用户名: 密码: 验证码:
干旱胁迫下两个不同耐旱性玉米自交系苗期生长发育及生理生化特性的差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是制约作物产量形成的重要因素,培育耐旱的玉米品种是抵御干旱提高产量的有效途径之一。而玉米品种耐旱能力的大小由其亲本自交系耐旱性的强弱来决定,深入研究耐旱性玉米自交系的耐旱生理机制,对选育玉米耐旱品种和抗旱栽培具有重要的意义。本文以两个耐旱性不同的玉米自交系为试验材料,苗期采用PEG-6000模拟干旱设置不同程度的胁迫水平,对植株形态、生理生化特性、解剖结构及水分吸收利用效率等方面进行了比较研究,结果如下:
     1.干旱胁迫下两个玉米自交系生长发育的差异
     干旱胁迫抑制了玉米自交系地上部的生长发育:在干旱胁迫下,两个玉米自交系的株高、叶面积都较对照有不同程度的降低,植株地上部干物重的增长也受到不同程度的抑制,其抑制程度随胁迫时间的延长与胁迫程度的增加而增加。耐旱玉米自交系各项指标受干旱胁迫抑制的程度小于干旱敏感玉米自交系。
     干旱胁迫影响了玉米自交系根系的的生长发育:在5mmol/L PEG-6000的处理浓度下,两个玉米自交系的根总长、根系表面积、根系平均直径与对照相比有着不同程度的增加,耐旱玉米自交系的增加幅度显著高于干旱敏感玉米自交系;在10mmol/L、15mmol/L处理浓度下,两个玉米自交系的根总长、根系表面积、根系平均直径则随PEG-6000处理浓度的增加而降低,耐旱玉米自交系各指标的下降幅度显著低于干旱敏感玉米自交系。在干旱胁迫发生时,地上部首先受害,而根系仍能生长,根冠比增大。随着胁迫时间的延长,根系生长逐渐受到抑制。
     2.干旱胁迫下两个玉米自交系渗透调节物质的差异
     干旱胁迫下,两个玉米自交系叶片、根系中的可溶性糖、脯氨酸的含量均随着干旱程度的增加与胁迫时间的延长而增加,耐旱性玉米自交系这两项指标的增加幅度均显著高于干旱敏感玉米自交系。两个玉米自交系叶片、根系中的可溶性蛋白含量则是随着干旱程度的增加与胁迫时间的延长而减小,耐旱玉米自交系的下降幅度显著低于干旱敏感玉米自交系。干旱条件下,根系中三个指标的含量均高于叶片中的含量。
     3.干旱胁迫下两个玉米自交系脂膜透性、膜脂过氧化程度及保护酶活性的差异
     干旱胁迫下,两个玉米自交系叶片、.根系中的相对电导率值、MDA含量均随胁迫浓度的增加而增加,根系中的相对电导率值、MDA的含量更大一些;两个玉米自交系叶片、根系中的SOD、POD、CAT三种保护酶活性均高于正常生长条件下的活性,并且随着胁迫程度的增加而增强,随着胁迫时间的延长而呈“先升后降”的趋势,并在第6天出现峰值。耐旱性玉米自交系的增加幅度显著高于干旱敏感玉米自交系,降低幅度小于干旱敏感玉米自交系。并且,干旱胁迫下,根系中SOD、POD、CAT的活性均大于叶片中的活性。
     4.干旱胁迫下两个玉米自交系光合生理特性的差异
     干旱胁迫下,两个玉米自交系叶片胞间CO2浓度均逐渐升高,净光合速率、气孔导度与蒸腾速率均逐渐下降,认为非气孔因子限制是导致光合速率下降的一个主要原因。
     两个玉米自交系叶片中叶绿素a含量、叶绿素b含量、叶绿素a+b含量均随胁迫程度的增加而增加,原因之一可能是由于干旱致使植物细胞壁加厚,细胞伸长受抑制,但细胞分裂正常进行,因而单位面积上的含量就有所升高;原因之二可能是干旱使叶片相对含水量下降,进而导致单位重量上的叶绿素含量有所提高。
     两个玉米自交系叶片的初始荧光Fo均随胁迫程度的增加而升高,可变荧光Fv、Fv/Fo、Fv/Fm、PI值随胁迫程度的增加而明显降低;耐旱玉米自交系的下降幅度显著小于干旱敏感玉米自交系。干旱胁迫下,耐旱玉米自交系的Fm增加,而干旱敏感玉米自交系的Fm减少;干旱敏感玉米自交系的Area随着干旱胁迫程度的增加而增加,耐旱玉米自交系的Area则随着干旱胁迫程度的增加而减小。与干旱敏感玉米自交系相比,耐旱玉米自交系的PSⅡ在干旱条件下仍保持较高的电子传递能力和较强的光合性能。
     5.干旱胁迫下两个玉米自交系解剖结构的差异
     两个玉米自交系叶片的解剖结构在干旱胁迫下具有品系间差异,耐旱玉米自交系的叶片较薄,表皮细胞、维管束鞘细胞比较发达,导管面积也较大。干旱胁迫下,随着胁迫浓度的增加,耐旱玉米自交系以上各指标的下降幅度不明显,而干旱敏感玉米自交系下降幅度较大。
     干旱胁迫下,两个玉米自交系根系的皮层厚度与导管直径均随胁迫程度的增加而减小,耐旱玉米自交系皮层厚度的降低幅度高于干旱敏感玉米自交系,导管直径的降低幅度低于干旱敏感玉米自交系;耐旱玉米自交系根系皮层厚度占根系直径的比例较小,干旱敏感玉米自交系根系皮层厚度占根系直径的比例较大。6.干旱胁迫下两个玉米自交系根系吸水能力及植株水分利用效率的差异
     干旱肋迫下,两个玉米自交系根系的吸水能力及植株水分利用效率均随胁迫的增加而减小,耐旱玉米自交系的下降幅度显著小于干旱敏感玉米自交系自交系。
Drought is one of the main limiting factors for crop yield forming. It is one of the effective approaches to develop drought-tolerant maize hybrids. Due to the difference of drought-tolerance among various inbred lines, it is necessary to further study on the physiological foundation to develop drought-tolerant hybrids and to improve crop cultivated technology. Two inbred lines of different drought-tolerance were selected to use in this study. The drought stress simulation was used with PEG-6000 at different stress levels. The objectives were to research the differences on plant morphology, physiological characteristics, micro-structure and WUE during seedlings in Maize inbred lines. The results were as follows:
     1. Differences in growth and development between two maize inbred lines under drought stress
     Drought limited the above-ground growth and development of maize inbred lines. Under drought stress, the plant height and leaf area were decreased, and the above-ground dry matters were limited to different extents. The limiting degree was increased with the stress time extending and the stress degree increasing. The effects in drought-tolerant inbred line were less than those in drought-susceptible inbred lines.
     Drought affected the growth and development of root system between two maize inbred lines. Comparing with the CK, the total length, surface area, mean diameter of roots of two inbred lines were increased at 5mmol/L, but those of drought-tolerant inbred line were significance increased than drought-susceptible inbred lines. As the concentration of PEG-6000 was 10mmol/L and 15mmol/L, the total length, surface area, and mean diameter of roots were decreased with the increase of treatment contents. When the drought stress occurred, the above-ground parts were damaged first, but the roots were still growing. As stress prolonged, the root growth was inhibited.
     2. Differences in osmotic adjustment matters between two maize inbred lines under drought stress
     Under drought stress, the soluble carbohydrate and proline in leaf and root of two inbred lines were increased with the interments of drought severity and stress time. The increasing range of drought-tolerant line was much more than those of drought-susceptible line, and the contents of soluble carbohydrate, proline and soluble protein in root were more than those in leaf.
     3. Differences in lipid membrane permeability, lipid peroxidation and protective enzyme between two maize inbred lines under drought stress
     The relative conductivity value and MDA content were increased with the increment of stress under drought stress, especially in root. The activities of three protective enzymes SOD, POD and CAT under drought were higher than under normal growing condition. This showed the tendency as'up to down'with the interment of stress severity and time. The increasing range of drought-tolerant inbred line was more than that of drought-susceptible line, but the decreased range was less than drought-susceptible line. The activities of SOD, POD and CAT in root were higher than in leaf.
     4. Differences in photosynthetic physiological characteristics between two maize inbred lines under drought stress
     Under drought stress, the intercellular CO2 content in leaf was increased, but the net photosynthetic rate, stoma conductivity and transpiration rate were decreased, which was indicating that the no-stoma factors were maybe the main reason for the reduction of photosynthetic rate.
     The contents of chlorophyll a, chlorophyll b, and chlorophyll a+b were increased with the increments of stress due to the increase of cell wall thickness, as well as the inhibition of cell elongation which increased the amount of chlorophyll per unit area; another reason was that the decrease of relative water in leaf led to increase of content in unit weight.
     The initial Florence Fo in leaf of two inbred lines were increased with the stress increased, but the Fv, Fv/Fo, Fv/Fm, and PI value were decreased. The decreased range of drought-tolerant inbred line was less than that of drought-susceptible line. The Fm was increased in drought-tolerant line, but it was decreased in drought-susceptible inbred line. The area of drought-susceptible line was increased but the area of resistant line was decreased with the increment of drought stress. The PSⅡof drought-tolerant inbred line maintained higher electron transportation ability and photosynthesis.
     5. Differences in micro-structure between two maize inbred lines
     The drought-tolerant inbred line was characterized with thick leaf, developed mesophyll cell and bundle sheath cell under drought stress. Furthermore, the decreasing ranges of leaf thickness, mesophyll cell and bundle sheath cell areas were not obvious with the increase of drought, but the drought-susceptible line were significantly decreased.
     The vessel diameter and cortex thickness were decreased with the increment of stress, and the decreased range of drought-tolerant line was greater than that of drought-susceptible line. For the drought-tolerant line, the cortex thickness took less portion of root diameter, but it was on the contrary for drought-susceptible line.
     6. Differences in ability of water absorption and WUE between two maize inbred lines
     The ability of water absorption and WUE were decreased with the increment of stress, and decreasing range of drought-tolerant maize inbred line was less than that of drought-susceptible line.
引文
1. 白登忠,邓西平,黄明丽.水分在植物体内的传输与调控.西北植物学报,2003,23(9):1637-1643.
    2. 鲍巨松,杨成书,薛吉全,等.不同生育时期水分胁迫对玉米生理特性的影响.作物学报,1991(4):21-24.
    3. 蔡永萍.对生玉米叶片蒸腾光合若干特性的研究.安徽农业大学学报,1990,23(4):47-49.
    4. 曹慧,兰彦平,高峰,等.土壤干旱胁迫对短枝型苹果树光合速率的影响.山西农业大学学报,2000,4:356-359.
    5. 陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555-560.
    6. 陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(Mangifera indica L.)幼叶细胞活性氧伤害的影响.生命科学研究,2000,4(1):60-64.
    7. 储燕涛.中国饲料粮市场分析.北京:中国农业大学,2003.
    8. 东先旺,刘树堂.玉米高产群体光合特性的研究.华北农学报,1999,14(2):36—41.
    9. 董树亭,宋建成等.山东省玉米质量型发展战略探讨.玉米科学,2001,9(1):1-5.
    10.董永华,史吉平,周慧欣.6-BA对小麦幼苗抗旱性的影响.植物营养与肥料学报,1999,5(1):72-75.
    11.冯广龙,罗远培,刘建利等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究,1997,15(2):73-79.
    12.付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究.山地农业生物学报,2004,23(6):471-474.
    13.付凤玲,周树峰,潘光堂,等.玉米抗旱品种的筛选指标研究.作物学报,2003,29(3):467-472.
    14.高俊凤.植物生理学实验指导.高等教育出版社,2006.
    15.高世斌.玉米耐旱相关性状的QTL分析.四川:四川农业大学,2004.
    16.葛体达,隋方功,白莉萍.不同土壤水分对玉米光合特性和产量的影响.上海交通大学学报(农业科学版),2005,23(2):56-59.
    17.葛体达.夏玉米对干旱胁迫的响应与适应机制的研究.莱阳:莱阳农学院,2004.
    18.顾慰连,戴俊英,沈秀瑛等.玉米不同品种各生育时期干旱对生育及产量的影响.植物生理学通讯,1989,(3):18-21.
    19.关义新,戴俊英,陈军,等.土壤干旱下玉米叶片游离脯氨酸的累积及其与抗旱性的关系.玉米科学,1996,4(1):43-58.
    20.关义新,戴俊英.水分胁迫下植物叶片光合的气孔与非气孔限制.植物生理学通讯,1995,31(4):293-297.
    21.郭安红,李召祥,刘庚山,等.根源信号参与调控气孔行为的机制及其农业节水的意义.应用生态学报,2004,15(6):1095-1099.
    22.郭庆法,王庆成,汪黎明.中国玉米栽培学.上海:上海科学技术出版社,2004.
    23.韩建民,史吉平,董永华.干旱且无昼夜温差条件下玉米叶片Ψw、Ψs、Ψp和叶片伸长速度的变化.河北农业大学学报,1996,19(1):22-25.
    24.何宇炯,徐如涓,赵毓橘.油菜素内酶对绿豆幼叶衰老的生理作用.植物生理学报,1996(22):58-62.
    25.胡标林,于守武,万勇,等.东乡野生稻全生育期抗旱性鉴定.作物学报,2007,33(3):425-432.
    26.胡荣海.农作物抗旱鉴定方法和指标.作物品种资源.1986(4):36-39.
    27.胡章立,李琳,荆家海,等.水分胁迫对玉米幼叶生长区细胞质膜H+-ATPase活性的影响.植物生理学报,1993,19(2):124-130.
    28.黄不凡.21世纪中国的粮食生产与对策.中国农业发展文库,2000,2294-2295.
    29.黄季昆.迈向12世纪的中国粮食经济.中国农业出版社.1989年.
    30.霍仕平,晏庆九,许明陆.玉米抗旱的生理基础.国外农药—杂粮作物,1995,(1):20-23.
    31.兰近好,褚栋.玉米株高和穗位高遗传基础的QTL剖析.遗传,2005,27(6):925-934.
    32.黎裕,王天宇,石云素,等.应用生理学方法和分子手段进行玉米抗旱育种.玉米科学,2004,12(2):16—25.
    33.黎裕.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用.植物生理学通讯.1994,30.
    34.李潮海,苏祯禄,石敬之,等.高产夏玉米群体生态生理指标的研究.河南农业大学学报,1991,25(4):379—385.
    35.李德全,邹琦.植物渗透调节研究进展.山东农业大学学报,1991,22(1):86-90.
    36.李广敏,唐连顺,商振清.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系.河北农业大学学报,1994,17(2):10-13.
    37.李合生主编.2000.植物生理生化实验技术.北京:高等教育出版社
    38.李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系.植物生理学通讯,1998,34(3):161-167.
    39.李鲁华,李世清,翟军海等.小麦根系与土壤水分胁迫关系的研究进展.西北植物学报,2001,21(1):1-7.
    40.李小云,郑丕尧.玉米不同叶位叶片的解剖结构的研究.Ⅰ.不同叶位叶片、叶鞘及苞叶光合细胞的观察.中国农业科学.1985,4:36-41.
    41.李秧秧,上官周平,陈培元.快速干旱下钾对玉米叶片光合作用的影响.西北农业学报,1993,2(3):48-52.
    42.李玉山,郭庆荣.植物根系吸水过程中根系水流阻力的变化特征.生态科学,1999,18(1):30-34.
    43.李壮,许文娟,薛兵东等.玉米苗期杭早性评定方法探讨.玉米科学,2004,12(2):73-75.
    44.刘殿英,石立岩,黄炳茹等.栽培措施对冬小麦根系及其活力和植株性状的影响.中国农业科学,1993,26(5):51-56.
    45.刘胜群,宋凤斌.不同耐旱基因型玉米根系生理性状研究.浙江大学学报(农业与生命科学版),2007,33((4):407-412.
    46.罗淑平.玉米抗旱性及鉴定指标的相关关系.干旱地区农业研究,1990,8(3):72-78.
    47.马丁E S.气孔.张崇洁译.北京:科学出版社,1995:12-16.
    48.慕自新,玉米根系特征与其整体水分关系研究.2003,西北农林科技大学:陕西杨凌.
    49.齐健,宋凤斌,韩希英,等.干旱胁迫下玉米苗期根系和光合生理特性的研究.吉林农业大学学报,2007,29(3):241-246.
    50.齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的胜利响应.生态环境,2006,15(6):1264-1268.
    51.任天志,李英中.发展玉米生产是增加我国粮食产量的一个有效途径.中国农业科学院院刊,1996(3):217-219.
    52.沈文脱,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报,1997,39(7):634-640.
    53.斯琴巴特尔,吴红英.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响.干旱地区农业研究,2001,19(2):67-70.
    54.宋凤斌,戴俊英,张烈等.水分胁迫对玉米花粉活力和花丝受精能力的影响.作物学报,1998,24(3):368-372.
    55.宋凤斌,戴俊英.玉米茎叶和根系的生长对干旱胁迫的反应和适应性.干旱区研究,2005,22 (2):256-258.
    56.宋凤斌,徐世昌,戴俊英.水分胁迫对玉米光合作用的影响.玉米科学,1994,2(3):66-70.
    57.孙彩霞,沈秀瑛.玉米根系生态型及生理活性与抗早性关系的研究.华北农学报,2002,17(3):20-24.
    58.孙彩霞,武志杰,张振平,等.玉米抗旱性评价指标的系统分析.农业系统科学与综合研究.2004,20(1):43-47.
    59.孙希平.小麦株高基因的分子标记.山西农业大学硕士论文,2001,1-36.
    60.檀尊社,陈润玲,赵保献,等.玉米新品种豫玉27群体生理指标的研究.西北农业学报,2003,12(2):31—35.
    61.汤日圣,梅传生,陈以峰.4PU-30对水稻叶片衰老与内源激素的调控.植物生理学报,1997,23:169-174.
    62.汤章城.植物对水分胁迫的反应和适应性Ⅱ-植物对干旱的反应和适应性.植物生理学通讯,1983,(4):1-7.
    63.佟屏亚.确立玉米在饲料中的主导地位.中国农业资源与区划,1995(3):24-27.
    64.佟屏亚.玉米综合利用开发策略和方向.中国农业科技通讯,1991(11):10.
    65.佟屏亚.中国玉米科技史.北京:中国农业科技出版社,2000.
    66.王爱国,邵从本,罗广华.丙二醛作为植物膜脂过氧化指标的探讨.植物生理学通讯,1986,(2):55-57.
    67.王邦锡,黄久常.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系.植物生理学报,1989,15(1):46-50.
    68.王畅,林秋萍.夏玉米的干旱适应性及其生理机制的研究.华北农学报,1990,5(4):54-60.
    69.王贺正,马均,李旭毅,等.水稻开花期抗旱性鉴定指标的筛选.作物学报,2005,31(11):1485-1489.
    70.王洪春.植物抗性生理植物生理学通讯.1981,(6):72—81.
    71.王景艳,刘兆普,刘玲等.盐胁迫对长春花幼苗生长和生物碱含量的影响.应用生态学报,2008,19(10):2143-214.
    72.王空军,胡昌浩,董树亭等.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化.作物学报,2002,28(3):384-388.
    73.王连敏,王立志,张国民等.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响.中国农业 气象,1999,20(2):28-30.
    74.王茅雁,邵世勤,张建华,等.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报,1995,10(2):43-49.
    75.王茅雁.饲用玉米抗旱性生理生化指标的研究.内蒙古农业大学学报(自然科学版),1996,3:6-9.
    76.王晓磊,于海秋,夏乐,等.干旱胁迫下不同耐旱性玉米自交系根形态特性差异.现代农业科学,2008,15(12):17-19.
    77.王泽立,张恒悦,阎先喜等.玉米抗旱品种的形态解剖学研究.西北植物学报,1998,18(4):581-583.
    78.王周锋,张岁岐,刘小芳.玉米根系水流导度差异及其与解剖结构的关系.应用生态学报,2005,16(12):2349-2352.
    79.习岗,李伟昌.现代农业和生物学中的物理学.北京:科学出版社,2001.
    80.邢跃先,李凤海,吴凤新等.出苗后干旱对玉米丝黑穗病发病的影响.玉米科学,2007,15(2)127-129.
    81.徐世昌,戴俊英,沈秀英,等.水分胁迫对玉米光合性能及产量的影响.作物学报,1995,21(3):161-167.
    82.许大全.2002.光合作用效率.上海科学技术出版社,163-170.
    83.薛吉全.发挥玉米经济优势,促进农业结构调整.陕西农业科学,2001,(5):35-38.
    84.阎成仕,李德全,张建华.冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应.河北植物学报.2000,20(4):565-576.
    85.阎隆飞,李明启.基础生物化学,北京:农业出版社,1983.
    86.姚雅琴,汪沛洪.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系.江苏农业学报,1993,13(1):16-20.
    87.尹飞.玉米对水分胁迫响应的基因型差异及其生理机制研究.河南,河南农业大学,2004.
    88.于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报,2003,25(3):239-242.
    89.于同泉,刘宗萍,路萍等.水分胁迫小麦SOD,MDA动态变化与抗旱性的关系.北京农学院学报,1995,10(1):56-59.
    90.于晓芳,高聚林,宋国栋,等.玉米叶片水分利用效率与叶绿素a荧光参数的关系.玉米科学,2009,17(4):55-57,60.
    91.袁政,潘爱虎,简志英,等.转基因(SAG12-IPT)青菜的迟衰特性.植物生理与分子生物学学报,2002,28(5):379-384.
    92.张承烈,杨成德,梁厚果.萝卜离体子叶衰老与膜脂过氧化的关系.植物生理学报,1990,16(3):227-232.
    93.张海明,王茅雁,侯建华.干旱对玉米过氧化氢MDA含量及SOD,CAT活性的影响.内蒙古农牧学院报,1993,14(4):92-95.
    94.张吉旺,王空军,胡昌浩,等.施氮时期对夏玉米饲用营养价值的影响.中国农业科学,2002,35(11):1337-1342.
    95.张寄阳,段爱旺,孙景生.作物水分状况自动监测与诊断的研究进展.农业工程学报.2006,22卷(1):174-178.
    96.张敬贤,李俊明,崔四平等.玉米细胞保护酶活性对苗期干旱的反应.华北农学报,1990,(增刊):19-23.
    97.张岁岐,山仑.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响.西北农业学报,1997,6(1):22-25.
    98.张宪政.作物生理研究法.北京:中国农业出版社,1992.
    99.张彦军.前期干旱对玉米产量和品质的影响.杨凌:西北农林科技大学,2007.
    100.张正斌,山仑.作物生理抗逆性的若干共同机理研究进展.作物杂志,1997,(4):10-12.
    101.张正斌,徐萍,张建华,等.作物抗旱节水相关基因的标记和克隆及转基因研究进展.西北植物学报,2002,22(6):1537-1544.
    102.赵久然.发展优质玉米战略,促进种植业结构调整.华北农学报,2000,(15):4-8.
    103.赵可夫,王韶唐.作物抗性生理,北京:北京农业出版社,1990.
    104.赵天宏,沈秀瑛,杨德光.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响.杂粮作物,2003,23(1):33—35.
    105.郑丕尧,李小云.玉米不同叶位叶片的解剖结构的研究Ⅱ.不同叶位叶片维管束系统的观察.1986,6:41-47.
    106.郑盛华.水分胁迫对玉米苗期生理和形态特性的影响.生态学报.2006.26(4):32-36.
    107. Bardzik J. M., Marsh, H. V. J. and Havis, J. R. Effeets of water stress on the activities of enzymes in maize seedling.Plant Physiology.1971,828-831.
    108. Blackman P G, Davies W J. Root-to-shoot communication in maize plants of the effect of soil drying. J EXP Bot,1985,36:39-48.
    109.BoyerJS. P1 ant productivity and environment. Science,1982,218:443-448.
    110. Brar GS, McMichael B1, Taylor HM. Hydraulic conductivity of cotton roots as influenced by plant age and rooting medium. Agron J,1990,82:264-266.
    111. Chaves M M. Effect of water deficiet on carbon assimilation. J Exp Bot,1991,8:99-101.
    112. Dedove D C, Wattiaux R C. Functions of plysosomes research. Plant Physiology,1996,128: 435-492.
    113.Development in a Mediterranean environment. Euphytica,1993,66:197-206.
    114.Dhindsa R S, Thorpe T A. Leaf of membrane permeability and lipidper oxidation and decreased levels of superoxide dismutase and catelase. EXP. Bot,1981,32:93-101.
    115.Engin M and Sprent J. Effects of water stress on growth and nitrogen fixing activity of Trifoliumrepens. New Phytol.1973,72:117-126.
    116. Farquhar G D, Sharey T D. Stomatal conductance and photosynthesis. Annual Reviews Plant Physiology,1982,33:317-345.
    117.Fischer K S et al., Selection for improvement in maize yield under moisture deficits, Field Crop Res.,1989:22(4):227-243.
    118. Frensch J, Hsiao TC, Steudle E. Water and solute transport along developing maize roots. Planta,1996,198:348-355.
    119. Green PB. Metabolic and physical control of cell elongation rode. Plant Physiol,1971, 47:423-430.
    120. Hepler PK. Wayne R0. Calcium and Plant development. Annu Rev Plant Phystol,1985,36:397.
    121.Hisao T. C. and Jing J. H. Leaf and root expansive growth in response to water deficits. In "Physiology of Expansion during Plant Growth", Am. Soc. Plant Physiology, Rockvilla, M. D, USA,1987,180-192.
    122.Javot H, Maurel C. The role of aquaporins in root water uptake. Annals of Botany,2002, 90:301-313.
    123.Kring, D.R. et al., Photosynthetic rate control in sorghum:stomatal and nonstomatal factors. Crop Sci.,1986,26:112-117.
    124.Lawlor D. W., Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant, Cell & Environment,2002, 25(2):275-294.
    125.Melchior W, Steudle E. Water transport in onion (AlliumcepaL.) root. Plant Physiol,1993, 101:1305-1315.
    126.Michelena V A, Boyer J S.Complete turgor maintenance at low water potentials in the elongation region of maize leaves.Plant Physiology,1982,69:1145-1149.
    127. Morgan J M. Osmo regulation and water stress in higher plant. Ann Rev Plant PHysiology, 1984,35:299-319.
    128. Motzor.Genotypic variation in durum wheat root systems at different stage of
    129.Munn S R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002,25:23-25.
    130. Naoko Miyaamoto, Steudle E, Hirasawa T, et al. Hydraulicconductivity of rice roots. Exp Bot,2001,52(362):1835-1846.
    131. Naoko Miyaamoto, Steudle E, Hirasawa T, et al. Hydraulic conductivity of rice roots. Exp Bot,2001,52(362):1835-1846.
    132. Newman EI. Permeability to water of the roots of five herbaceous species. New Phytol, 1973,72:547-555.
    133. Pekhhvanov M., Ninova D.. Struetual changes in maize leaves under the influence of fertilize Biologiya.1977,15(4):377-396.
    134. Person CA, Steudle E. Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L. toots. Planta,1993,189:288-297.
    135.Rieger M, Paula L. Root system hydraulic conductivity in species with contrasting root anatomy. J Exp Bot,1999,50:201-209.
    136. Sanderson J. Water uptake by different regions of the barley root. Pathways of radial flow in relation to the development of the endodermis. J Exp Bot,1983,34:240-253.
    137. Seel W E, Hendry G A F, Lee J A. Effect of deccication on some activated oxygen processing enzymes and anti-oxidants in mosses. J Exp Bot,1992,43:1031-1037.
    138. Sharma B C. Developmental anatomy of the shoot of Zea maya L.Ann of Bot.1942,6(22): 245-283.
    139. Steudel E. Water uptakes by roots:Effects of water deficit. J Exp Bot,2000,51 (special issue):1531-1542.
    140.Steudle E, Peterson CA. How does water get through roots? J Exp Bot,1998,322:775-788.
    141. Tollernaar M., Lee, E. A. Yield potential, yield stability and stress tolerance in maize, Field CropResearch.2002,75:161-169.
    142.Tyree MT, Yang S. Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum. Plant Physiol,1992,100:669-676.
    143. Weatherley PE. Water uptake and flow into roots. In:Lange OL, Nobel PS, Osmond CB, eds. Encyclopedia of Plant Physiology. Vol.12B. Berlin:Springer Verlag.1982,79-109.
    144. Westgate M E, Boyer J S. Drought tolerance in winter cereals. Agron,1986,78:714-719.
    145. Zimmermann HM, Steudle E. Apoplastic transport across young maize roots:Effect of the exodermise. Planta,1998,206:7-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700