用户名: 密码: 验证码:
植物黄酮类化合物槲皮素与转录因子AtMYB44诱导和调控植物防卫反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转录因子在植物识别病原物后激活防卫反应的过程中起着重要的作用,它通过调控防卫基因的表达实现防卫反应。植物抗病性激发子能够诱导植物对多种病害的抗性。但是它们如何启动抗病信号通路的,如何参与抗病反应的,目前其机制不清楚。因此,本博士论文着重解析转录因子AtMYB44在植物抗病反应中的作用和槲皮素(quercetin)诱导的抗病机制,探讨了AtMYB44基因启动子甲基化对该基因的表达及其对抗病反应的影响。为阐明转录因子和黄酮类化合物参与防卫反应的机制及与激素或非激素信号传导途径的交叉提供研究基础。
     1. AtMYB44转基因拟南芥的产生及鉴定
     MYB类转录因子在植物胁迫应答过程中起到重要的调控作用,能够使植物提高抗病能力。AtMYB44属于拟南芥中R2R3 MYB亚基22转录因子家族。其T-DNA插入突变体atmyb44和野生型拟南芥相比能够增强PP2C编码基因的盐诱导表达,减少干旱或盐胁迫容忍性。atmyb44突变体使桃蚜驱避率降低。接种Pseudomonas syringae pv. tomato DC3000 (PstDC3000)后,和野生型相比,atmyb44突变体表现抗病性降低。为了分析转录因子AtMYB44在植物防卫反应中的作用,我们构建了双元载体pCAMBI1301::44::6His,成功地将AtMYB44基因引入到载体中,并将该质粒转入农杆菌A.tumefaciens EHA105中,转化拟南芥生态型Col-0,构建了过表达植株35S-M,抗生素抗性筛选和分子生物学验证后获得过表达植株纯合体。采用同样的方法将AtMYB44基因和GFP基因转入野生型拟南芥Col-0中,构建了过表达植株44GFP。同样我们将AtMYB44基因ATG上游的2000bp(44P2000)引入了pBI121载体,构建了双元载体pB121::44P2000::GUS,转基因验证筛选后,由农杆菌A.tumefaciens EHA105介导,转化拟南芥生态型Col-0,获得转基因植株纯合体44PGUS。随后我们又对T-DNA插入突变体atmyb44进行了卡那霉素筛选和分子鉴定,成功获得纯合体atmyb44。我们还构建了携带双元载体的工程菌A.tumefaciens EHA105(pCAMBI1301:44P2000::44CDS::GFP::His),转入拟南芥拟南芥突变体atmyb44,将44P2000::44CDS:GFP引入突变体中,经筛选鉴定后获得纯化的互补转基因拟南芥Catmyb44.过表达拟南芥35S-M和44GFP、启动子转基因拟南芥44PGUS、互补拟南芥Catmyb44和突变体atmyb44纯合体获得为后续实验准备了实验材料。
     2.转录因子AtMYB44诱导表达及亚细胞定位
     转录因子是在胁迫反应和生长发育中基因表达改变的重要调控因子。核定位信号区是使转录因子能够进入细胞核,从而调控下游基因的表达,最终决定生物表型。MYB家族就是一群能够结合特定DNA序列的转录因子.AtMYB44基因可以被非生物胁迫诱导增强表达,例如,创伤、冷胁迫、盐胁迫和一些激素诱导,增强植物的抗逆反应或植物发育生长。本实验构建了AtMYB44基因的原核表达工程菌E.coli BL21 (pET30a::AtMYB44),并利用AtMYB44蛋白PAGE电泳条带制备了AtMYB44蛋白的兔抗。我们利用A.tumefaciens EHA105 (pCAMBI1301::44P2000::44 CDS::GFP::His)和A.tumefaciens EHA105 (pBI121::44::GFP)在洋葱表皮上对AtMYB44进行了HrpNEa蛋白和乙烯利(ACC)诱导表达和亚细胞定位,同时利用转基因拟南芥Catmyb44和44GFP对AtMYB44进行了亚细胞定位分析,结果表明AtMYB44定位在细胞核内,也验证了44P2000的活性。而在HrpNEa蛋白和ACC诱导下,和对照相比,GFP能够更强的表达。对44PGUS组织化学染色实验分析表明,AtMYB44在拟南芥的各个组织中进行表达,AtMYB44基因的RT-PCR也验证了这一结果,而且发现HrpNEa和槲皮素能够在拟南芥的各个组织中诱导AtMYB44基因表达。我们对Catmyb44的10个品系和35S-M的5个品系进行了AtMYB44基因诱导表达,筛选到最佳转基因植物。这些结果暗示了AtMYB44基因能够被一些生物或非生物胁迫诱导表达,而在植物体内发挥其生物学功能。
     3.转录因子AtMYB44在拟南芥中对Pseudomonas syringae抗病性的作用
     植物受病原菌侵染或用病原物激发子处理植物时,植物激活的防卫反应中涉及大量基因的转录调控。AtMYB44属于拟南芥中R2R3-MYB亚基22转录因子家族。大量的证据暗示植物R2R3 MYB转录因子卷入到植物防卫中,当然防卫反应包括植物防御病染菌时宿主基因的转录调控。我们分析了AtMYB44转录因子在拟南芥对PstDC3000基本防卫中的作用。AtMYB44的T-DNA插入突变体atmyb44接种PstDC3000后,与野生型相比,3d后叶片细菌数量增加,病害症状显著加重,水杨酸调控的PR1和PR2基因表达减弱,AtMYB44能够在野生型拟南芥上被PstDC3000诱导表达。AtMYB44基因过表达植株35S-M-1和35S-M-4接种PstDC3000后,与野生型相比,3d后叶片细菌数量减少约1倍,病害症状显著减弱,水杨酸调控的PRl和PR2基因表达增强,AtMYB44被PstDC3000诱导的表达明显上调;而互补植株Catmyb44-2、Catmyb44-7和Catmyb44-9接种PstDC3000后,与野生型相比症状和抗性基因表达没有变化。从细胞水平上分析了野生型WT、转基因35S-M和Catmyb44拟南芥植株对病原菌产生的防卫反应,分子水平上分析了AtMYB44受环境胁迫(SA、MeJA、ET、ABA、HrpNEa、槲皮素)的诱导表达,这些结果表明AtMYB44正调控植物对PstDC3000的基本防卫反应。通过分析AtMYB44在基本防卫信号通路突变NahG与nprl上的受病原细菌诱导表达,表明水杨酸信号通路正调控AtMYB44表达。AtMYB44具有转录激活,能在植物防卫反应中调控下游基因表达,参与植物对病原细菌的抗性。
     4.槲皮素诱导的过氧化氢在拟南芥中对Psedomonas syringae pv. tomato DC3000抗病性的作用
     以前研究证明槲皮素可以作为一种重要的抗氧化剂应用在人类的疾病治疗中。最近一些报道表明槲皮素是一种在特定条件下能作为促氧化剂作用。在这个研究中,我们展示了槲皮素能够诱导活性氧的产生并能增强拟南芥野生型对PstDC3000的抗性。当野生型拟南芥用槲皮素处理后再接种PstDC3000叶片就会出现多种防卫反应包括活性氧爆发、胼胝质沉积、过敏性细胞坏死、水杨酸的积累以及防卫基因PRl和PALl的表达变化等。这些防卫反应和植物对PstDC3000的抗性相一致的,因为再利用槲皮素处理植物中的病菌数量显著的少于对照植物。有趣的是当外施槲皮素后接种PstDC3000并同时用过氧化氢酶处理拟南芥上述的防卫反应和相关症状就消失了。而只用槲皮素处理或单独接种PstDC3000则只能在细胞或者分子水平上诱发有限的防卫反应。为了进一步的研究槲皮素在植物防卫反应中的作用,我们对不同的拟南芥突变体用槲皮素和PstDC3000单独处理或者先用槲皮素处理后再接种PstDC3000.发现在jar1, ein2和abil-2突变体中与野生型中结果是相似的,而在NahG和nprl中相应的防卫反应却消失了。上述结果表明槲皮素通过提高活性氧来增强拟南芥对PstDC3000的抗性,并且需要水杨酸信号通路和NPR1基因参与的。5.AtMYB44基因启动子DNA甲基化在拟南芥抗病防卫反应中的影响
     DNA胞嘧啶甲基化作用对许多后生遗传过程都很重要,包括X染色体的失活、基因组印记、在致癌过程中的后生变化、转座子沉默、发育过程中特殊基因沉默和某种转基因的沉默。植物可以通过表观遗传来调控基因表达来适应环境压力,可以说生物体的遗传性状并不是完全由DNA决定的。在生物和非生物环境胁迫压力下,转录因子往往对生物体的遗传性状起到至关重要作用,而转录因子的表达也是受到DNA遗传修饰的调控。本实验分析了不同激素(ET、ABA、MeJA和SA)、HrpNEa、槲皮素和病原菌(PstDC3000和Erwinia carotovora subsp.carotovora (Ecc))诱导拟南芥表达转录因子AtMYB44,并检测了其启动子(44P2000)CG岛甲基化的变化,结果发现不同的处理CG岛甲基化的程度不同。5-氮杂-2’-脱氧胞苷(5-aza-2'deoxycytidine, 5-aza)能够去除DNA上的甲基化。野生型拟南芥Col-0、突变体atmyb44和互补植株Catmyb44-2被5-aza处理后,通过RT-PCR检测了AtMYB44基因的表达,初步确定了5-aza能够促进植物对AtMYB44基因的表达。而通过对被5-aza处理的转基因拟南芥P44GUS定性的或定量的GUS蛋白检测,发现5-aza影响着AtMYB44基因启动子发挥作用。PstDC3000接种于被5-aza处理的植物后,拟南芥发病表型、PRl和PAL基因的表达暗示了5-aza与抗病反应没有关系,仅仅是对转录因子AtMYB44表达发挥着作用。这些结果暗示了外界环境的胁迫会影响植物中AtMYB44基因上游启动子CG岛甲基化的数量变化,从而使AtMYB44基因发生不同程度的表达,继而激发了植物的抗病基因的表达,最终使植物具有抗病性。
     总结
     本研究利用转AtMYB44基因植物及外源槲皮素两种手段,对它们引发植物防卫反应信号传导作用及机制进行了解析。研究发现:(1)转录因子AtMYB44能够参与植物抗病防卫反应;转录因子AtMYB44能够被多种生物胁迫和非生物胁迫诱导表达,对病原细菌(PstDC3000)的抗性正向调控,并介导SA信号传导通路发挥作用。(2)槲皮素能够诱导AtMYB44在拟南芥中表达,并介导过氧化氢水平的升高增强拟南芥对病原细菌(PstDC3000)抗性。其抗病性机制是依赖SA信号和NPR1。(3)在生物和非生物胁迫中,转录因子AtMYB44的表达是靠其基因上游启动子甲基化来调控的。
     创新点
     (1)利用转基因拟南芥从细胞水平和分子水平研究了转录因子AtMYB44在植物防卫反应中的作用及其诱导表达的机理,最终确定了AtMYB44在植物防卫反应中功能及机制。
     (2)分析了黄酮类化合物槲皮素在植物对PstDC3000的抗性中的作用,确定了槲皮素在植物防卫反应中的作用及机制。
Activation of defense responses against Pathogen infeetion is usually regulated through modulation of a large set of defense genes at transcriptional level by specific transcription factors. Elicitors of systemic acquired resistance (SAR) in plants can trigger plant disease resistance in Arabidopsis. But the underlying molecular mechanism, how they switch on signal pathway and regulate plant defense responses to pathogen attack, remains unclear. Studies in this Ph.D project aim at determination of functions of transcription factor AtMYB44 in plants defense responses against pathogenic bacteria and mechanism of quercetin inducing defense responses against pathogen. We investigated the effect of methylation of AtMYB44 promotor on expression of AtMYB44 and responses against pathogen attack. The results here will provide basic clues to explore the mechanism of the transcription factor and flovoniods mediated plant defense and growth pathways and crosstalk with hormonal and non-hormonal signaling pathways.
     1. The production and identification of the atmyb44 transgenic Arabidopsis
     Transcription factor MYB plays the important role of regulation in response of plants stress. It can enhance disease resistance of plants. AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). The atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Green peach aphid repellency and resistance to Pseudomonas syringae pv. tomato DC3000 (PstDC3000) are decreased in atmyb44, compared to these in wild-type plants. To analyze the role of transcription factor AtMYB44 in plants defense response, we constructed unit binary vector pCAMBI1301::44::6His with AtMYB44 gene and the vector was transformed into Agrobacterium tumefaciens strain EHA105.Then the recombinant unit was introduced into Arabidopsis Col-0. Transgenic homozygous Arabidopsis (35S-M), which can overexpress AtMYB44 under the regulation of 35S promotor, were obtained by screening with antibiotic resistance and identifying with molecular biology. Unit doublet vector pBI121::44P2000::GUS with 44P2000 gene was build.44P2000 gene is upriver 2000bp of AtMYB44 gene ATG. Then the recombinant unit was introduced into Arabidopsis Col-0. Transgenic homozygous Arabidopsis (44PGUS), which can express GUS protein under the regulation of 44P2000, were obtained by screening with antibiotic resistance and identifying with molecular biology. Whereafter, homozygous mutant atmyb44, produced by inseting T-DNA into promotor of AtMYB44, were obtained by screening with antibiotic resistance and identifying with molecular biology. A.tumefaciens EHA105 (pCAMBI1301: 44P2000::44CDS::GFP::His) was also build and the recombinant unit was introduced into Arabidopsis mutant atmyb44. Complementary Arabidopsis for AtMYB44(Catmyb44) gene were constructed. Homozygous Arabidopsis Catmyb44 was obtained by screening with antibiotic resistance and identifying with molecular biology.35S-M and 44GFP,44PGUS, Catmyb44, and atmyb44 will be applied in follow-up experiments as subject.
     2. Induced expression and subcellular localization of transcription factor AtMYB44
     Transcription factors are critical regulators of the changes in gene expression that drive developmental processes and environmental stress responses. Nuclear localization signal can enter transcription factor into nucleus and transcription factor can regulate expression of downstream genes which can determine organism phenotype. MYB is a DNA-binding transcription factor family. AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis(Arabidopsis thaliana). Expression of AtMYB44 gene can be enhanced by induction of abiotic stress including wound, cold stress, salt stress, and auxin, which can promote resistance response and development of plants. In this study, E.coli BL21 (pET30a::AtMYB44), which can express AtMYB44 gene, was constructed and antibody of AtMYB44 was prepared in rabbit by using strip of AtMYB44 PAGE electrophoresis. Subcellular localization of AtMYB44 was analyzed in onion epidermis by A.tumefaciens EHA105 (pCAMBI1301::44P2000::44CDS::GFP::His) and A.tumefaciens EHA105 (pBI121::44::GFP) and in Catmyb44 and 44GFP. The result shows that AtMYB44 is localized in nucleus and 44P2000 can activate downstream gene. GFP protein could generate more accumulation in Catmyb44 under the condition of induction of HrpNEa protein and ACC compared with EVP. The result of histochemical stain of 44PGUS showed that expression of AtMYB44 existed in each tissue of Arabidopsis, which was identified by RT-PCR of AtMYB44. Moreover, HrpNEa and quercetin could induce expression of Atmyb44 in each tissue of Arabidopsis. Expression of AtMYB44 gene was induced in 10 Catmyb44 lines and 535S-M lines by HrpNEa protein and quercetin, and optimal transgenic plants were screened. The results suggest that Expression of AtMYB44 gene can be induced by some biotic and abiotic stress. And AtMYB44 can function in plants.
     3. The roles of transcription factor AtMYB44 in defense resistance of Arabidopsis against Pseudomonas syringae
     A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. AtMYB44 belongs to the R2R3-MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). A large body of evidence suggests that plant R2R3 MYB transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of R2R3 MYB transcription factors in plant defense. We analyzed the role of the AtMYB44 transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae (PstDC3000). T-DNA insertion mutant atmyb44 for AtMYB44 increased growth of PstDC3000 and displayed increased disease symptom severity as compared to wild-type plants. The atmyb44 mutant plants also displayed reduced expression of the SA-regulated PR1 and PR2 genes after the pathogen infection. PstDC3000 could induce expression of AtMYB44 in Arabidopsis. Overexpression Arabidopsis 35S-M-1, and-4 for AtMYB44 reduced growth of PstDC3000 and displayed decreased disease symptom severity as compared to wild-type plants. The 35S-M (1,4) plants also displayed increased expression of the SA-regulated PR1 and PR2 genes after the pathogen infection. Expression of AtMYB44 has obvious up-regulation by induction of PstDC3000. However, after complementary Arabidopsis Catmyb44-2,-7, and-9 for AtMYB44 were inoculated by PstDC3000, Catmyb44-2,-7, and-9 had the same disease symptom severity and expression of PR1 and PR1 as compared to wild-type plants. Analysis of cellular defense response against PstDC3000 in WT,35S-M, and Catmyb44 and expression of AtMYB44 under the condition of environmental stress (SA, MeJA, ET, ABA, HrpNEa, and quercetin) showed that stress-induced AtMYB44 functioned as a positive regulator of defense responses to PstDC3000. Analysis of PstDC3000-induced AtMYB44 in the defense signaling mutants NahG and nprl-1 further indicated that this gene is positively regulated by the salicylic acid (SA) signaling pathway. AtMYB44 was a transcriptional activator and was able to activate the expression of genes involved in plant defense.
     4. Quercetin-induced H2O2 mediates the pathogen resistance against Psedomonas syringae pv. tomato DC3000 in Arabidopsis thaliana
     Quercetin has been previously demonstrated to function as important antioxidant in human disease therapy. However, some reports show it is also prooxidant and can provoke hydrogen peroxide (H2O2) under certain conditions. In the current study, we demonstrated that quercetin induced the production of H2O2 and enhanced Arabidopsis thaliana (Arabidopsis) resistance against the virulent strain Pseudomonas syringae pv. tomato DC3000 (PstDC3000). When Arabidopsis was pretreated with quercetin before PstDC3000 inoculation, the leaves exhibited several defense responses, including H2O2 burst, callose deposition, hypersensitive cell death, and the expression of defense response genes PR1 (pathogenesis-related1) and PAL1(Phe ammonia-lyasel) expression. These responses were consistent with the enhancement of plant resistance to PstDC3000, which had significantly decreased population in the quercetin-pretreated plants than control plants. When we applied catalase and PstDC3000 together on the Arabidopsis pretreated with quercetin, the defense responses and other relevant symptoms vanished. Application of quercetin or inoculation of PstDC3000 on leaves of Arabidopsis could only induce limited defense responses in cellular or molecular level. In the further study, we treated the Arabidopsis mutants with quercetin or/and PstDC3000. These similar defense responses also occurred in the Arabidopsis mutant jar1, ein2 and abi1-2, while disappeared in the Arabidopsis mutant NahG and nprl. These studies illustrate that quercetin enhance Arabidopsis resistance against PstDC3000 infection by quercetin-mediated H2O2 elevation and depend SA and NPR1.
     5. The effect of DNA methylation of atmyb44 promotor on resistance defense response of Arabidopsis
     DNA cytosine methylation is important for many epigenetic processes including X chromosome inactivation, genomic imprinting, epigenetic changes during carcinogenesis, and silencing of transposons, of specific genes during development and of certain transgenes. To adapt plants to environment stress, gene expression in plants is controlled by epigenetics. Inheritable character of organism is not fully determined by DNA. Under the condition of bioctic and obiotic environment stress, transcription factor plays an important role on Inheritable character of organism, and expression of transcription factor is controlled by DNA genetic modification. In this study, expression of transcription factor AtMYB44 is analyzed in Arabidopsis treated by ET, ABA, MeJA, SA, HrpNEa, quercetin, PstDC3000, and E. carotovora subsp.carotovora (Ecc). And methylation of CG island in 44P2000.The result shows that different treatment leads to the discrimination of level of CG-island methylation.5-aza-2'deoxycytidine (5-aza) can remove methylation in DNA. Wild type Arabidopsis Col-0, mutant atmyb44, and complementary transgenic Arabidopsis Catmyb44 were treated by 5-aza. Then, expression of AtMYB44 was detected by RT-PCR. It was initially determined that 5-aza cold promoter expression of AtMYB44 gene in Arabidopsis. GUS protein from transgenic Arabidopsis P44GUS treated by 5-aza was detected qualitatively or quantitatively. It was found that 5-aza had an effect on the role of AtMYB44 promotor. After plants treated by 5-aza were inoculated by PstDC3000, Disease symptom development and expression of PR1 and PAL suggest that 5-aza has relation with resistance response against disease and plays a role in expression of AtMYB44. These results suggest that outside environmental stress can have an effect on the number of CG-island methylation in the upper stream promoter of AtMYB44 and the expression of AtMYB44 in different level provoked by methylation of CG island promotes expression of resistance and defense genes. In fine, plants possess resistance against pathogen.
     Conclusive remarks
     Data obtained from studies described above have provided us the further understanding on mechanisms and functions of pathogen defense in plants by transgenic plant and exogenous quercetin. Firstly, transcription factor AtMYB44 can be induced by biotic and abiotic stress in plants defense responses against pathogen attack. It is found that AtMYB44 functions as positive regulation against PstDC3000 by SA mediated signaling pathway. Secondly, Quercetin can induce expression of AtMYB44 in Arabidopsis and enhance resistance against PstDC3000 by the level of H2O2. The mechanism of defense response against pathogen depends on SA and NPR1. Thirdly, expression of AtMYB44 is regulated by up-stream promotor methylation of AtMYB44 gene in biotic and abiotic stress.
引文
1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63-78.
    2. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997). Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859-1868.
    3. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem.281:37636-37645.
    4. Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O'Connell AP (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J.28:319-332.
    5. Ahn IP, Kim S, Lee YH, Suh SC (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol.143:838-848.
    6. Akey DT, Akey JM, Zhang K, Jin L (2002). Assaying DNA methylation based on high-throughput melting curve approaches. Genomics 80:376-384.
    7. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol.48:958-970.
    8. Bao YM, Wang JF, Huang J, Zhang HS (2008). Cloning and characterization of three genes encoding Qb-SNARE proteins in rice. Mol. Genet Genomics 279:291-301.
    9. Bei W, Peng W, Ma Y, Xu A (2005). Flavonoids from the leaves of Diospyros kaki reduce hydrogen peroxide-induced injury of NG108-15 cells. Life Sci.76:1975-1988.
    10. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008). Transgenic approaches for abiotic stress tolerance in plants:retrospect and prospects. Plant Cell Rep.27:411-424.
    11. Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM (1998). Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiol.116:1379-1385.
    12. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383-2394.
    13. Boyko A, Kovalchuk I (2008). Epigenetic control of plant stress response. Environ Mol Mutagen 49: 61-72.
    14. Cao H, Bowling SA, Gordon AS and Dong X (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6:1583-1592.
    15. Cao Y, Song F, Goodman RM, Zheng Z (2006). Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J. Plant Physiol.163:1167-1178.
    16. Chang WS, Lee YJ, Lu FJ, Chiang HC (1993). Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res.13:2165-2170.
    17. Chen S, Peng S, Huang G, Wu K, Fu X, Chen Z (2003). Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol. Biol.51:51-58.
    18. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559-574.
    19. Chen Z, Silva H, Klessig DF (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886.
    20. Choi CS, Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet Genomics 277: 589-600.
    21. Choi EJ, Chee KM and Lee BH (2003). Anti- and prooxidant effects of chronic quercetin administration in rats. Eur. J. Pharmacol 482:281-285.
    22. Collinge M, Boller T (2001). Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol.46:521-529.
    23. Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008). Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J.53:53-64.
    24. Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001). Priming as a mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol.107:113-119.
    25. Cui H, Fedoroff NV (2002). Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. Plant Cell 14:2883-2899.
    26. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739-1751.
    27. Dehesh K, Smith LG, Tepperman JM, Quail PH (1995). Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J.8:25-36.
    28. Delaney T P, Friedrich L and Ryals J A (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. U S A 92:6602-6606.
    29. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994). A Central Role of Salicylic Acid in Plant Disease Resistance. Science 266:1247-1250.
    30. Dempsey D A and Klessig D F (1994). Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol.4:334-338.
    31. Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A and Dangl J L (1994). Arabidopsis mutants simulating disease resistance response. Cell 77:565-577.
    32. Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009). Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J. Genet Genomics 36:17-29.
    33. Dixon RA, Steele CL (1999). Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci.4:394-400.
    34. Dong H, Delaney TP, Bauer DW, Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    35. Dong J, Chen C, Chen Z (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol.51:21-37.
    36. Dong X (1998). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol.1: 316-323.
    37. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006). Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71:461-465.
    38. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J.36: 905-917.
    39. Elomaa P, Uimari A, Mehto M, Albert VA, Laitinen RA, Teeri TH (2003). Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol. 133:1831-1842.
    40. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J.49: 414-427.
    41. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci.5:199-206.
    42. Faize M, Faize L, Koike N, Ishizaka M, Ishii H (2004). Acibenzolar-s-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology 94: 604-612.
    43. Fu W, Wu K, Duan J (2007). Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun 356:843-850.
    44. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126.
    45. Glazebrook J (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227.
    46. Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L and Zhu JK (2002). ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803-814.
    47. Grant JJ, Yun BW, Loake GJ (2000). Oxidative burst and cognate redox signaling reported by luciferase imaging:identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J.24:569-582
    48. Greenberg JT, Yao N (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201-211.
    49. Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K (2003). Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins:RING-H2 molecular specificity and cellular localization. Biochem J.371:97-108.
    50. Guo Y, Gan S (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J.46:601-612.
    51. Gursoy N, Sarikurkcu C, Cengiz M and Solak M H (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol.47:2381-2388.
    52. Habtemariam S and Dagne E (2009). Comparative Antioxidant, Prooxidant and Cytotoxic Activity of Sigmoidin A and Eriodictyol. Planta Med.
    53. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Muller I, Voss U, Jurgens G, Ito M (2007). R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101-1110.
    54. Hammond-Kosack KE and Jones JD (1996). Resistance gene-dependent plant defense responses. Plant Cell 8:1773-1791.
    55. Hammond-Kosack KE, Jones JD (1997). Plant Disease Resistance Genes. Annu Rev Plant Physiol Plant Mol. Biol.48:575-607.
    56. Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS (2006). Ethylene signaling mediates a maize defense response to insect herbivory. Mol. Plant Microbe Interact 19:189-199.
    57. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-1030.
    58. He H, Hovey R, Kane J, Singh V, Zahrt TC (2006). MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol 188:2134-2143.
    59. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996). Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad Sci. U S A 93:9821-9826.
    60. Hertog M G L, Hollman P C H and Katan M B (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J. Agric. Food Chem.40:2379-2383.
    61. Ho CT, Chen Q, Shi H, Zhang KQ, Rosen RT (1992). Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev. Med.21:520-525.
    62. Hodek P, Trefil P, Stiborova M (2002). Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact 139:1-21.
    63. Houot V, Etienne P, Petitot A S, Barbier S, Blein J P and Suty L (2001). Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J. Exp. Bot 52:1721-1730.
    64. Hu X, Bidney D L, Yalpani N, Duvick J P, Crasta O, Folkerts O and Lu G (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol.133:170-181.
    65. Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J.50: 414-428.
    66. Huckelhoven R, Kogel KH (2003). Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta 216:891-902
    67. Ishiga Y, Uppalapati S R, Ishiga T, Elavarthi S, Martin B and Bender C L (2009). The phytotoxin coronatine induces light-dependent reactive oxygen species in tomato seedlings. New Phytol.181: 147-160.
    68. Ishimaru N, Fukuchi M, Hirai A, Chiba Y, Tamura T, Takahashi N, Tabuchi A, Tsuda M and Shiraishi M (2010). Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2'-deoxycytidine in Neuro-2a cells. Biochem Biophys Res. Commun 394:173-177.
    69. Ishitani M, Xiong L, Stevenson B and Zhu JK (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis:interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935-1949.
    70. Ito T, Overman LE and Wang J (2010). Enantioselective synthesis of angularly substituted 1-azabicyclic ring systems:dynamic kinetic resolution using aza-Cope rearrangements. J. Am. Chem. Soc.132:3272-3273.
    71. Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol.54:713-725.
    72. Jeddeloh JA, Stokes TL, Richards EJ (1999). Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat. Genet.22:94-97.
    73. Jefferson RA, Burgess S M, Hitch D (1986). p-glucuronidase form Escherichia Coli as a gene fusion marker. Proc. Not. Acad.Sci.83:8447-8451.
    74. JeffersonRA, Kavanagh TA, Bevan MW (1987). GUS fusions:b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO. J.6:3901-3907
    75. Jiang M and Zhang J (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.42:1265-1273.
    76. Jin LG, Liu JY (2008). Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem 46:46-53.
    77. Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep. 26:1053-1063.
    78. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol.146:623-635.
    79. Jung C, Shim JS, Seo JS, Lee HY, Kim CH, Choi YD, Cheong JJ (2009). Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol Cells.
    80. Kachadourian R and Day BJ (2006). Flavonoid-induced glutathione depletion:potential implications for cancer treatment. Free Radic. Biol. Med.41:65-76.
    81. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003). Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr. Biol.13:421-426.
    82. Keppler LD, Baker CJ, Atkinson MM (1989). Active oxygen production during a bacteria induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79:974-978.
    83. Kim SG, Lee AK, Yoon HK, Park CM (2008). A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J.55: 77-88.
    84. King E O, Ward M K and Raney D E (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med.44:301-307.
    85. Kobayashi Y, Ohtsuki M, Murakami T, Kobayashi T, Sutheesophon K, Kitayama H, Kano Y, Kusano E, Nakagawa H, Furukawa Y (2006). Histone deacetylase inhibitor FK228 suppresses the Ras-MAP kinase signaling pathway by upregulating Rapl and induces apoptosis in malignant melanoma. Oncogene 25:512-524.
    86. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C et al. (1998). Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J.16:263-276.
    87. Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003). Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol. Biol.52:69-79.
    88. Kwak JM, Nguyen V, Schroeder JI (2006). The role of reactive oxygen species in hormonal responses. Plant Physiol.141:323-329.
    89. Lai Z, Vinod K, Zheng Z, Fan B, Chen Z (2008). Roles of Arabido.psis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol.8:68
    90. Lea US, Slimestad R, Smedvig P, Lillo C (2007). Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245-1253.
    91. Lee MM, Schiefelbein J (2002). Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611-618.
    92. Lee SC, Choi HW, Hwang IS, Choi du S, Hwang BK (2006). Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209-1225.
    93. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596-615.
    94. Levine A, Pennell R, Palmer R, Lamb CJ (1996). Calcium-mediated apoptosis in a plant hypersensitive response. Curr. Biol.6:427-437.
    95. Levine A, Tenhaken R, Dixon R and Lamb C (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593.
    96. Li J, Brader G, Kariola T, Palva ET (2006). WRKY70 modulates the selection of signaling pathways in plant defense. Plant J.46:477-491.
    97. Li J, Brader G, Palva ET (2004). The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319-331.
    98. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol.10:50.
    99. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471-476.
    100. Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi MK (2009). AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol 149:1761-1772.
    101. Liu CJ, Blount JW, Steele CL, Dixon RA (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. U S A 99:14578-14583.
    102. Liu JG, Zhang Z, Qin QL, Peng RH, Xiong AS, Chen JM, Xu F, Zhu H, Yao QH (2007). Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnol Lett.29:165-173.
    103. Logemann E, Hahlbrock K (2002). Crosstalk among stress responses in plants:pathogen defense overrides UV protection through an inversely regulated ACE/ACE type of light-responsive gene promoter unit. Proc. Natl. Acad. Sci. U S A 99:2428-2432.
    104. Loguerico LL, Zhang JQ, Wilkins TA (1999). Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol. Gen. Genet.261:660-671.
    105. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165-178.
    106. Lugert T, Werr W (1994). A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol. Biol.25:493-506.
    107. Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW (2005). Organ-specific expression of Arabidopsis genome during development. Plant Physiol.138:80-91.
    108. Mabry TJ, Markham KR, Chaff VM In:Harborne JR, Mabry TJ, eds. (1982). Theflavanoids, advances in research. London:Chapman and Hal.1:52-134.
    109. Maridonneau-Parini I, Braquet P, Garay RP (1988). Heterogeneous effect of flavonoids on K+loss and lipid peroxidation induced by oxygen-free radicals in human red cells. Pharmacol. Res. Commun.18:61-72.
    110. Martin C, Paz-Ares J (1997). MYB transcription factors in plants. Trends Genet.13:67-73.
    111. Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15: 1689-1703.
    112. McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB (2000). Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J.22:523-529.
    113.Mengiste T, Chen X, Salmeron J, Dietrich R (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551-2565.
    114. Metodiewa D, Jaiswal A K, Cenas N, Dickancaite E and Segura-Aguilar J (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med.26:107-116.
    115. Meyer P, Niedenhof I, ten Lohuis M (1994). Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J.13:2084-2088.
    116. Middleton E, Jr., Kandaswami C (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol.43:1167-1179.
    117. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE (2007). An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell19:1221-1234.
    118. Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002). Interactions of flavonoids with iron and copper ions:a mechanism for their antioxidant activity. Free Radic. Res.36: 1199-1208.
    119. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004). Reactive oxygen gene network of plants. Trends Plant Sci.9:490-498.
    120. Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S (2003). Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol. Biol.53:237-245.
    121. Morel I, Lescoat G, Cillard P and Cillard J (1994). Role of flavonoids and iron chelation in antioxidant action. Methods Enzymol.234:437-443.
    122. Mou Z, Fan W and Dong X (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944.
    123.Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V (2007). Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434-447.
    124. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J.51: 617-630.
    125. Nakayama T, Yamada M, Osawa T and Kawakishi S (1993). Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochem. Pharmacol.45:265-267.
    126. Nawrath C, Metraux JP (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393-1404.
    127. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot.53:1237-1247.
    128. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099-2114.
    129. Norman-Setterblad C, Vidal S, Palva ET (2000). Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430-438.
    130. Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y (1992). Solution structure of a DNA-binding unit of Myb:a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. Natl. Acad. Sci. U S A 89:6428-6432.
    131. Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol.150: 1368-1379.
    132. Okuwaki M, Verreault A (2004). Maintenance DNA methylation of nucleosome core particles. J. Biol. Chem.279:2904-2912.
    133. Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007). AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol.143:400-409.
    134. O'Prey J, Brown J, Fleming J, Harrison PR (2003). Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem. Pharmacol.66:2075-2088.
    135. Pare PW, Farag MA, Krishnamachari V, Zhang H, Ryu CM, Kloepper JW (2005). Elicitors and priming agents initiate plant defense responses. Photosynth Res.85:149-159.
    136. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113-116.
    137. Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010). Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231: 1061-1076.
    138. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS,3rd, Thomashow LS, Loper JE (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol.23:873-878.
    139. Payne CT, Zhang F, Lloyd AM (2000). GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349-1362.
    140. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J.6:3553-3558.
    141. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC (2002). Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. U S A 99:10865-10869.
    142. Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS (2004). Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94: 1048-1055
    143. Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323.
    144. Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113.
    145. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111-1120.
    146. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell10:1571-1580.
    147. Pogribny I, Yi P, James SJ (1999). A sensitive new method for rapid detection of abnormal methylation patterns in global DNA and within CpG islands. Biochem. Biophys Res. Commun 262: 624-628.
    148. Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT (1999). Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209: 87-95.
    149. Prithiviraj B, Perry L G, Badri D V and Vivanco J M (2007). Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol.173:852-860.
    150. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007). OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. Mol. Plant Microbe Interact 20:492-499.
    151. Quan R, Hu S, Zhang Z, Zhang H, Huang R (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J.10:492-499.
    152. Quiney C, Dauzonne D, Kern C, Fourneron JD, Izard JC, Mohammad RM, Kolb JP, Billard C (2004). Flavones and polyphenols inhibit the NO pathway during apoptosis of leukemia B-cells. Leuk.Res.28:851-861.
    153. Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D (2008). A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752-767.
    154. Ramputh AI, Arnason JT, Cass L, Simmonds JA (2002). Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformedwith germin, a wheat oxalate oxidase gene. Plant Sci. 162:431-440.
    155. Rand K, Qu W, Ho T, Clark SJ, Molloy P (2002). Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods 27:114-120.
    156. Rentel MC, Leonelli L, Dahlbeck D, Zhao B, Staskawicz BJ (2008). Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc. Natl. Acad. Sci. U S A 105:1091-1096.
    157. Richard AJ(1987). Assaying chimeric genes in plants:the GUS gene fusion system. Plant Mol. Biol. 6:387-405.
    158. Robertson KD (2005). DNA methylation and human disease. Nat. Rev. Genet 6:597-610.
    159. Rossetti S and Bonatti P M (2001). In situ histochemical monitoring of ozone-and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol. Biochem.39:433-442.
    160. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292-1309.
    161. Sambrook J, Russell DW (2001). Molecular cloning:A laboratory manual.3rd Edition. Cold Spring Harbor Laboratory Press. Chapter17:Analysis of Gene Expression in Cultured Mammalian Cell
    162. Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Muller K, Muller J, Rohde W, Salamini F (2003). The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J.34:813-826.
    163. Sathiavelu J, Senapathy G J, Devaraj R and Namasivayam N (2009). Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. J. Pharm. Pharmacol. 61:809-817.
    164. Schmalhausen E V, Zhlobek E B, Shalova I N, Firuzi O, Saso L and Muronetz V I (2007). Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase. Food Chem. Toxicol.45:1988-1993.
    165. Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux JP (1997). Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels. Plant Physiol.114:79-88.
    166. Shah J, Kachroo P, Klessig DF (1999). The Arabidopsis ssil mutation restores pathogenesis-related gene expression in nprl plants and renders defensin gene expression salicylic acid dependent. Plant Cel11:191-206.
    167. Shin R, Park JM, An JM, Paek KH (2002). Ectopic expression of Tsil in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. Mol. Plant Microbe Interact 15:983-989.
    168. Singh K, Foley RC, Onate-Sanchez L (2002). Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol.5:430-436.
    169. Sohn KH, Lei R, Nemri A, Jones JD (2007). The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19:4077-4090.
    170. Sonderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA (2010). A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol.
    171. Spelt C, Quattrocchio F, Mol JN, Koes R (2000). anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619-1632.
    172. Stone J M, Heard J E, Asai T and Ausubel F M (2000). Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12: 1811-1822.
    173. Stracke R, Werber M, Weisshaar B (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol.4:447-456.
    174. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008). Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952-956.
    175. Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol.142:1216-1232.
    176. Tenhaken R and Rubel C (1997). Salicylic Acid Is Needed in Hypersensitive Cell Death in Soybean but Does Not Act as a Catalase Inhibitor. Plant Physiol.115:291-298.
    177. Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol.121:1093-1102.
    178. Thompson MA, Ramsay RG (1995). Myb:an old oncoprotein with new roles. Bioessays 17: 341-350.
    179. Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005). Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17: 987-999.
    180. Torres MA, Dangl JL (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol.8:397-403.
    181.Tsuda K, Sato M, Glazebrook J, Cohen J D and Katagiri F (2008). Interplay between MAMP-triggered and SA-mediated defense responses. Plant J.53:763-775.
    182. Tycko B (2000). Epigenetic gene silencing in cancer. J. Clin. Invest.105:401-407.
    183. Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002). A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc. Natl. Acad. Sci. U S A 99:10179-10184.
    184. Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002). A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc. Natl.Acad. Sci.U S A 99:10179-10184.
    185. Van der Ent S, Verhagen BW, Van Doom R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008). MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol.146:1293-1304.
    186. van Loon L C, Rep M and Pieterse C M (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol.44:135-162.
    187. van Loon LC (1997). Induced resistance in plants and the role of pathogenesis related proteins. Eur. J. Plant Pathol.103:753-765.
    188. van Loon LC, van Strein EA (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol.55:85-97.
    189. van Wees S C and Glazebrook J (2003). Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant J.33: 733-742.
    190. Vanyushin BF (2006). DNA methylation in plants. Curr. Top. Microbiol. Immunol.301:67-122.
    191. Varagona MJ, Schmidt RJ, Raikhel NV (1992). Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213-1227.
    192. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat. Biotechnol.18: 779-783.
    193. Villalobos MA, Bartels D, Iturriaga G (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol.135:309-324.
    194. Wade HK, Bibikova TN, Valentine WJ, Jenkins GI (2001). Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J.25:675-685.
    195. Waites R, Selvadurai HR, Oliver IR, Hudson A (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789.
    196. Wang A, Tan D, Takahashi A, Li TZ, Harada T (2007), MdERFs, two ethylene-response factors involved in apple fruit ripening. J. Exp. Bot.58:3743-3748.
    197. Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004). Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol. Biol.55:183-192.
    198. Wang Y, Liu R, Chen L, Liang Y, Wu X, Li B, Wu J, Wang X, Zhang C, Wang Q, Hong X and Dong H (2009). Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. J. Cell Sci.122:2673-2685.
    199. Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D (2005). GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. Mol. Plant Microbe Interact.18:1285-1295.
    200. Warren RF, Merritt PM, Holub E, Innes RW (1999). Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152: 401-412.
    201. Weber E, Koebnik R (2006). Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas. J. Bacteriol.188:1405-1410.
    202. Wei T, O'Connell MA (1996). Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol. Biol.30:255-268.
    203. Weiss A, Keshet I, Razin A, Cedar H (1996). DNA demethylation in vitro:involvement of RNA. Cell 86:709-718.
    204. Wierzbicki AT, Ream TS, Haag JR and Pikaard CS (2009). RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet.41:630-634.
    205. Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T and Dong H (2007). Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaG Xooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. Oryzicola. J. Biosci.32:1119-1131.
    206. Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, Ingles CJ, et al. (1994). Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell Biol.14:7013-7024.
    207. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006). SublA is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-708.
    208.Yaish MW, Peng M and Rothstein SJ (2009). AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J.41: 630-634.
    209. Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010). Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. Plant Cell Physiol.51:463-474.
    210. Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Caldwell CW, Huang TH (2001). Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res.61: 8375-8380.
    211. Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ (2007). Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep.26: 219-228.
    212. Yang Y, Klessig DF (1996). Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc. Natl. Acad. Sci. U S A 93:14972-14977.
    213. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006). The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Bio.160:107-124.
    214. Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG (2006). Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic. Acids Res.34:e19.
    215. Yu EY, Kim SE, Kim JH, Ko JH, Cho MH, Chung IK (2000). Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J. Biol. Chem.275:24208-24214.
    216. Zhai S, Senderowicz AM, Sausville EA, Figg WD (2002). Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. Ann. Pharmacother 36:905-911.
    217. Zhang H, Li W, Chen J, Yang Y, Zhang Z, Wang XC, Huang R (2007). Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Mol. Biol.63:63-71.
    218. Zhang J, Peng Y, Guo Z (2008). Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res.18:508-521.
    219. Zhang Y, Wang L (2005). The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants. BMC Evol. Biol.5:1.
    220. Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007). Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol.7:2.
    221. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J.48:592-605.
    222. Zhong R, Richardson EA, Ye ZH (2007). The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776-2792.
    223. Zhou C, Zhang L, Duan J, Miki B, Wu K (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17: 1196-1204.
    224. Zhou J, Lee C, Zhong R, Ye ZH (2009). MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248-266.
    225. Zhou J, Zhang H, Yang Y, Zhang Z, Hu X, Chen J, Wang XC, Huang R (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J.Exp. Bot.59:645-652.
    226. Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX (2007). Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 391:80-90.
    227.曾凡锁,钱晶晶,康君,王红艳,王亦洲,詹亚光(2009).转基因白桦中G US基因表达的定量分析.植物学报44(4):484-490.
    228.丁小凤,胡翔,张健(2005).GAS41蛋白的表达、抗体制备及其亚细胞定位.激光生物学报14:411-415.
    229.蓝海燕,陈正华,(2000).植物与病原真菌互作的分子生物学及其研究进展.生物工程进展.20(4):16-22.
    230.向殉,曹家树,叶纨芝,崔辉梅,俞建浓(2007).白菜OguCMS相关MYB家族新基因BcMYBogu的克隆与特征分析.遗传29(5):621-628.
    231.尹中朝,许耀,杨凡,李宝健(1996).一种检测转基因植物细胞中p-葡萄糖苷酸酶(GUS)活性的实用方法.遗传18(4):36-37.
    232.于化江,张英锋,李荣焕,马子川(2009).刺五加黄酮类化合物的研究现状及发展,渤海大学学报(自然科学版)30(2):105-110.
    233.钟兰,王建波(2007).DNA超甲基化在小麦耐盐胁迫中的作用.武汉植物学研究25(1):102-104.
    234.张书萍,(2009).拟南芥对桃蚜抗性的诱导及参与作用的转录因子鉴定.硕士学位论文,南京农业大学.
    235.陈蕾,(2009)Harpin蛋白HpaG功能片段鉴定及应用与HrpNEa诱导植物抗虫性的一种转录调控机制.博士学位论文,南京农业大学.
    236.张春玲,(2009)乙烯、脱落酸和AtMYB44在HrpNEa诱导植物生长与抗虫防卫信号传导过程中的作用.博士学位论文,南京农业大学.
    237.吴廷全,(2009)生物激发子与水稻2,4-二氧四氢喋啶合酶对植物的生物学效应及烟草抗病突变体的研究.博士学位论文,南京农业大学.
    238.孙枫,(2009)核黄素受体蛋白(RIR)与RIR类似蛋白(AtRIR)以及转录因子RAP2.6L在拟南芥防卫反应中的功能研究.博士学位论文,南京农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700