. Acta,1989,975:384-394
    [16]Wang S H, Yang Z M, Lu B, Li S Q, Lu Y P. Copper induced stress and antioxidative responses in roots of Brassica juncea L [J]. Bot.Stud.,2004,45:203-212
    [17]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Ann. Biochem.,1976,72:248-59
    [18]Asada K. Chloroplasts:formation of active oxygen and its scavenging[J]. Methods Enzymol., 1984,105:422-429
    [19]Cakmak I, Strboe D, Marschner H. Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds[J]. J. Exp. Bot.,1993,44:127-132
    [20]Dhindsa R S, Plumb-Dhindsa P, Throne T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase[J]. J. Expt. Bot.,1981,32:93-101
    [21]Castillo F I, Penel I, Greppin H. Peroxidase release induced by ozone in Sedum album leaves[J]. Plant Physiol.,1984,74:846-851
    [22]Habig W H, Pabst M J, Jakoby W B. Glutathione Stransferases. The first enzymatic step in mercapturic acid formation[J]. J. Biol. Chem.,1974,249:7130-7139
    [23]Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. [J]. Plant Cell Physiol.,2005,46:1915-1923
    [24]Zhou Z S, Huang S Q, Guo K, Mehta S K, Zhang P C, Yang Z M. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L[J]. J. Inorg. Biochem.,2007,101: 1-9
    [25]Woodbury W, Spencer A K., Stahmann M A. An improved procedure using ferricyanide for detecting catalase isozymes[J]. Anal. Biochem.,1971,44:301-305
    [26]Song N H, Yin X L, Chen G F, Yang H. Biological responses of wheat (Triticum aestiVum) plants to the herbicide chlorotoluron in soils[J]. Chemosphere,2007,68:1779-1787
    [27]杨建昌,朱庆森.稻麦高产群体生育特征及其调控技术[J].中国农业科技导报,2000,2(7):22-25
    [28]Hegedus A, Erdei S, Horvath, G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under Cd stress[J]. Plant Sci.,2001,160:1085-1093
    [29]Zhou Q X. Interaction between heavy metals and nitrogen fertilizers applied in soil-vegetable systems[J]. Bull Environ. Contam. Toxico.,2003,171:338-344
    [30]Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicol. Environ. Saf., 2006,64:178-189
    [31]Zhou Z S, Wang S J, Yang Z M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants[J]. Chemosphere,2008,70:1500-1509
    [32]闫生荣.镧对UV-B辐射胁迫下大豆幼苗活性氧代谢影响[D].江苏:江南大学硕士毕业论文,2006
    [33]李雪梅,何兴元,张利红,王兰兰,陈强.紫外辐射对菜豆不同叶位叶片光合及保护酶活性的影响[J].生态学杂志,2006,25(5):517-520
    [34]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. J. Exp. Bot.,2002,53:1331-1341
    [35]李广信,郭平毅,王广元,于晓慧,梅青.扑草净不同处理对旱稻生理指标及产量的影响[J].山西农业科学,2007,35(8):26-28
    [36]吴进才,刘井兰,沈迎春.农药对不同水稻品种SOD活性的影响[J].中国农业科学,2001,35(4):451-456
    [37]Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall [J]. Trends Plant Sci.,2004,9:534-540
    [38]赵彬全,李巧英,杨运通,郭春绒.超重力处理对绿豆幼苗过氧化物酶活力及同工酶的影响[J].山西农业科学,2008,36(8):36-37
    [39]张志良.植物生理实验指导[M].北京:高等教育出版社,1990:154-155
    [40]孟学平,杨恒山,郭宏,宋彩琴.盐胁迫对冬小麦过氧化物酶同工酶的影响[J].华北农学报,2001,15(4):62-67
    [41]Cho U H, Seo N H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant Sci.,2005,168:113-120
    [42]Markkola A M, Tarvainen O, Ahonen-Jonnarth U. Urban polluted forest soils induce elevated root peroxidase activity in Scots Pine (Pinus Sylvestris L.) seedlings[J]. Environ. Pollut.,2002,116: 273-278
    [43]Rottio M, Ahonen-Jonnarth U, Lamppu J. Apoplastic and total peroxidase activity in Scots Pine meedles at subarctic polluted sites[J]. Eur. J. Forest Pathol.,1999,29:399-410
    [44]Asada A. Ascorbate peroxidasesA hydrogen peroxide scavenging enzyme in plants[J]. Physiol. Plant.,1992,85:235-241
    [45]Feierabend J, Schaan C, Hertwig B. Photoinactivation of catalase occurs under both high and low temperature stress conditions and accompanies photoinhibition of photosystem Ⅱ[J]. Plant Physiol., 1992,110:1554-1561
    [46]Chen G X, Asada K. Asorbate peroxidase in tea leaves oc currence of two isoenzymes and their differences in enzymatic and molecular properties[J]. Plant Cell Physiol.,1989,30:987-998
    [47]Asada K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants[J]. Physiol. Plant,1992,85:235-241
    [48]Coleman J O D, Kalff B M M A, Davies T G E. Detoxification of xenobiotics by plants:chemical modification and vacuolar compartmentation[J]. Trends Plant Sci.,1997,2:144-151
    [49]Mitrovic S M, Pflugmacher S, James K J, Furey A. Anatoxina elicitsan increase in peroxidase and glutathione S-transferase activity in aquatic plants[J]. Aquat. Toxicol.,2004,68:185-192
    [50]Dixon D P, McEwen A G, Lapthorn A J, Edwards R. Forced evolution of a herbicide detoxifying glutathione trasnsferase[J]. Biol. Chem.,2003,278:23930-23935
    [51]Gupta A S, Heinen J L, Holaday A S, Burke J J, Allen R D. Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase[J]. P. Natl. Acad. Sci. USA.,1993,90:1629-1633
    [52]Ke S S. Effects of copper on the photosynthesis and oxidativemetabolism of amaranthus tricolor seedlings[J]. Agr. Sci. in China,2007,6:1182-1192
    [53]McKersie B D, Chen Y R, Beus M D. Superoxide dismutase enhances tolerance of freezing stress in trans-genic alfalfa (Medicago sativa L.)[J]. Plant Physiol.,1993,103:1155-1163
    [1]Jones K D, Huang W H. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems[J]. J. Hazard. Mater.,2003,103:93-105
    [2]Majumdar K, Singh N. Effect of soil amendments on sorption and mobility of metribuzin in soils[J]. Chemsphere,2007,66:630-637
    [3]Said-Pullicino D, Gigliotti G, Vella A. Environmental fate of triasulfuron in soils amended with municipal waste compost[J]. J. Environ. Qual.,2004,33:1743-1751
    [4]Schnitzler F, Lavorenti A, Berns A E, Dreves N, Vereecken H, Burauel P. The influence of maize residues on the mobility and binding of benazolin:investigating physically extracted soil fractions[J]. Environ. Pollut.,2007,147:4-13
    [5]Termorshuizen A J, Moolenaar S W, Veeken A H M, Blok W J. The value of compost[J]. Rev. Environ. Sci. Biol./Technol.,2004,3:343-347
    [6]Fryer M J, Oxborough K, Mullineaux P M, Baker N R. Imaging of photo-oxidative stress responses in leaves[J]. J. Exp. Bot.,2002,53:1249-1254
    [7]Zhou Z S, Huang S Q, Guo K, Mehta S K, Zhang P C, Yang Z M. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L[J]. J. Inorg. Biochem.,2007,101: 1-9
    [8]Xue Y J, Tao L, Yang Z M. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide[J]. J. Agri. Food Chem.,2008,56:9676-9684
    [9]Carlberg I, Mannervik B. Glutathione reductase[J]. Methods Enzymol.,1985,113:484-489
    [10]Tada Y, Hata S, Takata Y, Nakayashiki H, Tosa Y, Mayama S. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol[J]. Plant Microbe Interact.,2001,14:477-486
    [11]Song N H, Zhang S, Hong M, Yang H. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat[J]. Environ. Pollut.,2010,158:906-912
    [12]Celis R, Barriuso E, Houot S. Sorption and desorption of Atrazine by sludge- amended soil: dissolved organic matter effects[J]. J. Environ. Qual.,1998,27:1348-1356
    [13]Graber E R, Dror I, Betcovich F C, Rosner A M. Enhanced transport of pesticides in a field trial with treated sewage slug[J]. Chemosphere,2001,44:805-811
    [14]Khana Z, Anjaneyulu Y. Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites[J]. J. Hazard. Mater.,2005,118:161-169
    [15]Song N H, Chen L, Yang H. Effect of DOM on mobility and activation of chlorotoluron in soils and wheat [J]. Geoderma,2008,146:344-352
    [16]Jiang L, Yang H. Prometryne-induced oxidative stress and impact on antioxi- dant enzymes in wheat[J]. Ecotoxicol. Environ. Saf.,2009,72:1687-1693
    [17]Mahmooduzzafar F B, Siddiqi T O, Iqbal M. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide[J]. Environ. Pollut.,2007,147: 94-100
    [18]Flohe L, Otting F. Superoxide dismutase assays [J]. Method Enzymol.,1984,105:93-104
    [19]Zhou Z S, Wang S J, Yang Z M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants[J]. Chemosphere,2008,70:1500-1509
    [20]武翻江,张树清,罗志桢.有机-无机复混肥在日光温室无公害蔬菜上的应用[J].土壤肥料,2004(4):22-24
    [21]Zaidi A, Khan M S, Amil M D. Interactive effect of rhizotrophic icro-organisms on yield and nutrient uptake of chickpea.(Cicer arietinum L)[J]. Eur. J. Agron.,2003,19(1):15-21
    [22]Benitez E, Melgar R, Sainz H, Gomez M, Nogalez R. Enzyme activities in the rhizosphere of pepper grown with olive cake mulches[J]. Soil Bio. Biochem.,2000,32(13):1829-1835
    [23]Yin X L, Jiang L, Song N H, Yang H. Toxic Reactivity of Wheat (Triticum aestivum) Plants to Herbicide Isoproturon[J]. J. Agric. Food. Chem.,2008,56:4825-4831
    [24]闫生荣.镧对UV-B辐射胁迫下大豆幼苗活性氧代谢影响[D].江苏:江南大学硕士毕业论文,2006
    [25]李絮花,杨守祥,于振文,余松烈.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472
    [26]Batish D R, Singh H P, Setia N, Kaur S, Kohli R K.2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus)[J]. Plant Physiol. Biochem.,2006,44:819-827
    [27]Ramel F, Sulmon C, Bogard M, Couee I, Gouesbet G. Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets[J]. BMC Plant Biol.,2009,9:28
    [28]Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicol. Environ. Saf., 2006,64:178-189.
    [29]Bowler C, Vanmontagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol.,1992,43:83-116
    [30]Aebi H. Catalase in vitro[J]. Method Enzymol.1984,105:121-126
    [31]Mullineaux P M, Creissen G P, Broadbent P, Reynolds H, Kular B, Wellburn A. Elucidation of the role of glutathione reductase using transgenic plants[J]. Biochem. Soc. Trans.,1994,22:931-936
    [32]Noctor G, and Foyer C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1998,49:249-279
    [33]Jimenez A, Hernandez J A, del Rio L A, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiol.,1997, 114:275-284
    [34]Ye B, and Gressel J. Transient, oxidant-induced antioxigant transcript and enzyme levels correlate with greater oxidant-resistance in paraquant-resistant Conyza bonariensis[J]. Planta,2000,211: 50-61
    [35]Zhu Y L, Pilon-Smits E A H, Jouanin L, Terry N. Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance[J]. Plant Physiol.,1999,119:73-79
    [36]Ishikawa T. The ATP-dependent glutathione S-conjugate export pump[J]. Trends Biochem. Sci., 1992,17,463-468
    [37]Sandermann H Jr. Plant metabolism of xenobiotics[J].Trends Biochem. Sci.,1992,17(2):82-84
    [38]Neuefeind T, Reinemer P, Bieseler B. Plant glutathione S-transferases and herbicide detoxification[J]. Biol. Chem.,1997,378:199-205
    [39]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases[J]. Genome Biol.,2002,3(3): 3004.1~3004.10
    [40]Edwards R, Dixon D P. The role of glutathione transferases in herbicide metabolism. In:Cobb A H, Kirkwood R C(eds). Herbicides and Their Mechanisms of Action. Sheffield:Sheffield Academic Press,2000,33-71
    [41]Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxicstress-induced and differentially saltstress-responsive in rice roots[J]. FEBS Lett.,2003, 553:427-432
    [42]Pascal S, Debrauwer L, Ferte M P, Anglade P, Rouimi P, Scalla R. Analysis and characterization of glutathione S-transferase subunits from wheat (Triticum aestivum L.)[J]. Plant Sci.,1998,134: 217-226
    [43]余叔文,汤章诚.植物生理与分子生物学[M].北京:科学出版社,1998,366
    [44]曾富华,吴岳轩,罗泽民,周朴华.活性氧及其清除剂诱导抗病作用与影响膜脂过氧化作用的关系[J].中国农业科学,2000,33(4):103-105
    [45]Marrs K A.The functions and regulation of glutathione S-transferases in plants[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1996,47:127-158
    [46]Ezaki B, Suzuki M, Motoda H, Kawamura M, Nakashima S, Matsumoto H.Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress[J]. Plant Physiol.,2004,134:1672-1682
    [47]Nepovim A, Podlipna R, Soudek P, Schroder P, Vanek T. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase[J]. Chemosphere,2004, 57(8):1007-1015
    [48]Urbanek H, Majorowicz H, Zalewski M, Saniewski M. Induction of glutathione S-transferase and glutathione by toxic compounds and elicitors in reed canary grass[J]. Biotechnol. Lett.,2005,27: 911-914
    [49]Shimabukuro R H, Swanson H R, Walsh W C. Glutathione conjugation:atrazine detoxification mechanism in corn[J]. Plant Physiol.,1970,46:103-107
    [50]Morse D, Choi A M. Heme oxygenase-1:the "emergingmolecule" has arrived[J]. Am. J.Respair cell Mol. Biol.,2002,27(4):8-16
    [51]Noriega G O, Balestrasse K B, Batlle A, Tomaro M L. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves[J]. Biochem. Biophys. Res. Commun,2004,323: 1003-1008
    [52]Balestrasse K B, Noriega G O, Batlle A, Tomaro M L. Involvement of heme oxygenase as antioxidant defense in soybean nodules[J]. Free Radical Res.2005,39:145-151
    [53]Yannarelli G G, Noriega G O, Batlle A, Tomato M L. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species[J]. Planta,2006,224: 1154-1162
    [54]Tomaro M L, Batlle A. Bilirubin:its role in cytoprotection against oxidative stress[J]. Int. J. Biochem. Cell Biol.,2002,34:216-220
    [55]Earnshaw W C. Apoptosis:Lessons from in vitro systems[J]. Trends. Cell Biol.,1995,5:217-220
    [56]Steller H. Mechanisms and genes of cellular suicide[J]. Science,1995,267:1445-1499
    [57]Hochman A. Programmed cell death in prokaryotes[J]. Crit. Rev. Microbiol.,1997,23:207-214
    [58]Van Doom W G, Woltering E J. Many ways to exit? Cell death categories in plants[J]. Trends Plant Sci.,2005,10:117-122
    [59]Katsuhara M, Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots[J]. Plant Cell Physiol.,1996,37(2):169-173
    [60]Bethke P C, Jones R L. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species[J]. Plant J.,2001,25:19-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700