用户名: 密码: 验证码:
土壤水分对寒地冬小麦越冬性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2009-2010年在黑龙江省哈尔滨市进行,以抗寒性存在差异的两个冬小麦品种为试验材料,并根据常年土壤水分含量与返青率的关系,设置了不同的水分梯度处理,对越冬期间冬小麦植株的光合特性、生理生化指标、以及蛋白质组等方面展开研究,以明确寒地冬小麦安全越冬的适宜土壤水分,探讨品种抗寒性鉴定的指标和方法,并从蛋白表达影响上揭示寒地冬小麦安全越冬的机制,为寒地冬小麦的生产提供理论依据。得到的主要结论如下:
     1.从返青情况看,不同土壤水分处理下的济麦22均没有越冬返青;东农冬麦1号在不同水分处理下均能返青,其返青率在水分处理间差异极显著,表现为CK(正常水分管理)>30%±2%>45%±2%>15%±2%,其返青率分别为:83.3%、49.2%、23.3%、2.5%。随着取样日期的延后,两个品种叶片、叶鞘的死细胞比例逐渐加重。进入封冻期20d以后品种间细胞活力差异明显,表现为东农冬麦1号受损程度轻于济麦22。不同土壤水分处理下,CK处理(正常水分管理)下受损最轻;叶片受损重于叶鞘。从封冻期以后主茎生长锥发育情况上看,东农冬麦1号茎生长锥分化进程慢,且受水分影响较小分化进程主要集中在伸长期;济麦22分化进程快,分化进程集中在伸长期和单棱期,45%±2%水分处理下分化进程快。
     2.两个品种叶片、叶鞘总水分含量随取样时间变化表现为先降低后升高的趋势,两个品种的15%±2%土壤水分处理下的叶片、叶鞘总含水量较低,济麦22高于东农冬麦1号,叶鞘高于叶片。取样期间15%±2%土壤水分处理叶片、叶鞘自由水含量较低,而45%±2%土壤水分处理叶片、叶鞘自由水含量较高。东农冬麦1号的叶鞘在取样期间保持着较高的束缚水含量,而济麦22多数水分处理下的束缚水含量随取样日期表现为双峰曲线变化。
     3.随着取样日期的延后,两个品种各水分处理可溶性蛋白表现为增加趋势;取样期间过度干旱和水分过多条件均有助于可溶性蛋白含量升高,且品种间差异不明显。
     4.随取样日期延后,两个品种叶片、叶鞘的相对电导率逐渐增大,前期上升快速,后期趋于平稳;CK处理(正常水分管理)下最低,15%±2%水分处理最高。品种间相比,东农冬麦1号的相对电导率小于济麦22。取样部位间,叶鞘大于叶片。在MDA含量上,两品种MDA含量随取样日期变化都呈现出先降低后升高的趋势;水分间,两品种15%±2%土壤水分处理的MDA含量相对较大,而CK处理(正常水分管理)相对较小30%±2%土壤水分与45%±2%土壤水分处理居中,即干旱和水分过多都会导致膜脂过氧化程度加重。
     5.在SOD活性上,随取样日期延后两个品种的SOD活性都表现为波动变化,东衣冬麦1号水分处理间大小表现为15%±2%>30%±2%>45%±2%>CK(正常水分管理):济麦22品种在15%±2%处理上具有较高的SOD活性。POD活性上,随取样日期变化有增大趋势;品种间相比,东农冬麦1号POD活性较高;水分间相比,东农冬麦1号低温驯化期15%±2%土壤水分处理较高,封冻期以后45%±2%土壤水分处理较高;越冬期间济麦22的15%±2%土壤水分处理具有较高的POD活性。GSH含量上,两品种GSH含量随取样日期变化都表现为降低的趋势;东农冬麦1号高于济麦22;东农冬麦1号在30%±2%水分处理上GSH含量较高,而济麦22则在45%±2%处理上较高。抗坏血酸(AsA)含量上,东农冬麦1号随取样日期变化表现为先增大后减小的特点;两品种在低温驯化期CK处理(正常水分管理)具有较小值;封冻期以后东农冬麦1号CK处理AsA含量较高,而济麦22各水分处理下都波动剧烈。
     6.两个品种各水分处理的初始荧光(Fo)随取样日期都呈双峰曲线变化,干旱和水分过多的土壤条件均可引起Fo的增大。在封冻期以前两个品种的各水分处理下最大荧光(Fm)迅速增大,封冻后又迅速降低;进入封冻期20d以后随日期变化相对平稳,此时CK处理(正常水分管理)Fm具有最大值。从低温驯化期至封冻期东农冬麦1号各水分处理下的最大量子产量(Fv/Fm)和实际量子产量(Yield)均呈平稳变化或略有增加的趋势,而济麦22都表现为降低趋势。封冻期以后,两品种的Fv/Fm和Yield都逐渐降低;封冻期以后,两品种的CK(正常水分管理)处理的Fv/Fm和Yield都明显高于其他水分亏缺或水分过多处理。东农冬麦1号不同土壤水分处理下光化学淬灭系数(qP)随取样日期变化逐渐降低,而济麦22则呈波动变化,整体表现为降低趋势。两品种非光化学淬灭系数(qN)随取样日期呈现波动变化,整体表现为增大趋势。两个品种的实时荧光产量(Ft)在取样日期间均差异极显著;低温驯化期,土壤适当干旱可引起Ft的上升,封冻初期,土壤干旱条件反而会造成Ft的下降。随取样日期的延后,两个品种光合电子传递速率(ETR)有逐渐降低的趋势,封冻期后急剧下降;适宜和过量的土壤水分条件其光合电子传递速率要好于干旱缺水的条件;品种间比较,在低温驯化期东农冬麦1号发生光抑制重于济麦22,封冻期后则相反。东农冬麦1号品种的瞬时最大量子产量(Fm')大于济麦22品种,在各光化光下两个品种间均差异显著或极显著;封冻初期CK处理(正常水分管理)Fm'具有较小值,12月2日以后,CK处理值相对较大;在低温驯化期和封冻初期,两个品种Fm'随光化光都呈波动变化,封冻期以后,则呈平稳变化。
     7.两个品种15%±2%、30%±2%和45%±2%水分处理下在初始封冻期和封冻后期共有32个差异蛋白点,其中26个与小麦蛋白匹配度较高,3个与水稻蛋白匹配度较高,1个与玉米蛋白匹配度较高,1个与大麦蛋白匹配度较高,还有1个蛋白点与黄瓜蛋白匹配度高。这些蛋白点参与能量代谢的占12.5%、物质合成的占25%、分子伴侣的占9.38%、抗性蛋白的占31.25%,光合反应的占6.25%、其他类蛋白占15.62%。封冻初期抗寒品种与不抗寒品种共同表达的蛋白点有9个,这9个蛋白参与渗透调节物质的形成、参与清除对细胞伤害的活性物质的蛋白、抗性蛋白和参与光合作用的蛋。区别是抗寒品种参与能量代谢的差异蛋白点较不抗寒品种高;封冻后期抗寒品种与不抗寒品种没有共同表达的差异蛋白,抗寒品种差异表达的蛋白参与细胞壁的加厚、能量代谢和抗性蛋白,而不抗寒品种差异表达的蛋白参与细胞膜的降解和光合作用。重度缺水(15%±2%)和过湿(45%±2%)土壤水分下差异表达的蛋白高,轻度干旱的土壤水分条件(30%±2%)下差异表达的蛋白少。
     8.抗寒性强的品种具有如下的特征:越冬期间组织受损轻,活细胞数量多,茎生长锥分化进程慢;越冬期间叶鞘总含水量处于较低水平;越冬期间相对电导率低,质膜透性小;低温驯化期叶鞘的丙二醛含量处于较低水平;低温驯化期至封冻初期,SOD活性、POD活性高;整个越冬期间的GSH含量高;在低温驯化期qP、qN值大;封冻期以后,Fv/Fm、Yield值高;进入封冻期20d以后,Fo值低;整个越冬期间Fm值高。可以采用植株活力观察、茎生长锥分化观察、相对电导率、丙二醛含量、叶绿素荧光参数(Fo、Fm、Fv/Fm、Yield、qP、qN)、SOD活性、POD活性和GSH含量这些指标对寒地冬小麦的抗寒性能进行评价。
     9.试验中春季返青率,越冬期间的植株活力、相对电导率、丙二醛含量,进入封冻期20d以后的最大荧光、瞬时最大量子产量、封冻期以后的最大量子产量和实际量子产量,越冬期间的光合电子传递速率这些指标与抗寒性关系密切,且受土壤水分含量影响较大。依据这些指标与抗寒性的关系及随土壤水分的变化情况,最终得出入冬前土壤绝对含水量为35%-40%时,更利于冬小麦的越冬生长。
The trial for the effects of the soil moisture on the overwintering survival rates of winter wheat was carried out in Harbin,Heilongjiang prvince,China,which located in the frigid region from 2009 to 2010.Two winter wheat cultivars different in the cold hardiness were used in this trial.Different soil water content gradients were set up based on the relation between the soil water contents and the overwinter survival rate of winter wheat.The photosynthetic preperties,physiological and biochemical indices and proteomics and so on in winter wheat plants during winter season were studied,and furthermore,the optical soil water content for the safe overwintering of winter wheat was definited,the indices and methods in the identification for the cold tolerance of wheat were explored and the mechanism in the safe overwintering of winter wheat in frigid region was revealed through the influence of proteins expression,and the theoretic fundation was provided for the production of winter wheat in the frigid area.The main conclusions were as follows:
     1.On the overwintering cases none of Jimai 22 but all of Dongnongdongmai 1 was able to be overwinterin in the all water treatments.It was very significant in the difference in the overwinter survival rate of Dongnongdongmai 1 among the soil water treatments,appearing CK(normal soil water management)>30%±2%>45%±2%>15%±2% in the soil moisture,and was 83.3%,49.2%,23.3%,2.5%,in the survival rate respectively.The ratio of the dead cells in the leaf and leaf sheath of the two cultivars was gradually enhanced with the delay of the sampling date.And the obvious difference in the cell vigor between cultivars occurred at the 20th day after frozen date in winter and the injury in Dongnongdongmai 1 was less than that in Jimai 22.The damage of plants under CK (normal soil water management) in soil water content were slightest.The extent of damage in the leaf was more serious than that in the leaf sheath.The change of the development status of the stem apical point was very slow and less affected by the soil water content after entering the frozen period and the profile of the apical point almost was in the elongation stage.On the contrary/the transition of the apical point in Jimai 22 was fast and quicker in the soil water treatment of 45%±2% and the form of the part was in the elongation and single ridge.
     2.The water content in the leaf and leaf sheath of the 2 cultivars performed downward and then upward as the sampling dates increased and lower in 15%±2% of soil water treatment. This trait in Jimai 22 was higher than that in Dongnongdongmai 1 and the one in leaf sheath higher than that in leaf.The free water content in samples was lower in 15%±2% and higher in 45%±2% in the soil water content treatment.The bound water content in the leaf sheath of Dongnongdongmai 1 remained higher and that of Jimai22 performed bimodal curve in the whole sampling period.
     3.The soluble protein content of the 2 cultivars increased in all soil water theatments and would be facilited to a higher level both under drought and hyperhydration condition during the sampling period.No significant difference between the 2 cultivars was observed in this trait.
     4.The relative electric conductivity in the leafs and leaf sheaths of the 2 cultivars elevated gradually during the sampling period and quickly in the early days and smoothly in the late days and lowest in CK (normal soil water management) and highest in 15%±2% of soil water treatment.The conductivity of Dongnongdongmai 1 was lower than that of Jimai22 and one in the leaf sheath higher than that in leaf.MDA of both cultivars appeared downward in the early days and upward in the late days in the sampling period.The content of MDA in the cultivars was higher relatively in 15%±2% and lower in CK(normal soil water management) and media both in 30%±2% and 45%±2% in the soil water treatment.The level of membrane lipid overoxidation was found to be worsened both in dought and overmoisture.
     5.The SOD activity of cultivars behaved in fluctuation during the sampling period.The order in the trait of Dongnongdongmai 1 among the soil water treatments showed as 15%±2%>30%±2%>45%±2%>CK (normal soil water management) and of Jimai 22 the highest in 15%±2%.And the POD activity appeared enhancing trands during the same period and higher in Dongnongdongmai 1 than in Jimai 22.The higher POD activity of Dongnongdongmai 1 presented in 15%±2% of soil water content in cold acclimation (?) in 45%±2% after frozen date and of Jimai 22 in 15%±2% covering winter,respectively.The GSH contents of 2 cultivars were downward during the sampling period and higher in Dongnongdongmai 1 than in Jimai 22 and of Dongnongdongmai 1 in 30%±2% while of Jimai 22 in 45%±2%..The As A contents of 2 cultivars showed upward in the early stage of the sampling period and then downward in the late stage.The lower value of As A was in CK(normal soil water management) of soil water content during cold acclimation phase. After entering frozen period the higher content of AsA was found in CK of soil water content in Dongnongdongmai 1,but the values of AsA in Jimai 22 waved remarkably in all soil water treatments.
     6.The change of the initial fluorescence values (Fo) of both cultivars in the soil water treatments presented the bimodal curv in the whole sampling period.The Fo value would increase under the dought and water logging conditions.The Maximum fluorescence value (Fm) of the 2 cultivars enhanced rapidly in all soil water treatments before the frozen date and decreased fast after the stage.After 20 days entering the frozen stage the change of Fm was smooth while showed highest in CK (normal soil water management).The maximal quantum yield (Fv/Fm) and the actual quantum yield (Yield) of Dongnongdongmai 1 appeared to be smooth or a slightly increasing trend in all soil water treatments from the cold acclimation period to the frozen stage and of Jimai 22 downward.The Fv/Fm and Yield of the cultivars reduced gradually and those values in CK (normal soil water management) treatment were higher obviously than those in other soil water contents after entering into the frozen stage.The photochemical quenching parameter (qP) of Dongnongdongmai 1 in all soil water treatments dropped gradually during the sampling period and of Jiami 22 fluctuated downward.The non-photochemical quenching parameter (qN) of both cultivars appeared to be fluctuating upward.The difference in the actual fluorescence yield (Ft) of both cultivars was very significant among the sampling dates.The value of Ft could be induced to incease in the cold acclimation period but to reduce in the early stage of frozen perion by slightly drought.The photosynthetic electron transfering rate (ETR) of both cultivars decreased gradually in the whole sampling period and sharply in the frozen period and was higher under the optical and some more soil water contents than that under drought condition. The photoinhibition in Dongnongdongmai 1 was heavier than that in Jiami 22 in the cold acclimation period and more seriously in Jimai 22 in the frozen period.The transient maximal quantum yield (Fm) of Dongnongdongmai 1 was higher than that of Jimai 22 and the significant difference in Fm between cultivars was observed in all actinic light treatments.The Fm in CK (normal soil water management) was lower in the early stage of the frozen period and became higher after the date of Dec 2.The change of Fm with the actinic light intensives of the cultivars was fluctuating in the cold acclimation period and the early stage of the frozen period and became smooth in the whole frozen period.
     7.The number of the different protein spots was found to be 32 in the early and late stages of the frozen period in the soil water contents of 15%±2%,30%±2% and 45%±2% in both cultivars.Of which 26 spots matched highly with proteins found in wheat and 3 with in rice,1 with in maize,1 with in barley and 1 with in cucumber.12.5% of the protein spots participated in the process of energy metablism,and 25% of material synthesis,9.3% belonged to molecular chapron,31.25% to resistant proteins,6.25% of photosynthetic reaction and 15.62% to other proteins.There were 9 protein spots appearing both in the cold tolerant cultivar and cold sensitive cultivar in the early stage of the frozen period and all participated in the process of the osmotic matters synthesis,scavenging of the active matters damaging cell.stress resistance and photosynthesis.The different protein spots participating energy metablism in the cold tolerant cultivar were more than that in the cold sensitive cultivar. There were no different protein spots both expressing in the cold-tolerant and -sensitive cultivars in the late stage of the frozen period.The different expressing protein spots jioned thicking cell wall,energy metablism and stress resistance in the cold tolerant cultivar and in the cold sensitive cultivar participated dissolving cell membrane and photosynthesis.The more of the different expression protein spots occurred in the soil water treatments of dought (15%±2%) and more moisture (45%±2%) and less of slight drought (30%±2%).
     8.The strong cold resistant cultivar has characterestics as follows:slight damage of tissues in the frozen period,more alive cells,low progress of apical point development,low level of water content in leaf sheathes in the overwinter period,high activity of SOD,POD in the cold acclimation period and the early stage of the frozen period,high content of GSH in the overwinter period,high in qP,qN in the cold acclimation period,high in Fv/Fm,Yield after the date of frozen,low in Fo after 20 days entering into the frozen period,high in Fm in the whole frozen period.The evaluation for the cold tolerance of winter wheat in the frigid region could be carried into execution by the indices of paints vigor,apical point status,relative conductivity,MDA,chlorophyll fluorescence parameters (Fo,Fm,Fv/Fm,Yield,qP,qN),activity of SOD,POD and GSH content.
     9.The close relationship was found between the cold tolerance of winter wheat and the indices of the overwinter survival rate in spring,plant vigor,conductivity and MDAin winter,the maximal fluorescence and transient maximal quantum yield after 20 days entering into the frozen period,maximal quantum yield and actual quantum yield in the frozen period,ETR in winter. All of the indices were affected obviously by the soil water content.The soil water content of 35%-40% before winter season was in favor of the safe overwintering of winter wheat according to the relationship between the indices and the cold tolerance of winter wheat and its changes with the soil water content levels.
引文
1.鲍思伟.2001.水分胁迫对蚕豆叶片水分状况的影响.天津师范大学学报(自然科学版),21(3):67-70.
    2.贲桂英.1987.低温与水分胁迫对黄瓜和豌豆叶圆片光合作用的影响及与光的关系.植物生理学报,13(4):386-394.
    3.卞海云,王友华,陈兵林.2008.低温条件下相关关键酶活性对棉纤维比强度形成的影响.中国农业科学,41(4):1235-1241.
    4.蔡志全,曹坤芳,冯玉龙,冯志立.2003.夜间低温胁迫对两种生长强光下藤黄幼苗叶片荧光特征和活性氧代谢的影响.应用生态学报,14(3):326-331.
    5.陈禅友,汪汇东,丁毅.2005.低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化.园艺学报,32(5)911-913.
    6.陈贵,康宗利,张立军.1998.低温胁迫对小麦生理生化特性的影响.麦类作物学报,18(3):42-44.
    7.陈贵,周桂杰.1999.冬小麦品种间的生理生化差异与返青率的关系.麦类作物,19(1):42-44.
    8.陈红兵,郭继虎,王金胜,景蕊莲,昌小平,曹克林.2000.水分胁迫时小麦生化指标与抗旱性的关系.山西农业大学学报,20(2)129-131.
    9.陈建白.1999.电导法在植物抗寒研究中的应用.云南热作科技,22(1):26-28.
    10.陈建勋,王晓峰.2008.植物生理学实验指导.广州:华南理工大学出版社.
    11.陈坤明,宫海军,王锁民.2004.植物谷胱甘肽代谢与环境胁迫.西北植物学报,24(6):1119-1130.
    12.陈秋芳,王敏,田建保.2009.不同甜樱桃品种枝条电导率的测定.山西果树,5:9-11.
    13.陈禹兴,付连双,王晓楠,李卓夫.2010b.低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响.东北农业大学学报,41(10):10-16.
    14.陈禹兴.2010a.冷冻后恢复生长期间低温胁迫对不同冬麦品种抗寒特征性状的影响.东北农业大学硕士学位论文.
    15.陈钰,郭爱华,姚延涛.2007.杏枝芽内MDA含量和电导率值变化与抗寒性关系的研究.天津农业科学,134(4):4-6.
    16.成善汉,谢从华,柳俊.2002.高等植物果聚糖研究进展.植物学通报,19(3):280-289.
    17.戴建良,王芳,何虎林.1997.侧柏不同种源对水分胁迫反应的初步研究.甘肃林业科技,2:1-6,13.
    18.戴明,邓西平,杨淑慎,曹让,郭宏波,张芳.2009.水分胁迫对不同基因型小麦幼芽蛋白质表达和某些生理特性的影响.应用生态学报,20(9):2149-2156.
    19.单长卷,田雪亮.2007.冬小麦水分生理特性对水分胁迫的响应.吉林农业科学,32(6):16-21.
    20.邓勇,王宏炜,叶济宇.2001.菠菜铁氧还蛋白的简易分离方法.植物生理学通讯,37(2):142-143.
    21.丁伟.2009.水稻干旱胁迫蛋白质组相关数据和生物信息分析研究.华中农业大学硕士学位论文.
    22.丁霞,王晓红,沈梅.2008.2008年低温冰雪天气对合肥地区冬小麦生成的影响分析.安徽农业科学,36(34):14921-14924.
    23.董杜鹃.2008.棉铃虫变态时期差异表达基因的鉴定及真核起始因子5C基因的克隆及性质研究.山东大学博士论文.
    24.董家行,郑淑清,赵增林,魏世峰.2010.冬小麦遭遇低温寒潮早春田间管理措施.天津农林科技,3:17-18.
    25.杜金友,陈晓阳,胡东南.2004.干旱胁迫条件下几种胡枝子渗透物质变化的研究.华北农学报,19(S1):40-44.
    26.冯昌军,罗新义,沙伟,王凤国.2005.低温胁迫对苜蓿品种幼苗SOD、POD活性和脯氨酸含量的影响,22(6)29-31.
    27.冯素伟,董娜,胡铁柱,李淦,李笑慧,茹振钢.2010.不同小麦品种抗低温能力比较.河南科技学院学报,38(3):4-7.
    28.付连双,王晓楠,王学东,谢甫绨,李卓夫.2010.低温驯化及封冻后不同抗寒性小麦品种细胞超微结构的比较.麦类作物学报,30(1):66-72.
    29.高吉霞,龚春梅,刘西平.2010.水分胁迫对刺槐叶和根谷胱甘肽抗氧化系统的影响.西北植物学报,30(7):1409-1414.
    30.高志强,张国红,张爱芝,苗果园.2002.不同小麦品种对低温的生理反应研究.山西农业大学学报,22(2):109-112.
    31.葛云霞,姚允从,张杰.2007.干旱胁迫对杏脂氧合酶活性的影响.果树学报,24(1):102-104.
    32.宫长荣,李艳梅,杨立均.2003.水分胁迫下离体烟叶中脂氧合酶活性、水杨酸与茉莉酸积累的关系.中国农业科学.36(3):269-272.
    33.郭春芳,孙云,唐玉海,张木清.2009.水分胁迫对茶树叶片叶绿素荧光特性的影响.中国生态农业学报,17(3):560-564.
    34.郭瑞,季书勤,王汉芳,李向东,张德奇,吕凤荣.2009.不同土壤条件下干旱、低温对冬小麦形态和生理的影响.耕作与栽培,5:10-12.
    35.郭延平,张良诚,洪双松,沈允钢.2000.温州蜜柑叶片气体交换和叶绿素荧光对低温的响应.植物生理学报,26(2):88-94.
    36.郭昭,赵一玲,刘景利,薛永常.2006.木质素合成酶咖啡酸3-O-甲基转移酶的遗传调控研究.分子植物育种,4(6):122-126.
    37.韩蕊莲,李丽霞,梁宗锁.2003.干旱胁迫下沙棘叶片细胞膜透性.西北植物学报23(1):23-27.
    38.郝再彬,苍晶,徐仲.2006.植物生理实验.哈尔滨:哈尔滨工业大学出版社.
    39.郝照,赵雪晨,曾淑军.1983.冬小麦穗分化研究初报.河北农学报,8(3):8-12.
    40.何立人.1983.小麦生长锥分化和温光关系的初步探讨.西南农学院学报,3:1-4.
    41.何若韫.1995.植物低温逆境生理.北京:中国农业出版社.
    42.何云,李贤伟,李西.2008.2种野生岩生植物叶片可溶性蛋白含量对低温胁迫的响应.安徽农业科学,36(18):7552-7553.
    43.和红云,田丽萍,薛林.2007.植物抗寒性生理生化研究进展.天津农业科学,13(2):10-13.
    44.侯晓林,吕金印,山仑.2007.水分胁迫对抗旱性不同小麦品种叶片光合及根呼吸等生理特性的影响.干旱地区农业研究,25(6):37-39.
    45.胡洪群.2010.拟南芥耐盐相关箱基转移酶基因鉴定.山东大学博士学位论文.
    46.胡喆.2005.拟南芥突变体对热激胁迫的应答反应及相关基因的克隆与表达分析.兰州大学硕士学位论文.
    47.黄鹤丽,林电,章金强,孙恪志.2009.水分胁迫对巴西香蕉幼苗水分状况、质膜透性和根系活力的影响.基因组学与应用生物学,28(4):740-744.
    48.黄敬芳,周立伟,陶维海,杨源伟,姜子英1986.小麦春化阶段通过标志形态学和解剖学研究.宁夏农业科技,5:1-6.
    49.简令成,王红.2009.逆境植物细胞生物学.科学出版社.
    50.江福英,李廷,翁伯琦.2002.植物低温胁迫及其抗性生理.福建农业学报,17(3):190-195.
    51.姜鸿明,牟春生,姜红,陈勇娜,于经川.1995.水分胁迫对高产小麦品种的生理效应.莱阳农学院学报,12(3):166-172.
    52.金善宝.1996.中国小麦学.北京:中国农业出版社.
    53.靖长柏,张利阳,童再康.2010.自然低温胁迫对3种桉树生理生化特性的影响,6:18-19.
    54.李建友.2007.盐胁迫诱导水稻根尖细胞程序性死亡及相关线粒体蛋白质组学研究.南京农业大学博士论文.
    55.李玲.2009.植物生理学模块实验指导.北京:科学出版社.
    56.李美茹,刘鸿先,王以柔.1998.低温下水稻幼苗叶片细胞膜膜脂过氧化和膜磷脂脱酯化反应.广西植物,18(2):173-176.
    57.李文学,王震宇.2000.低温对缺钼冬小麦幼苗生长的影响.植物营养与肥料学报,6(3):312-317.
    58.李秀珍,郝廼斌,谭克辉.1987.冬小麦春化过程中可溶性蛋白质组成的变化与形态发生的关 系.植物学报,29(5):492-498.
    59.李志博,魏亦农,杨敏,张荣华.2006.低温胁迫对棉花幼苗叶绿素荧光特性的影响初探.棉花学报,18(4):255-257.
    60.林世青,许春辉,张其德.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用.植物学通报,9(1):1216.
    61.林晓涵.2008.普通小麦和黑麦葡萄糖基转移酶基因(GT1)的克隆与特征分析.南京农业大学硕士学位论文.
    62.刘灿,王金伟,李卓夫,付连双,孙艳丽,王晓楠,陈禹兴,陈自新.2009.低温驯化阶段不同抗寒性冬小麦品种生理代谢的比较.东北农业大学学报,40(11):14-17.
    63.刘鸿先.1981.植物抗旱性与酶系统多态性的关系.植物生理学通讯,6:6-11.
    64.刘建,项东云,陈健波,唐庆兰,叶露,张照远.2009.低温胁迫对桉树光合和叶绿素荧光参数的影响.桉树科技,26(1):1-6.
    65.刘建辉,崔鸿文.1995.电导法鉴定黄瓜抗寒性的研究.西北农业大学学报,23(4):74-77.
    66.刘坤坤,刘庆忠,陈锋,李勃.2005.甜樱桃砧木吉塞拉5号抗寒性鉴定.落叶果树,4:1-3.
    67.刘灵,何若天.1995.水分胁迫对玉米苗期膜损伤及有关酶活性的影响.广西农业大学学报,14(3):195-200.
    68.刘明,孙世贤,齐华,杨国航,白向历,张振平,梁熠,孟显华.2009.水分胁迫对玉米苗期叶绿素荧光参数的影响.玉米科学,17(3):95-98.
    69.刘尚前,王晓春,牛瑞明,赵连平.2005.不同生态型小麦春播条件下幼穗分化进程与温度和叶片出生的关系.干旱地区农业研究,23(2):104-108.
    70.刘晓静.2010.千扰抑制的肉桂酞辅酶还原酶和咖啡酸转移酶还原酶对单参木质素沉积及水溶性次生代谢物影响.陕西师范大学硕士学位论文.
    71.卢秀萍,陈学军,刘勇.2010.烟草富含甘氨酸RNA结合蛋白在大肠杆菌中的表达.中国生物工程杂志,30(8):27-30
    72.吕芳德,徐德聪,栗彬.2006.水分胁迫对美国山核桃叶片叶绿素荧光参数的影响.中南林学院学报,26(4):27-30.
    73.吕金印,高俊凤.1996.水分胁迫对小麦根质膜透性与质膜组分的影响.干旱地区农业研究,14(1):96-100.
    74.罗群,唐自慧,李路娥,曹慕岚,马丹炜.2006.干旱胁迫对9种菊科杂草可溶性蛋白质的影响.四川师范大学学报(自然科学版),29(3):356-360.
    75.罗娅,汤浩茹,张勇.2007.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响.园艺学报,34(6):1405-1410.
    76.马崇坚.2004.脂氧合酶在果实成熟衰老及抗伤病中的作用.广西科学,11(4):347-350.
    77.马翠兰,刘星辉,胡又厘.2000.渗透调解物质和水分状态与溪蜜柚抗寒性的关系.福建农业大学学报,29(1):31-34.
    78.马翎键,何蓓如.1999.小麦幼穗分化研究进展.湖北农学院学报,19(3):272-275.
    79.马尧,于漱琦.1998.水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用.农业与技术,3:18-19,24.
    80.马玉华,马锋旺,马小卫,李明军,王永红,韩明玉,束怀瑞.2008.干旱胁迫对苹果叶片抗坏血酸含量及其代谢相关酶活性的影响细胞农林科技大学学报,36(3):150-160.
    81.马玉华,王永红,王荔,班小重,邹养军.2010.强光对苹果盆栽苗叶片抗坏血酸含量的影响.江西农业学报,22(11):23-25.
    82.麦苗苗.2009.连香树干旱胁迫过程中的生理变化与基因差异表达分析.四川农业大学博士学位论文.
    83.孟凡珍,张振贤,于贤昌.2005.田间低温胁迫对大白菜某些理化特性的影响研究.中国生态农业学报,13(2):84-86.
    84.孟健男,于晶,苍晶,张达,王军虹.2011.PEG胁迫对两种冬小麦苗期抗旱生理特性的影响.东北农业大学学报,42(1)40-44.
    85.孟庆瑞,杨建民,樊英利.2002.果树抗寒机制研究进展.河北农业大学学报,25(增刊):87-90.
    86.牟筱玲,鲍啸.2003.土壤水分胁迫对棉花叶片水分状况及光合作用的影响.中国棉花,30(9): 9-10.
    87.穆洪军.2000.低温锻炼对香蕉幼苗核酸与蛋白质含量的效应和抗冷性关系的研究.广西热作科技,2:1-4.
    88.牛锦凤,平吉成,王振平,王文举,李国.2005.几个鲜食葡萄品种抗寒性的比较研究.北方园艺,6:63-65.
    89.潘庆民,于振文,王月福.2002.小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解.植物生理与分子生物学学报,28(3):235-240.
    90.潘瑞炽,豆志杰,叶庆生.1995.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响.植物生理学报,21(3):221-228.
    91.彭艳华,刘成运,卢大炎,叶婉成.1992.低温胁迫下凤眼莲叶片的适应——脱落酸和可溶性蛋白质含量升高.武汉植物学研究,10(2):123-127.
    92.齐华,白向历,孙世贤,刘明,杨国航,丛雪.2009.水分胁迫对玉米叶绿素荧光特性的影响.华北农学报,24(3):102-106.
    93.齐秀东,孙海军,郭守华.2005.SOD-POD活性在小麦抗旱生理研究中的指向作用.植物生理科学,21(6):230-232.
    94.沙伟,刘焕婷,谭大海,李杰.2008.低温胁迫对扎龙芦苇SOD、POD活性和可溶性蛋白含量的影响.齐齐哈尔大学学报,24(2):1-4.
    95.石雪晖,刘坤玉,杨国顺,吕长平,王淑英,罗川蕙.1997.低温胁迫对柑桔离体叶片质膜透性和MDA及V-C含量的影响.湖南农业大学学报,23(1):36-40.
    96.时忠杰,胡哲森,李荣生.2002.水分胁迫与活性氧代谢.贵州大学学报(农业与生物科学版),21(2):140-145.
    97.宋素胜,谢道昕.2006.泛素蛋白酶体途径及其对植物生长发育的调控.植物学通报23(5):564-577.
    98.隋娜.2007.温度胁迫下番茄叶绿体甘油-3-磷酸酰基转移酶基因的功能分析,山东农业大学博士学位论文.
    99.孙龙生,金丽丽.2007.月季的抗寒性与相对电导率.辽宁农业科学,1:23-25.
    100.田秀菊,孟令忠,任淑华.2010.持续低温对冬小麦产量的影响及对应措施.资源与环境科学,23:286-288.
    101.万富世.2006.冬小麦品种越冬性改良理论与实践.北京:中国农业科学技术出版社.
    102.万克江,薛绪掌,王志敏,高志远,马智宏.2005.土壤水分状况对小麦苗期生长及生理特性的影响.干旱区资源与环境,19(5):169-173.
    103.王保莉,杨春,曲东.2000.环境因素对小麦苗期SOD、MDA及可溶性蛋白的影响.西北农业大学学报,28(6):72-77.
    104.王炳奎.1992.抗寒性诱导中蛋白质合成的变化和ABA的作用.中国农学通报,8(3):31-34.
    105.王多佳,曾俨,牟永潮,于晶,苍晶.2009.高寒地区冬小麦东农冬麦1号抗冻蛋白的研究.麦类作物学报,29(5):823-823.
    106.王国娇,曹莹,孙备,王嘉宇.2008.不同水分条件下氮素营养对辽春10号小麦旗叶衰老的影响.麦类作物学报,28(2):271-275.
    107.王海珍,梁宗锁,韩蕊莲,韩路.2004.土壤干旱对黄土高原乡土树种水分代谢与渗透调节物质的影响.西北植物学报,24(10):1822-1827.
    108.王洪春.1987.生物膜结构功能和渗透调节.上海:上海科学技术出版社,55-56.
    109.王华,王飞,陈登文,丁勤.2000.低温胁迫对杏花SOD活性和膜脂过氧化的影响.果树科学,17(3):197-201.
    110.王金伟,刘灿,李卓夫,付连双,孙艳丽,王晓楠,陈禹兴.2009.低温驯化期冬小麦生理指标变化的比较.东北农业大学学报,40(9):1-5.
    111.王娟,李德全,谷令坤.2002b.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应.西北植物学报,22(2):285-290.
    112.王娟,李德全.2002a.水分胁迫对玉米根系AsA-GSH循环及H202含量的影响.中国生态农业学报,10(2):94-96.
    113.王丽雪,李荣富,张福仁.1996.葡萄枝条中蛋白质、过氧化物酶活性与抗寒性的关系.内蒙 古农牧学院学报,17(1):45-50.
    114.王娜,褚衍亮,褚文辉.2007.活性氧清除系统在小麦幼苗叶绿体抗旱生理中的作用.山东科学,20(5):13-17.
    115.王宁.2010.热杀伤人舌鳞癌Tca8113细胞过程中的蛋白质组学研究.昆明医学院硕士学位论文.
    116.王瑞,马凤鸣,李彩凤,陈胜勇,侯静.2008.低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响.东北农业大学学报,39(5):20-23.
    117.王淑杰,王家民,李亚东,王春梅.1996.可溶性全蛋白、可溶性糖含量与葡萄抗寒性关系的研究.北方园艺,107(2):13-14.
    118.王维.2005.适度土壤干旱对贪青小麦贮藏碳水化合物向籽粒转运的调节.作物学报,31(3):289-296.
    119.王晓春,刘尚前,牛瑞明,王立秋.2001.不同生态型小麦在高寒半干旱区幼穗分化与叶片出生的关系.张家口农专学报,17(3):6-8.
    120.王晓楠,付连双,李卓夫,李文滨,孙艳丽,王金伟,刘灿,陈禹兴.2008.小麦苗期地下茎蛋白质双向电泳技术体系的优化.中国生物工程杂志,28(12):66-71.
    121.王晓楠,付连双,李卓夫,杨方,孙艳丽,刘灿,王金伟,陈禹兴.2009a.低温驯化及封冻阶段不同冬小麦品种叶绿素荧光参数的比较.麦类作物学报,29(1):83-88.
    122.王晓楠,付连双,李卓夫,李文滨,孙艳丽,刘灿,王金伟,陈禹兴.2009b.低温下东农冬麦1号地下茎处差异蛋白的分析.麦类作物学报,29(3):484-490.
    123.王晓楠,付连双,李卓夫,孙艳丽,王玉波,刘灿,王金伟,陈禹兴.2009c.低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析.作物学报,35(7):1313-1319.
    124.王兴,于晶,杨阳,苍晶,李卓夫.2009.低温条件下不同抗寒性冬小麦内源激素的变化.麦类作物学报,29(5):827-831.
    125.王易振,杨治国,曾祥琼,张廷惠.2010.低温处理对青蒿叶片脯氨酸、SOD和CAT的含量及蛋白质的影响.基因组学与应用生物学,29(5):927-930.
    126.王征宏.2009.干旱对小麦灌浆物质转运的调控.西北农林科技大学博士论文.
    127.魏凤珍,李金才,王永华,尹钧,王成雨,屈会娟,郅胜军.2006.小麦抗寒性的影响因素及小麦冻害的防御与补救措施.安徽农业科学,34(10):2078-2080.
    128.魏乐,杜军华.1999.高温和零上低温对小麦根系含糖量及细胞透性的影响.青海师范大学学报(自然科学版),1:35-39.
    129.吴锦程,梁杰,陈建琴.2009.GSH对低温胁迫下枇杷幼果叶绿体AsA-GSH循环代谢的影响.林业科学,45(11):15-19.
    130.吴雪霞,陈建林,查丁石.2009.低温胁迫对茄子幼苗叶片叶绿素荧光特性和能量耗散的影响.植物营养与肥料学报,15(1):164-169.
    131.武惠肖,吉艳芝,何海龙,刘秀花,左永忠.2000.落叶松各个抗寒生理指标研究.河北林果研究,15(2):105-109.
    132.武雁军,刘建辉.2007.低温胁迫对厚皮甜瓜幼苗抗寒性生理生化指标的影响.西北农林科技大学学报(自然科学版),35(3):139-143.
    133.夏茂林.1997.自由水、结合水和代谢水.生物学通报,32(10):34.
    134.徐秉芳,邢彦彦,王宗阳.2000.水稻乙醛脱氢酶基因的克隆及其在不育系中的表达.植物生理学报,26(3):206-212.
    135.徐波.2008.辣椒应答UV-B的转录组差异分析及相关功能基因的分离.福建农林大学硕士学位论文.
    136.徐俊森,杨细明,郑天汉,陈清森,林武星,傅忠华,潘慧忠,隆学武.2000.干旱胁迫对木麻黄小枝细胞膜伤害机理的研究.防护林科技(专刊1):164-167.
    137.徐孟亮,李落叶,陈荣军.2010.一个新的水稻低温应答类糖基转移酶基因(OsCrGtl)的表达分析与克隆.农业生物技术学报,18(4):663-669.
    138.许长成,程炳嵩,邹琦.1993.植物水分胁迫与活性氧代谢.山东农业大学学报,24(1):113-116.
    139.许传俊,李玲.2007.泛素/26S蛋白酶体途径与植物的生长发育.西北植物学报,27(3):0635-0643.
    140.许端详.2008.抗病相关基因转化马铃薯及其表达的初步研究.福建农林大学硕士专业学位论文.
    141.杨俊兴,张彤,王磊.2005.Ca-GA合剂和磷浸种对水分胁迫条件下冬小麦萌发及幼苗叶绿素荧光参数的影响.安徽农业科学,33(2):210-212,222.
    142.杨晓青,张岁岐,梁宗锁,山颖.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,2004,24(5):812-816.
    143.姚胜蕊,曾骧,简令成.1991.桃花芽越冬期间蛋白质、核糖核酸动态与抗冻性的关系.园艺学报,(1):25-27.
    144.姚允聪,张大鹏,王有年,高遐虹.2000.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究.果树科学,17(1)1-6.
    145.于晶,孟健男,曾俨,苍晶,李卓夫.2010.温度及土壤含水量对冬小麦生长习性及返青率的影响.东北农业大学学报,41(5):9-13.
    146.于晶,张林,苍晶,王兴,周子珊,郝再彬,李卓夫.2008b.外源ABA对寒地冬小麦东农冬麦1号幼苗生长及抗冷性的影响.麦类作物学报,28(5):883-887.
    147.于晶,张林,苍晶,郝再彬,杨阳,李卓夫.2009.不同抗寒性冬小麦品种分蘖节低温诱导蛋白比较.应用生态学报,20(5):1092-1098.
    148.于晶,张林,崔红,张永侠,苍晶,郝再彬,李卓夫.2008a.高寒地区冬小麦东农冬麦1号越冬前的生理生化特性.作物学报,34(11):2019-2025.
    149.于晶,周子珊,牟永潮,张永侠,苍晶.2010.低温下不同抗寒性冬小麦叶片组织结构比较.东北农业大学学报,41(4):7-11.
    150.于同泉,柴丽娜,刘宗萍.1995.水分胁迫下小麦幼苗可溶性蛋白质的表现与小麦抗旱蛋白之初探.北京农学院学报,10(1):26-31.
    151.于勇,翁俊,徐春和.2001.植物光系统Ⅱ放氧复合体外周蛋白结构和功能的研究进展.植物生理学报,27(6):441-450.
    152.于振文.2003.作物栽培学总论.北京:中国农业出版社:27-42.
    153.余叔文,汤章城.1998.植物生理与分子生物学.北京:科学出版社,739-751.
    154.岳虹.2002.水分胁迫对小麦叶片生理指标的影响.太原师范专科学校学报,2:28-29.
    155.曾韶西,王以柔.1990.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷光甘肽含量的影响.植物生理学报,16(1):37-42.
    156.曾小美.2004.ATP合酶的结构与功能及其在细胞光自养过程中的活性变化.中国科学研究院博士学位论文.
    157.张成琦,李家修,杨正元,朱志强,小麦生态研究课题组.1986.不同类型小麦品种幼穗分化与光温等生态因子关系的研究.贵州农学院学报,2:11-20.
    158.张可文,安钰,胡增辉,杨迪,沈应柏.2005.脂氧合酶、脱落酸与茉莉酸在合作杨损伤信号传递中的相互关系.林业科学研究,18(3):300-304.
    159.张荣平,王振镒,高俊凤,徐芳.1992.小麦胚根脂氧合酶(LOX)活性变化与抗热—抗旱性的关系.干旱地区农业研究,10(4):81-85.
    160.张志良,瞿伟菁,李小方.2009.植物生理学实验指导.北京:高等教育出版社.
    161.赵军,赵玉田,梁博文.1994.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能.中国农业科学,27(2):57-61.
    162.赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,15(1):63-66.
    163.郑家基,谢厚钗,肖燕惠,马翠兰.1996.香蕉越冬期ATPase和保护酶的活性及膜脂过氧化.福建农业大学学报,25(4):420-424.
    164.周碧燕,陈杰忠,季作梁,蔡永发.1999.香蕉越冬期间SOD活性和可溶性蛋白质含量的变化.果树科学,16(3):192-196.
    165.周建,杨立峰,郝峰鸽,尤扬.2009.低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响.西北植物学报,29(1):0136-0142.
    166.周琳,侯秀丽,杨光宇.2001.低温胁迫下冬小麦叶片中某些物质的变化.周口师范高等专科学校学报,18(2):36-38.
    167.周瑞连,张承烈,金巨和.1991.水分胁迫下紫花苜蓿叶片含水量、质膜透性SOD、CAT活性变化与抗旱性关系研究.中国草地,2:20-24.
    168.周瑞莲,张普金.1996.春季高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究.生态学报,16(4):402-408.
    169.周瑞莲,赵哈林.2002.高寒山区草本植物的保护酶系统及其在低温生长中的作用.西北植物学报,22(3):566-573.
    170.朱惠霞,孙万仓,邓斌,燕妮,武军艳,范惠玲,叶剑,曾军,刘雅丽,张亚宏.2007.白菜型冬油菜品种的抗寒性及其生理生化特性.西北农业学报,16(4):34-38.
    171.朱进.2004.低温胁迫下不同西葫芦品种抗寒性生理指标比较.湖北农学院学报,24(2):106-108.
    172.朱政,蒋家月,江昌俊,李雯.2011.低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响.安徽农业大学学报,38(1):24-26.
    173.邹琦.1995.植物生理生化实验指导.北京:中国农业出版社,94-96.
    174.邹琦.2000.植物生理学实验指导.北京:中国农业出版社,4-5.
    175.祖世亨,取成军,高英资,周永吉.2001.黑龙江省冬小麦气候区划研究.中国生态农业学报,9(4)85-87.
    176. Affolter M,Pyrowolakis G.2006.eIF4A goes beyond translation.Nat Cell Biol,8(12):1319-1321.
    177.Algire M A,Maag D and Lorsch J R.2005.Pi release from eIF2,not GTP hydrolysis,is the step controlled by start-site selection during eukaryotic translation initiation.Mol.Cell,20:251-262.
    178. Amme Steffen,Matros Andrea,Schlesier Bernhard and Hans-Peter Mock.2006.Proteome analysis of cold stress response in Arabidop sis thalia-na using DIGE2technology. Journal of Experimental Botany,57(7):1537-1546.
    179.Anneke M Metz,Karen C Wong,Susanna A M and K S Browning.1999.Eukaryotic Initiation Factor 4B from Wheat and Arabidopsis thaliana Is a Member of a Multigene Family.Mendeley,266(2):314-321.
    180. Bae M S,Cho E J,Choi E Y and Park O K.2003.Analysis of the Arabidopsis nuclear proteome and its response to cold st ress.Plant J,36 (5):652-663.
    181.Bancal P,Tribo E.1993.Temperature effect on fructan oligomer contents and fructan related enzyme activities in stems of wheat during grain filling.New Phytologist,123:247-253.
    182.Benne R,Hershey J W.1978.The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes.J Biol Chem,253:3078-3087.
    183.Bianchi L,Canton C,Bini L,Orlandi R,Armini A,Cattaneo M,Pallini V,Bernardi L R and Biunno I Proteomics.2005.Protein profile changes in the human breast cancer cell line MCF-7 in response to SEL1L gene induction.Proteomics,5(9):2433-2442.
    184.Campbell J A,G J Davies,V Bulone and Henrissat B.1997.A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities.Biochem,326:929-939.
    185. Cui S,Huang F,Wang J,Cheng Y and Liu J.2005.A proteomic Analysis of cold stress responses in rice seedl-ings.Proteomics,12(5):3162-3172.
    186. David Shahbazian,Armen Parsyan,Emmanuel Petroulakis,Ivan Topisirovic,Yvan Martineau,Bernard F Gibbs.Yuri Svitkin and Nahum Sonenberg.2010.Control of Cell Survival and Proliferation by Mammalian Eukaryotic Initiation Factor.Molecular and Cellular Biology,30(6):1478-1485.
    187. Dong-Gi Lee,Nagib Ahsan,Sang-Hoon Lee,K Kang,J Lee and B Lee.2007.An approach to identify cold-induced low-abundant proteins in rice leaf.C.R.Biologies,330:215-225.
    188.Frentzen M,Heins E.Mekeon A and Stumpf P k.1983.Specificatives and selectivities of glycerol-3-phosphate acyltransferase from pea and spinach chloroplasts.FEBS Letters,129:625-632.
    189. Hajela R K,Horvath D P,Gilmour S J and Thomashow M F.1990.Molecular cloning and expression of cor(Cold-regulated) genes in Arabidopdid thalina.Plant Physiol,93:1246-1252.
    190. Hajheidari M,Abdollahian-Noghabi M,Askari H,Heidari M,Sadeqhian S Y,Ober E S and Salekdeh G H.2005.Proteome analysis of sugar beet leaves under drought stress.Proteomics, 5(4):950-960.
    191. Hegedus A,Erdei S,Janda T,Toth E,Horvath G and Dudits D.2004.Transgenic tobacco plants ove rproducing alfalfa aldose/aldehy dered uctase show higher tolerance to low temperatureand cadmium stress.Plant Science,166(5):1329-1333.
    192.Heintzen C,Naterm Apel K and Staiger D.1997.AtGRP7,a nuclear RNA binding protein as a component of a circadian regulation negative feedback loop in Arabidopsis thaliana.Proc Natl Acad Sci USA,94:8518-8520.
    193.Horton P.1996.Non-photochemical quenching of chlorophyll fluores-cence.In:Jennigs R C ed.Light as an Energy Source and infor-mation Carrier in Plant Physiology.New York:Plenum Press:99-112.
    194. Hunter N P,Oquist G,Hurry V M.1993.Photosynthesis, photoinhi-bion and low temperature acclimation in cold tolerant plants.Phyotosyn Res,37:19.
    195. Yan Juqiang.He Cixin,Wang Jing,Mao Zhehui,Holaday Scott A,Allen Randy D and Zhang Hong.2004.Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a"stay-green"phenotype and improves stress tolerance under moderate drounght conditions.Plant Cell Physiology,45(8):1007-1014.
    196. Imin N,Kerim T,Rolfe B G and Weinman J J.2004.Effect of early cold stress on the maturation of rice anthers.Proteomics,4(7):1873-1882.
    197.Kerstin Ochs,Rene C Rust and Michael Niepmann.1999.Translation Initiation Factor eIF4B Interacts with a Picornavirus Internal Ribosome Entry Site in both 48S and 80S Initiation Complexes Independently of Initiator AUG Location.Journal of Virology,73(9):7505-7514.
    198.Kim Jin S,Park Su J,Kwak Kyung J,Kim Yeon O,Kim Joo Y.Jinkyung Song,Boseung Jang,Che-Hun Jung and Hunseung Kang.2007.Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli.Nucleic Acids Research,35(2):506-516.
    199.Koletsky A J,Harding M W and Handschumacher R E.1986.Cyclophilin:distribution and variant pro perties in normal and neoplastic tissues.The Journal of Immunology,137(3):1054-1059.
    200. Krause G H,Weis E.1991.ChlorophyⅡ fluourescence and photosyn-thesis.Ann Rev Plant Mol Biol,42:313.
    201. Laura K Mayberry,M Leah Allen,Michael D Dennis and Karen S Browning.2009.Evidence for Variation in the Optimal Translation Initiation Complex:Plant eIF4B,eIF4F,and eIF(iso)4F Differentially Promote Translation of mRNAs.Plant Physiology,150:1844-1854.
    202.Leone A,Costa A,Tucci M and Grillo S.1994.Comparative analysis of short-and long-term changes in gene expresion caused by low water potential in potato (Solanum tuberosum)cellsuspension cultures.Plant Physiol,106(2):703-712.
    203. Levitt J.1956.The Hardiness of Plants.New York:Academic,278.
    204. Levitt J.1980.Response of plants to environmental stresses:chilling,freezing and high temperature.New York:Academic Press:166-248.
    205.LI XiaoYi,MU Ying,SUN XuWu and ZHANG LiXin.2010.Increased sensitivity to drought stress in atlon4 Arabidopsis mutant.Chinese Science Bulletin,55 (32): 3668-3672.
    206. Lin Shanzhi,Zhang Zhiyi.2000.The Changes of G6PDHase,ATPase and Protein during Low Temperature-induced Freezing Tolerance of P.suaveollens. Forestry Studies in China,2(2):17-26.
    207. Liu Li-Ke,GUO Xiao-Li,LIU Dong-Cheng,LIU Chun-Guang,Wang Hua-Bo and Zhang Ai-Min.2005.Molecular Cloning and Characteriza of TaLonl Gene in Wheat.Acta Agronomica Sinica,31, (10):1247-1252.
    208.Loescher W H,J K Fellman,T C Fox,J M Davis,R J Redgwell and R A Kennedy.1985.Other carbohydrates as translocated carbon sources:acyclic polyols and photosynthetic carbon metabolism.In:Heath R L,Preiss J(eds).Regulcztiou of Carbon Partition in Photosynthetic Tissue.Maryland:Waverly Press,309-332.
    209. Long S P,East T M,Baker N R.1983.Chilling damage to photosynthesis in young Zea mays.Exp Bot,34(2):177-188.
    210. Lyons J M.1973a.Chilling injury in plants.Ann Rev Plant Physiol,24:445-466.
    211. Lyons J M.1973b.Relationship between the physical nature of mitochondrialmembranes and chilling sensitivity in plants.J Amer Oil Chem Soc,42:1056-1058.
    212.Maqnin T,Fraichard A,Trossat C and Puqin A.1995.The Tonoplast H+-ATPase of Acer pseudoplatanus is a vacuolar-type ATPase that operates with a phosphoenzyme intermediate.Plant Physiol,109:285-292.
    213.Metz A M.Timmer R T and Browning K S.1992.Sequences for two cDNAs encoding Arabidopsis thaliana protein synthesis initiation factor-4A.Gene,120:313-314. Meza-Basso L,Alberdi M,Raynal M,Ferrero-Cadinanos M L and Delseny M.1986.Chan-ges in protein synthesis in rapeseed(B rassica napus)seedling during a low temperature treatment.Plant Physiol,82:733-738.
    214.Murata N,Ishizaki-Nishizawa O.Higashi S,Hayashi H,Tasaka Y and Nishida 1.1992.Genetically engineered alteration in the chilling sensitivity of plant.Nature,356:710-713.
    215.Murata N.1983.Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants.Plant Cell Physiol,24 (1):81-86.
    216.Li Y,Nakazono M.Tsutsumi N.2000.Molecular and cellular characterizations of a cDNA clone encoding a novel isozyme of aldehyde dehydrogenase from rice.Gene,249:67-74.
    217.Perera I Y,X Li and H Sze.1995.Several distinct genes encode nearly identical to 16 KDa proteolipids of the vacuolar H+-ATPase from Arabidopsis thaliana.Plant Mol.Bio.,29:227-244.
    218. Perks M P,Osborne B A and Mitchell D T.2004.Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing.New Forests,28(l):49-62.
    219.Ren H,Du N,Liu G,.2006.Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation.World J Gastroenterol,12(17):2789-2792.
    220. Reviron M P,Vartanian N,Sallantin M,Huet J C,Pernollet J C and de Vienne D.1992.Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves.Plant Physiol,100(3):1486-1493.
    221.Rigas S,Daras G and Laxa M.2009.Role of Lonl protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana.New Phytol,181:588-600.
    222. Rogers G W Jr.Komar A A and Merrick W C.2002.eIF4A:the godfather of the DEAD box helicases.Prog.Nucleic Acid Res.Mol.Biol,72:307-331.
    223.Rogers G W,Lima W F and Merrick W C.2001.Further characterization of the helicase activity of eIF4A-Substrate specificity.J.Biol Chem,276:12598-12608.
    224.Ryffel B,Woerly G.Greiner B.Haendler B,Mihatsch M J and Foxwell B M.1991.Distribution of the cyclosporine binding protein cyclophilin in humantissues.Immunology,72(3):399-404.
    225.Saalbacha G,Schwerdela M,Naturab G,Buschmannb P,Christova V and Dahseb I.1997.Over-expression of plant 14-3-3 proteins in tobacco:enchancement of the plasmalemma K+conductance of mesophyll cells.FEBS Letters,413:294-298.
    226. Salekdeh G H,Siopongco J,Wade L J.Ghareyazie B and Bennett J.2002.A proteomic approach to analyzing drought-and salt-responsiveness in rice.Field Crops Research,76(23):199-219.
    227.Schreier M H,B Erni,and T Staehelin.1977.Initiation of mammalian protein synthesis.I.Purification and characterization of seven initiation factors.J.Mol.Biol., 116:727-753.
    228.Shijun Cheng and Daniel R Gallie.2007.eIF4G,eIF(iso)4G,and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains.Journal of Biological Chemistry,282(35):25247-25258.
    229.Simpson R J,Walker R P and Pollock C J.1991.Fructan exohydrolase activity leaves of Lolium temulentum L.New Phytologist,119:499-507.
    230. Smillie R M,Hetherington S E.1984.A screening method for chilling tolerance using chlorophyll fluorescence in vivo.In:Sybesma Ceds.Advances in Photosymthesis Research, Ⅳ.Newyork:Academic Press:471-474.
    231. Svitkin Y V,Herdy B.Costa-Mattioli M,Anne-Claude Gingras,Raught B and Sonenberg N.2005.Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.Mol Cell Biol,25:10556-10565.
    232. Svitkin Y V,Ovchinnikov L P,Dreyfuss G and Sonenberg N.1996.General RNA binding proteins render translation cap dependent.EMBO J.,15:7147-7155.
    233.Sze H,Schumacher K,Miiller M L,Padmanaban S and Taiz L.2002.A simple nomenclature a complex proton pump:VHA genes encode the vacuolar H+-ATPase.Trends Plant Sci,7(4):157-161.
    234. Van K O and Snel J F.1990.The use of chlorophy fluoresvence nome-nclature in plant stress physiology.Photosyn Res,25:147-150.
    235. Wang J and Hou B K.2008.Glycosyltransferases:key players involved in the modification of plant secondary metabolites.Frontiers of Biology in China,4(1):39-46.
    236. Yan S P,Zhang Q Y,Tang Z C,Su W A and Sun W N.2005.Comparative proteomic analysis provides new insights into chilling stress responses in rice.Proteomics, (5):235-244.
    237. Ying J,Lee E A and Tollenaar M.2000.Response of maize leaf photosynthesis to low temperature during the grain-filling period.Field Crops Research,68(2):87-96.
    238.Zuk M,Skala J,Biernat J and Szopa J.2003.Repression of six 14-3-3 protein isoforms resulting in the activation of nitrate and carbon fixation key enzymes from transgenic potato plants.Plant Science,165(4):731-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700