用户名: 密码: 验证码:
重庆青蒿资源调查、种质筛选及栽培中合理的氮磷钾肥和密度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蒿(Artemisia annua L)为菊科蒿属一年生草本,传统中药,具有清热解暑、除蒸、截疟的作用。其叶片及花蕾提取青蒿素,为目前青蒿素类药物的唯一原料来源。我国学者根据传统中医药,首先从青蒿中提取并自主研制出青蒿素类药物,是四大传染疾病之一——疟疾的唯一特效治疗药物,其高效、速效、安全被世界广泛认可,成为首个被收入世界药典的中药,在世界卫生组织(WHO)推动下,已有超过50个国家和地区将其列为抗疟首选指定用药。
     青蒿虽是世界性的广布物种,但仅极少数地区青蒿素含量相对较高,能达到工业提取水平之上。而重庆则是这极少数地区之一。在这极少数地区发展青蒿种植业,可以拯救数以亿计疟疾患者,具有极重大社会意义,而且,有利于将独特资源优势转化为经济优势,也具有极显著经济效益。同时,青蒿素也为传统中药树立形象,对其它中药走向世界具有引领作用。
     青蒿种植和青蒿素生产具有如此重要意义,那么,选育高含量品种,以及通过栽培技术提高青蒿素含量和产能,成为我们面临的关键而十分紧迫的课题。特别是青蒿素含量至关重要。基于此,本文以提高青蒿素为研究核心,围绕种质筛选和栽培两个方向,展开4个部分的研究:
     1青蒿素含量的测定
     (1)测定方法的建立与评价
     分别建立紫外分光光度法(UVSPM)和高效液相色谱法(HPLC)测定青蒿素,方法学研究表明两方法操作简便、稳定性高、精度准、重现性好。分别对9个样品两次重复进行测定,结果经t检验,表明两种方法测定青蒿素含量的没有差异(p=0.4527)。
     (2)样品的提取
     采用(L9(34))正交试验方案,研究提取溶剂、溶剂用量、提取温度和提取时间4因素对提取效果的影响,结果表明:提取温度是最为关键的因素,40℃最佳,低于或高于40℃提取效果都不好;提取溶剂对提取影响显著,宜选石油醚(30-60℃);提取剂用量(料液比)对提取效果影响极显著,宜选50 mL;提取时长对提取结果影响极显著,宜选2小时。
     进一步对比试验表明:超声波可以缩短提取时间或降低提取次数,同时可减少提取溶剂用量;增加取剂用量和缩短提取时间之间,可以很好互相弥补,增加提取次数比延长提取时间更有效。5种组合方案为优选提取方法,它们提取效果好,彼此无差异。
     (3)样品采后干燥方法
     晒干、40℃烘干效果最佳,阴1天后再晒干或40℃烘干,对结果也没有显著影响;自然风干则含量显著降低;烘干超过40℃后,青蒿素含量则随温度升高而极显著降低。
     (4)样品储存
     储存时长、温度、样品水分含量和包装4因素对青蒿储存过程中青蒿素含量变化影响都极显著。青蒿素含量随储存时间而降低,但前2个月,趋势总体上相对平稳,之后降幅增大、降速加快;样品水分含量越高青蒿素衰降越快且幅度越大;4℃低温青蒿素衰降比常温平稳;包装的影响则取决于样品的水分含量和温度,低温时:青蒿素含量高低顺序为:纸袋+塑料袋+干燥剂>塑料袋>纸袋,高水分含量、室温时,凡有塑料袋都加速青蒿素衰降。
     包装的实际作用是防潮,因此,除时间外,样品储存的最关键因素是样品水分含量和温度,即样品始终要处在低水分含量、低温度条件下。干燥度高(储存前40℃烘干至恒重的样品,水分含量5%-7%),4℃低温条件,储存1年后青蒿素还保有90%左右,采用纸袋+塑料袋+干燥剂的包装,最好效果青蒿素含量可以1年后仍然有95.5%。相反,而湿润环境下的样品风干样(水分含量15%-16%)、室温储存,无论什么包装,长时间储存都会让青蒿变得没有价值,1年后,青蒿素含量最低仅剩不到30%左右。
     2重庆青蒿资源及生境调查
     分别于2005、2009年共调查重庆148个样品点青蒿及其生境,结果如下:
     (1)青蒿品质
     全市平均青蒿素含量为5.92g·kg-1,幅度1.09-13.03g·kg-1。
     青蒿品质表现很强的地域性的分布特点:渝东南(酉阳)片区含量最高,极显著高于其他3片区,是其它3片区的1.5-2.5倍左右,尤其2005年野生资源。
     栽培青蒿品质较野生青蒿有极显著提高,2005、2009年和两年总计全市栽培较野生青蒿素含量分别提高34.5%、24.4%和29.5%,同时栽培也提高了青蒿品质的整齐度。
     从时间演变来看,2009年品质较2005年总体上有小幅提高(7.88%)。其中,主城(北碚)、渝东(万州)和渝西(永川)有较大幅度提高或提高趋势;但优质资源地的渝东南(酉阳)则呈相反的变化,野生和栽培青蒿品质都呈下降趋势(野生、栽培和总平分别下降11.1%、8.10%、9.57%)。
     (2)生境因子
     水文、光照和土壤质地极显著地影响青蒿素含量,土壤类型的影响则很小。水文条件好,青蒿素含量愈高,且变异系数越小,4个水文等级青蒿素含量高低相差2.26倍。光照充足有利于青蒿素含量提高,遮荫则大幅降低青蒿素含量,4个光照等级青蒿素含量高低相差3.3倍。4个质地等级中,最适宜的质地为“偏重”,然后为“偏轻”和“重”,质地“沙”不利于青蒿中的青蒿素。
     调查的中的紫色土、水稻土、黄壤3种土壤类型对栽培青蒿的品质没有影响,野生青蒿则水稻土、紫色土显著高于黄壤。
     (3)生境土壤养分及与青蒿素含量相关性
     土壤有机质、碱解氮、有效磷和速效钾被测定。青蒿素含量与上述土壤养分均极显著正相关。
     (4)青蒿素与生境的土壤养分回归数量模型和通径分析
     以青蒿素含量为因变量(Y),有机质(X1)、碱解氮(X2)、有效磷(X3)和速效钾(X4)为自变量,分别能较好建立线性逐步回归、二次多项式逐步回归和引入高次及养分比的线性逐步回归方程式,回归系数和通径分析表明,影响青蒿素含量不仅有养分绝对数量和养分间交互作用,养分比例也同样发挥着重要作用。因此,青蒿种植需同时兼顾土壤中的养分数量和养分平衡。
     (5)重庆优质青蒿的土壤养分标准与诊断
     去掉水文光照条件极端、青蒿素含量居中的样点,剩下分为青蒿素高含量和低含量两个样本群组, t-检验比较土壤养分和养分比例,都存在显著性差异。采用植物营养中养分综合诊断法,以高含量组土壤平均有效氮磷钾及其比例平均值,结合其一定范围的置信限,建立重庆优质青蒿的土壤养分标准,按这一标准进行养分诊断和推荐施肥。
     3青蒿种质材料评比与筛选
     (1)种质材料间性状差异
     50份来源于重庆及周边省份青蒿种质材料,田间试验,在同一肥水、环境和管理条件下,多数不同种质材料间不仅在青蒿素含量、青蒿素单株产量存在极大差异,还在生物量、生物量比重、植株形态、生长期共计21个指标存在极显著差异。巨大的差异,不仅表明青蒿材料间差异大,也更表明青蒿种质资源的丰富,还表明种质材料筛选很必要。
     (2)种质材料筛选
     ①优质种质材料筛选:按青蒿素含量高低,筛选出高含量材料13份,其中,超过9.5 g·kg-1的超优质材料6份,8.5-9.5 g·kg-1的优质材料7份。
     ②高品质与高产能的复合筛选:按青蒿素含量和单株青蒿素产量,筛选出优质超高产型材料3份(青蒿素含量产量分别8.5-9.5g·kg-1和≥1.5 g·plant-1),超优质高产型材料5份(≥9.5 g·kg-1和1.2~1.5 g·plant-1),超优质中产型材料1份(≥9.54 g·kg-1和0.874 g·plant-1);质中超高产型材料1份(8.062 g·kg-1和1.626 g-plant-1),质次超高产型材料1份(7 g·kg-1和1.58 g-plant-1)。
     ③生长期型种质材料筛选:根据生长期长短,划分为超早熟型(或超短生长期型)、早熟型(或短生长期型)、中熟型(或中生长期型)、晚熟型(或长生长期型)、超晚熟型(或超长生长期型)。其中,多数晚熟型(或长生长期型)材料,来自(或最初来自)武陵山地域,其生长期与其它材料截然分开,可能是该地区资源保持独特优质地域性的原因。
     ④其它性状种质类型:试验共分出3种株型:分枝型、主干型、丛生型,3种茎色型:紫色、黄色和绿色;不同一级分枝数等类型:根据本试验可以分多分枝型、少一级分枝型等。
     (3)主要农艺性状与青蒿素含量和产量的相关性
     ①青蒿素含量与单株叶产量呈显著正相关,与其它生物量指标包括主茎、枝干重、地上部分、根干重、总生物量等之间相关关系都不显著,与生物量比重各指标不显著。青蒿素含量与株高、茎粗、一级分枝数和一级分枝长等形态指标之间相关关系都不显著。3种茎色青蒿材料间,紫色极显著高于绿色,显著高于黄色,后两者差异不显著。
     青蒿素含量与现蕾期、始花期、盛花期有一定程度正相关性但也未达到显著水平。按4种生长期类型统计,则发现生长期过短过长都不利青蒿素含量,晚熟型平均最高,与中熟型的均值间差异未达显著水平,但显著高于早熟型,极显著高于超晚熟型。
     ②青蒿素单株产量与青蒿素含量、单株叶产量、主茎、分枝、地上部分、根干重、总生物量极显著正相关,与株高极显著正相关,与茎粗、一级分枝数显著正相关,但与各生物量比重指标相关性不显著,与一级分枝长关系不显著。
     3种株型中,分枝型极显著高于丛生型,主干型居中,与两者差异都不显著。3种茎色型中,紫色茎杆极显著高于绿色,黄色茎杆居中,与紫色、绿色的差异均不显著。
     生长期:晚熟型平均1.102 g·plant-1最高,与中熟型的均值0.881 g·plant-1间差异未达显著水平,但显著高于早熟型的0.636 g·plant-1,极显著高于超晚熟型的0.380g·plant-1;中熟型与早熟型差异不显著,但显著高于超晚熟型;早熟型与超晚熟型间差异未达显著水平。
     (4)青蒿素含量、产量与主要农艺性状回归方程的建立与通径分析
     青蒿素含量、产量分别与主要农艺性状(生物量、生物量比重、植株形态生长期等指标)建立起线性逐步回归方程和二次多项式逐步回归方程,二次多项式的拟合度更好。回归和通径分析表明,一定程度可依据某些农艺性状判断种质的叶产量、青蒿素单株产量甚至青蒿素含量,但判断青蒿素含量的可靠性并不大。
     4氮磷钾肥和密度对青蒿生长和青蒿素产量的影响
     L16(45)正交设计田间试验,研究氮磷钾肥和密度对青蒿生长和青蒿素产量的效应,结果表明氮磷钾肥和种植密度的单因素及其组合对青蒿株高、茎粗、生物量、青蒿素含量与产量、青蒿叶养分含量与累积量等指标都影响极大,合理的肥料用量和密度对青蒿种植十分重要。其中,对青蒿个体和群体的生物量作用效果氮肥和密度较磷、钾肥大,对叶片青蒿素含量的影响氮、钾肥比磷肥和密度更为突出。
     (1)单因素效果
     氮肥:适量氮肥有利于青蒿株高和茎粗的生长,但对一级分枝数作用不大;增加青蒿单株和群体的生物量积累、叶产量,增加青蒿叶部氮磷钾养分的含量和累积量,但高水平的施氮对上述指标进一步增加作用有限,甚至一定程度降低叶钾含量和累积量;适度的氮肥显著提高青蒿素含量和产量,但容易过量,过量氮大幅度降低青蒿素含量,从而降低青蒿素产量。因而对青蒿素含量和产量而言,把握氮肥用量很重要,综合各指标特别是青蒿素含量和青蒿素群体产量,最适宜的施氮水平为尿素650(N300) kg·hm-2。
     磷肥:增加青蒿株高和茎粗,对一级分枝数有一定正效应;增加高青蒿生物量积累和叶产量,青蒿叶部氮磷钾养分的含量和累积量;提高叶片青蒿素含量和产量。但高水平施磷对青蒿生长、生物量积累、叶产量、叶部养分含量和积累、青蒿素含量和产量的进一步提升效应并不显著,虽然如此,也没有如氮那样因过量而产生负效应的现象。同时,磷对叶生物量比重也没有明显效果。就单因素肥效应而言,施普钙量应该不少于1250 (P2O5150) kg·hm-2,但同时综合磷肥效应和肥料效益,最适宜的施磷水平为普钙1250-2500(P2O5150~300) kg·hm-2。
     钾肥:增加青蒿的株高和茎粗,对分枝数没有效应;有降低叶氮、叶磷含量的效应,但增加叶钾含量和叶氮磷钾累积量;对青蒿总生物量和叶产量、青蒿素含量和产量,有与磷肥相似的提升效应且没有负效应,提高青蒿素含量的作用较磷更强。综合钾肥效应和肥料效益,最适宜的施钾水平为氯化钾350(K2O210) kg-hm-2。
     密度:对株高总体上稍有降低作用,而减小茎粗作用强,对一级分枝数没有作用;青蒿个体植株的总生物量和叶产量随种植密度增大而极显著减少,但适当增大密度能提高群体总生物量和叶产量,也有利光合产物形成叶产量:高密度降低叶部氮磷养分含量,同时因减少了单株叶产量,因而对叶部养分的单株累积量的减少作用极显著,但对叶部养分的小区累积量是增加的。过高的密度会显著降低青蒿素含量,降低单株和群体的青蒿素产量。以青蒿素小区产量来看,适宜的种植密度为25000 plant·hm-2。
     (2)试验处理组合间效果比较
     本试验16个组合处理彼此间的青蒿形态、养分、生物量、青蒿素含量和产量等约20个指标,彼此之间差异大。因此优选很有必要,其中:单株叶产量高低相差2.12倍、小区叶产量2.76倍,青蒿素含量高低相差1.2倍,青蒿素单株产量高低相差2.3倍、青蒿素小区产量3.2倍。
     (3)合理肥密的组合方案优选
     氮磷钾肥和密度对青蒿的各主要指标的作用效应是不一致的,而种植生产中,当以青蒿素小区产量和青蒿素含量作为种植的最终目标。
     据此,本试验组合的优选方案为处理12(N3P4K2密度3,即N300 kg·hm-2、P2O5450 kg·hm-2、K2O 105 kg·hm-2、密度25000 plant·hm-2),可以获得青蒿素最高小区产量,同时青蒿素含量也高。
     按单因素效应的优选方案为:施氮水平3(N 300 kg·hm-2),施磷≥水平2(P2O5 150 kg·hm-2),施钾≥水平3(K2O 210 kg·hm-2),种植密度水平3(25000 plant·hm-2)。
     因此,单因素最优的组合和处理12在进一步对比试验后,可以形成合理施肥、合理密度的青蒿优质高产的技术方案,并推广到重庆青蒿主产区的生产实践中。
     (4)青蒿素含量、产能与植物形态、叶部养分间的相关性
     青蒿素含量与叶钾含量极显著正相关,与叶氮含量、叶磷含量不显著;与茎粗极显著正相关;与单株叶产量、单株总生物量的存在不太紧密的正相关性。
     青蒿素单株产量与叶氮、叶钾含量显著正相关,与叶磷含量相关性也比较高(p=0.072)。
     青蒿素小区产量与叶氮含量显著正相关,与叶磷、叶钾含量相关性不显著。
     (5)青蒿素含量产能与植物形态、叶部养分间回归模型
     以青蒿形态、叶部养分指标为自变量,建立青蒿叶产量、青蒿素含量、青蒿素产量的线性逐步回归方程,方程的显著性检验、决定系数和Durbin-Watson统计量表明所建模型好而有效。其中,
     ①单株叶产量=-158.46+152.6·茎粗+5.737·叶氮含量-32.803·叶磷含量-5.559·叶钾含量(R2=0.9576,p=0.0000)。
     ②当调整相关系数Ra最大时,青蒿素含量=8.4043+0.8443·茎粗-0.06296·级分枝数+0.08246·叶钾含量(R2=0.8471,p=0.0000)。当以回归系数完全显著时,青蒿素含量=5.2187+0.1108·叶钾含量(R2=0.7875,p=0.0000),仅叶钾含量为自变量。
     ③青蒿素单株产量=1.2111-0.01845·一级分枝数+0.1129·叶氮单株累积量+0.1528·叶钾单株累积量(R2=0.9909,p=0.0000)。
     ④青蒿素小区产量=24.5481-0.9067·叶氮含量+0.2272·叶氮小区累积量+0.2498·叶钾含量+0.4517·叶钾单株累积量(R2=0.9915,p=0.0000)。
     上述方程和通径一致显示,叶养分中,氮磷特别是氮对生物产量作用大,而钾对青蒿素含量作用重要。
Artemisia annua L, a annual herb of the Asteraceae, is a traditional Chinese medicine with functions of clearing heat, expelling hot-dampness and antimalaria. Its leaves and bud contain artemisinin and it's the only commercial source of artemisinin at present. Chinese scholars isolated artemisinin from Artemisia annua L and developed artemisinin-based combination therapies (ACT) independently according to traditional Chinese medicine in the 1970s. The ACT, widely recognized by the world because of high efficiency, quick action, safety against malaria, was accepted into World Pharmacopoeia and had been adopted by over 50 countries as the first-line malaria treatment with recommendation of the World Health Organization (WHO).
     Artemisia annua L is a world wide distribution species, but the vast majority of it has no use in industrial extraction due to very low concentration of artemisinin, except a very few with relatively higher from a few areas in Asia. Chongqing is a one of these areas. So, It's very meanful to develop planting industry of Artemisia annua L in such areas, especially in Chongqing. First, it is of great social significance to save millions of malaria patients; second, it has great economic benefits to make advantages of the unique resources into drugs in short supply. Meanwhile, it set up traditional Chinese medicine a good reputation and guide the other traditional Chinese medicine to the world.
     However, it is crucial to plant Artemisia annua L for artemisinin production. Now we face very urgent and key scientific question:how we can enhance the concentration and yield of artemisinin in field? The aim here is to enhance artemisinin by two conventional routes of germplasm and cultivation. This paper consists of 4 main parts of research as below to provide the scientific basis for the resource protection of Artemisia annua L and high yield production of artemisinin.
     1 Artemisinin determination
     (1) Establishment and evaluation of determination method
     Determination methods were established for artemisinin in Artemisia annua L by UV-Spectrophotometry and HPLC respectively. Methodology study proved them simple, stable, accurate and reproducible. Comparison (t-test) of 9 samples determination with 2 replication showed no significant difference between two methods (p=0.4527).
     (2) Extraction of sample
     The orthogonal test (L9(34)) was adopted to examine the effects of extraction agant, volume of agent, temperature and time on artemisinin extraction from sample. The results showed that temperature was the most crucial factors and 40℃was the best; different extractants had significant difference and petroleum ether(30-60℃) was the best; the volume of agent and time had high significant influence on extraction and the best were 50 mL(per gram sample) of agent usage and 2 hours of time respectively.
     A further comparison test showed that:Ultrasonic treatment can shorten extraction time or reduce extraction times, and can reduce extractant consumption; increase of extractant usage can well offset decrease of extraction time; increase of times has more effective than increase of time. At last,5 combinations of factors above were selected as optimal extraction methods.
     (3) Postharvest drying of sample
     Sun drying or 40℃oven drying benefited artemisinin concentration, and sample left in the shade for lday before sun drying or 40℃oven drying had no significant difference in artemisinin concentration; the samples at air drying had significant lower artemisinin concentration; when samples dried in oven at more than 40℃, artemisinin concentration reduced high significantly with increase of temperature.
     (4) Storage of sample
     Storage time, temperature, sample moisture content and package had high significant effects on artemisinin content in sample during storage. Artemisinin content decreased with the storage time, gently in the former 2 months and but rapidly later; with more moisture content in samples, artemisinin content decreased more; artemisinin content at room temperature decreased more than that at 4℃; the influence of the package depends on moisture and temperature:at low temperature, artemisinin content sorted down in order of paper packing+plastic packing+desiccant> plastic packing> paper packing; but in high moisture and at room temperature, all plastic packing accelerated degradation of artemisinin.
     The actual function of package is waterproof. Therefore, the key things during storage are to keep sample in low moisture and at low temperature. The samples with low moisture content (5%-7%) which dried at 40℃oven before storage could still have about 90% artemisinin left after storage of one year at 4℃(even 95.5% artemisinin left with package of paper packing+plastic packing+desiccant). On the contrary, the samples with high moisture content (15%-16%) dried in air before storage were useless for less 30% artemisinin left after one year storage at normal temperature.
     2 Resources and habitats of Artemisia annua L in Chongqing
     148 sampling sites (79 in 2005 and 69 in 2009) were investigated, and leaves of Artemisia annua L and soils were sampled.
     (1) Quality of Artemisia annua Lin Chongqing
     Artemisinin concentration in leaves of Artemisia annua L in Chongqing averaged 5.92g·kg-1 with change of 1.09~13.03g·kg-1.
     Quality of the Artemisia annua L characterized strong regional distribution:the artemisinin concentration in Artemisia annua L in southeast region(Youyang) was the highest, significant higher than that in other 3 regions (about 1.5-2.5 times), especially that of wild Artemisia annua Lin 2005.
     Quality of the cultivated were higher by 34.5% in 2005,24.4% in 2009 and 29.5% (average) in total 2 years than that of the wild respectively. Cultivation improved not only the quality but also uniformity of the Artemisia annua.
     Quality of the Artemisia annua L had a modest increase(7.88%) from 2005 to 2009 in Chongqing. Among them, urban region(Beibei), east region (Wanzhou) and west region(Yongchuan) had greater increases or tended to increase while southeast region(Youyang) decreased 9.57%(11.1% for the wild and 8.10% for the cultivated).
     (2) Habitat factors on quality of Artemisia annua L
     Hydrological condition, light intensity and soil texture affected quality of the Artemisia annua L high significantly. The best hydrological condition averaged 2.26 times artemisinin concentration to the drought condition. Shade decreased the artemisinin concentration in leaves, and the artemisinin concentration varied 3.3 times among the four light classifications. Among the four classifications of soil texture, medium loam was the most suitable for Artemisia annua L, then light loam and heavy loam, sandy loam was adverse to the artemisinin concentration.
     Three kinds of soil (puddy soil, purple soil and yellow soil) had no significant differences of artemisinin concentration in cultivated Artemisia annua L. In wild Artemisia annua L, puddy soil and purple soil were significantly superior to yellow soil.
     (3) Habitat soil nutrients
     Organic matter, available nitrogen, available phosphorus and available potassium were measured. All nutrients above positively correlated with artemisinin concentration.
     (4) Regression model between artemisinin concentration and soil nutrients
     Artemisinin content, as the dependent variable (Y), fit well regression models like linear stepwise regression, quadratic polynomial stepwise regression and higher degree linear in stepwise regression (a new statistical method by this paper) with soil nutrients (including organic matter, available nitrogen, available phosphorus and available potassium, as the independent variables). All of regression coefficients and path analysis indicated that not only the nutrients but also the nutrient ratios in soil were important to artemisinin concentration. Therefore, when growing Artemisia annua L we had to take account of both nutrient quantity and nutrient balance in soil.
     (5) Soil nutrient norm and diagnosis for high quality Artemisia annua L in Chongqing
     Sifted out the sampling sites on extreme condition of hydrology and shade and the sampling sites with medium artemisinin concentration, the rest sampling sites were divided into high artemisinin concentration group and low artemisinin concentration group. T-test showed that nutrients (avail N, avail P, avail K) in soil and nutrient ratios (N/P, N/K, P/K) all were high significant differences between the two groups. With reference DRIS method of plant nutrition, the average nutrients (avail N, avail P, avail K) and their ratios (N/P, N/K, P/K) in soils of the high group and confidence limits were presented as norm and diagnosis for high quality production of Artemisia annua L in Chongqing.
     3 Comparison and screening of Artemisia annua L germplasm
     (1) Character comparisons between germplasm materials
     50 germplasm materials from Chongqing and surrounding provinces were grown in field in 2006 under the same water and fertilizer management, most of them had great difference with each other in21 indices of artemisinin concentration, artemisinin yield per plant, biomass, biomass ratio, morphology and growth period. The enormous differences also illustrated the richness of Artemisia annua L resource and proved very essential for germplasm screening.
     (2) Germplasm material screening
     ①Quality-types:6 materials with more than 9.5 g-kg-1 of artemisinin concentration were screened out as super-high-quality-type and7 materials with 8.5~9.5 g-kg-1 of artemisinin concentration as high-quality-type.
     ②Quality-and-productivity-types:3 materials were screened out as high-quality-and-super-productivity-type (with 8.5~9.5 g-kg-1 and=1.5 g-plant-1 of artemisinin),5 materials as super-quality-and-high-productivity-type(=9.5 g-kg-1 and 1.2~1.5 g-plant-1 of artemisinin),1 material as super-quality-and-medium-productivity-type (=9.5 g-kg-1 and 0.874 g-plant-1 of artemisinin),1 material as medium-quality-and-super-productivity-type (8.062 g-kg-1 and 1.626 g-plant-1 of artemisinin),1 material as inferior-quality-and -super-productivity-type(7 g-kg-1 and 1.58 g·plant-1 of artemisinin).
     ③Maturity types:The materials were divided into 4 maturity types by growth period:early maturity type, medium maturity type, late maturity type and super late maturity type. Most of the late maturity type materials come from Mountain Wuling area. Their flowering stage almost separated from the other maturity types, which may be the reason of unique character of high quality.
     ④Other types:Materials in experiment were divided into 3 plant form types of limb type (16%), straightstem type (66%) and tuft type (18%),3 stem colour types of purple, yellow and green, and other types.
     (3) Correlation of quality and productivity with main agronomic characters
     ①Artemisinin concentration had a significantly positive correlation with leaf yield perplant, but no significant correlation with other indices of biomass and biomass ratio, nor with morphological indices (plant height, stem diameter, primary branch number and lenth of the longest primary branch). Among 3 germplasm types of stem colour, purple stem had highest average artemisinin concentration, significantly higher than green stem, and very significantly higher than yellow stem; while there was no significant difference between green stem and yellow stem.
     Artemisinin content had a certain positive but no significant correlation with lenth of growth period. Whereas according to 4 maturity types, there were differences. The late maturity type averaged highest, no significant difference with medium maturity type, significantly higher than early maturity type and very significantly higher than super late maturity type.
     ②Artemisinin yield perplant had a high significant positive correlation with artemisinin concentration, biomass perplant of leaf/stem/branch/aerial part/root/total biomass, high significant positive with plant height, significant with stem diameter and primary branch number, but no significant with any biomass ratio indexes, nor with lenth of the longest primary branch.
     Among 3 kinds of plant form types, limb type had the most average artemisinin yield perplant, very significantly more than that of tuft type; straightstem type had the second, but no difference from limb type, nor from tuft type. Among 3 types of stem colour, the purple was high significantly more than the green; the yellow averaged the second, no difference from the purple stem and the green.
     Among 4 types of growth period:late maturity type averaged the most of 1.102 g·plant-1, no significant difference with 0.881 g·plant-1 of medium maturity type, significantly more than 0.636 g·plant-1 of early maturity type and very significantly more than 0.380 g·planf'of super late maturity type.
     (4) Regression models between main agronomic characters and artemisinin concentration, yield perplant
     Regression equations, linear stepwise regression and quadratic polynomial stepwise regression, were established between artemisinin concentration, leaf yield perplant and artemisinin yield perplant respectively with the main agronomic characters (indices of biomass, biomass ratio, morphology and growth period). The models of quadratic polynomial stepwise regression fit better than linear stepwise regression. Regression and path analysis showed that some agronomic characters can to some extent be used as indices for predetermination leaf yield perplant, artemisinin yield perplant, even artemisinin concentration (but low reliability), or to say, for screening germplasm of high-artemisinin-productivity.
     4 Effects of application of fertilizer N, P and K and planting density on the growth of Artemisia annua L and the yield of artemisinin
     A field experiment with an orthogonal design (L16(45)) was conducted to study the effects of different doses of fertilizer N, P and K and different planting densities on the growth of Artemisia annua L and the yield of artemisinin which provides a scientific basis for the Artemisia annua L cultivation and artemisinin production. The results showed that:
     (1) Effects of single factor
     Fertilizer nitrogen:nitrogen in moderate supply was advantageous to growth of plant height and stem diameter, but no significant influence on primary branch number; Nitrogen in moderate supply enhanced significantly biomass production (leaf yield and total biomass), leaf N(concentration and accumulation), leaf P(concentration and accumulation), leaf K(concentration and accumulation), artemisinin concentration in leaf and artemisinin yield under both perplant and perplot; Ample N benefited the leaf yield, excess nitrogen had no significant influences on biomass, leaf N and leaf P, but a significant negative effects on leaf K, artemisinin concentration and artemisinin yield. Therefore, contol amount of nitrogen application was essential for growth of Artemisia annua L and artemisinin production. The optimal nitrogen application was urea 650(N300) kg·hm-2.
     Fertilizer phosphorus:Phosphorus application increased plant height, stem diameter, primary branch number, leaf yield, total biomass, leaf N(concentration and accumulation), leaf P(concentration and accumulation), leaf K(concentration and accumulation), artemisinin concentration in leaf and artemisinin yield; High level supply of phosphorus showed no significant further positive nor negative effects. Therefore, maximization of artemisinin concentration in leaf and artemisinin yield required phosphorus amount of over 1250 (P2O5150) kg·hm-2. In consideration of efficiency, the suitable amount of phosphorus application was calcium superphosphate1250~2500 (P2O5150~300) kg-hm-2.
     Fertilizer potassium:Potassium application had significant effects on increases of plant height and stem diameter, but no significant influence on primary branch number; Inreases in potassium supply dereased leaf N concentration and leaf P concentration, however, increased leaf K(concentration and accumulation), leaf N accumulation and leaf P accumulation. As phosphorus did, potassium application increased leaf yield, total biomass, artemisinin concentration in leaf and artemisinin yield, and over amount potassium showed no significant infulences on biomass and artemisinin. Potassium had a more effective increase on artemisinin concentration than phosphorus did. Therefore, in consideration of comprehensive efficiencies, the suitable amount of potassium application was potassium chloride 350 (K2O 210) kg-hm-2.
     Planting density:With increases of planting density, plant height decreased slightly and primary branch number showed no change, and stem diameter and biomass perplant (leaf and total) decreased successively. Moderate increases of planting density increased biomass per plot (group biomass of leaf and total). High density decreased leaf N concentration and leaf P concentration slightly; over crowded density significantly decreased artemisinin concentration and artemisinin yield (both perplant and perplot). By the artemisinin yield per plot, the optimal planting density was 25000 plant9hm-2
     (2) Multiple comparisons of treatments
     16 treatments in the experiment differentiated greatly from each other in 20 indices of morphology, biomass, leaf nutrition and artemisinin concentration and yield. Among them, leaf yield perplant/perplot varied 2.12/2.76 times, artemisinin concentration variedl.2 times, artemisinin yield perplant/perplot varied 2.3/3.2 times. So it's necessary to evaluate and select the optimal combination of treatment.
     (3) Optimization of fertilizer N, P and K and planting density
     The ultimate indexes for optimization of fertilizer N, P and K and planting density are artemisinin yield in population (per plot) and artemisinin concentration.
     According to multiple comparisons of treatments, the optimization was treatment12(N3P4K2density3:it means N300 kg-hm-2, P2O5450 kg-hm-2, K2O 105 kg-hm-2 and density 25000 plant·hm-2), which can get yield of 36.42 kg·hm-2 with higher artemisinin concentration.
     According to effects of single factor, the optimization (the combination of optimal single-factors) should be N300 (urea 650) kg-hm-2, P2O5150~300(calcium superphosphate1250~2500) kg-hm-2, K2O 210(potassium chloride 350) kg·hm-2 and 25000 plant·hm-2 of planting density. The optimization was not any of 16 treatments in this experiment, its combination effects and artemisinin productivity need a further test.
     Therefore, a further comparative test need to evalue above. After this, the optimizations can be put into practice in Chongqing.
     (4) Correlation of artemisinin concentration and yield with morphology and leaf nutritions (N, P and K)
     Artemisinin concentration had a high significantly positive correlation with concentration of leaf K, but no significant correlation with that of leaf N and leaf P; a high significantly positive correlation with stem diameter; a positive correlation with leaf yield perplant and total biomass perplant in relatively high extent.
     Artemisinin yield perplant had a significantly positive correlation with concentration of leafN and leaf K, and a positive correlation with leaf P concentration in relatively high extent (p=0.072).
     Artemisinin yield per plot had a significantly positive correlation with concentration of leaf N, but no significant correlation with that of leaf P and leaf K.
     (5) Linear stepwise regression of leaf yield, artemisinin concentration and yield with morphology and leaf nutritions (N, P and K)
     Indexes of morphology and leaf nutritions as the independent variables:
     ①Leaf yield perplant=-158.46+152.6·stem diameter+5.737·leaf N concentration-32.80·leaf P concentration-5.559'leaf K concentration (R-=0.9576, p=0.0000).
     ②When adjusting correlation coefficient reached maximum:artemisinin concentration=8.404325+0.844350·stem diameter-0.0629605·primary branch number +0.0824598·leaf K concentration (R2=0.8471, p=0.0000). When all regression coefficients satisfy the significant level (p=0.05):Artemisinin concentration=5.2187+ 0.1108·leaf K concentration (R2=0.7875, p=0.0000).
     ③Artemisinin yield perplant=1.2111-0.01845·primary branch number+0.1129·leaf N accumulation perplant+0.1528·leaf K accumulation perplant (R2=0.9909, p=0.0000).
     ④Artemisinin yield per plot=24.5481-0.9067·leaf N concentration+0.2272·leaf N accumulation perplot+0.2498·leaf K concentration+0.4517·leaf K accumulation perplant (R2=0.9915, p=0.0000).
     Significance test, determination coefficient and Durbin-Watson statistic of the regressions showed that equations above were good and valid. The regressions and their path analyses proved that leaf N and leaf P (especially leaf N) important to leaf yield and leaf K important to artemisinin concentration.
引文
[1]屠呦呦.青蒿及青蒿素类药物[M].北京:化学工业出版社,2009.1
    [2]李英.青蒿素研究[M].上海:上海科学技术出版社,2007
    [3]李英.从青蒿素类抗疟药的开发历程谈创新制新药的体会.国外医药.植物药分册.1999,14(3):102-107
    [4]杨水平,杨宪,黄建国,丁德蓉.青蒿素生产研究进展.热带亚热带植物学报,2004,12(2):189-193
    [5]中国科学院植物研究所.《中国高等植物图鉴》第四册.北京:科学出版社,1975:530
    [6]马王堆汉墓整理小组:马王堆汉墓出土医书释文(二)《五十二病方》.文物,1975.9:42-43
    [7]青蒿研究协作组.抗疟新药青蒿素的研究.药学通报,1979,14(2):49-53
    [8]李时珍.《本草纲目》第二期,卷十五,人民卫生出版社影印,1975,943-946
    [9]冯文余,李丙元.青蒿研究进展.中草药.1990,21(3):38-41
    [10]WHO 2001. The world health report. Geneva:WHO; 2001. pp.144-145
    [11]WHO. General guidelines for methologies on research and evaluation of traditional medicine. Geneva:WHO; 2000. WHO/EDM/TRM/2000.1.
    [12]王文琦,杨伟.双氢青蒿素与甲氟喹联用治疗恶性疟的疗效观察.中国寄生虫病防治杂志.2001,14(1):70-71
    [13]青蒿素结构研究协作组.一种新型的倍半萜内酯——青蒿素.科学通报.1977,22:142
    [14]李国栋.青蒿类药物的研究现状.中国药学杂志.1998,33(7):385-388
    [15]程永浩,白乃生.青蒿素及其衍生物的研究进展.河北师范大学学报(自然版).1999,23(4):533-537
    [16]吴文敏,伍贻康.青蒿抗疟机理研究最近的重要进展.化学进展.1999,11(3):333-335
    [17]冯文宇,李丙元.青蒿研究进展.中草药,1990,31(3):38-41
    [18]陈扬,朱世民,陈洪渊.青蒿素抗疟药研究进展.药学学报,1998,33(3):234-239
    [19]吕桂月,李连信,青蒿素类抗疟药的研究进展.中成药,1991,13(1):34-35
    [20]Cayman D L. Qing haosu(artemisinin):an antimalarial drug from China.Science,1985,228: 1049~1055
    [21]侯海霞,周莉玲,李锐.青蒿琥酯研究.广东药学.2000,10(2):5-8
    [22]陈德基.青蒿素实验治疗动物血吸虫病的研究.中华医学杂志,1980,60(7):422.
    [23]胡水银,刘骏,汪斌.青蒿琥酯对人群预防日本血吸虫感染的效果.中国寄生虫与寄生虫病杂志,2000,18(2):113-118
    [24]周晋,孟然,李丽敏.青蒿素对人白血病细胞株和原代细胞的影响.中华内科杂志,2003,42(10): 713-714
    [25]徐明生.现场应用青蒿琥酯预防日本血吸虫感染的效果分析.中国寄生虫病防治杂志.2001,14(1):26-27
    [26]刘旭.青蒿琥酯预防日本血吸虫的研究.中国寄生虫与寄生虫病杂志.2001,19(1):52-53
    [27]李洪军,陶永辉,戴建荣.感染日本血吸虫小鼠用双氢青蒿素连续给药及与吡喹酮伍用的疗效观察源.中国血吸虫病防治杂志.2010(6):534-538
    [28]张星,杨小平,潘启超等.青蒿素钠抗人肝癌与诱导调亡.中草药.1998,29(7):467
    [29]马镇坚,张厚德,杜冀晖.青蒿素及其衍生物抗肿瘤的研究进展.医学综述,2008,14(9):1333
    [30]谢德玉.青蒿素的研究进展——生物技术应用前景.植物学通报.1995,12(4):28-31
    [31]Posner G H, McRiner A J, Paik I H, et al. Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. Med Chem,2004,47(5):1299
    [32]Efferth T, Dunstan H, Sauerber A, et al. The anti-malarial artesunate is also activeagainst-cacer. J Oncol,2001,18(4):767
    [33]Efferth T, Benakis A, Romem MR, et al. Enhancement of cytotxicity of artemisinins toward cancer cels by ferrous iron. Free Radic Biol Med,2004,37(7):998-1009.
    [34]Efferth T, Oesch F. Oxidative stress response of tumorcels:microarray based comparison between artemisinins and anthracyclines. Biochem Pharmacol,2004,68(1):3~10.
    [35]Singh NP, Lai HC. Artemisinin induces apoptosis in human cancer cells. Anticancer Res,2004, 24(4):77~80.
    [36]陈卫强,戚好文,吴昌归.双氢青蒿素对人肺腺癌工A549细胞的体外抑制作用的研究.中国新医药,2004,3(5):8-10.
    [37]Chen HH, Zhou HJ, Fang X. Inhibition of human cancer celline growth and human umbilical wein endothelial cell angiogenesis by Artemisinin derivatives in vitro. Pharmacol Res,2003, 48(3):231~236.
    [38]娄小娥,周慧君.青蒿琥酯对大鼠孕酮、雌二醇和蜕膜组织的影响.药学学报,2001,36(4):254-258.
    [39]陈征途,黄真炎,吴玲霓.青蒿素介导肝瘤细胞凋亡的实验研究.中西医结合肝病杂志,2000,10(5):23-26.
    [40]刘成伟,陈雅棠,李文桂.双氢青蒿素治疗实验大鼠卡氏肺孢子虫肺炎的疗效观察.重庆医科大学学报,2001,26(3):261-265.
    [41]陈雅棠,刘成伟,佘登高.双氢青蒿素治疗后卡氏肺孢子虫肺炎大鼠的肺部病理学变化.中国人兽共患病杂志,2004,20(3):223-227.
    [42]叶彬,陈雅棠,刘成伟.双氢青蒿素对卡氏肺孢子虫超微结果的影响.中国人兽共患病杂志,2000,16(4):21-25.
    [43]刘成伟,陈雅棠,李文桂.扫描电镜观察双氢青蒿素对大鼠体内卡氏肺孢子虫表面形态的影响.重庆医学,2004,33(6):838-840.
    [44]王崇功,吴箐,周永华.青蒿素治疗弓形虫病的研究和临床治疗效果的初步观察. 中国人兽共患病杂志,1997,13(1):79-85.
    [45]严笠,甘绍伯,齐志群.双氢青蒿素治疗急性弓形虫感染小鼠疗效的进一步观察.寄生虫与医学昆虫学报,2000,7(2):70-74.
    [46]李宝馨,杨宝峰,李玉荣.青蒿素抗心律失常作用及机制.中国药理学通报,1999,15(5):449-453.
    [47]Yang BF, Li YR, Xu CQ, et al. Mechanisms of artemisinin antiparty humectation. Chin J Pharmacol Toxicol,1998,13(3):167~170.
    [48]徐德忻,张维德,代长生,等.青蒿素对实验性肺预防、病后治疗观察.医学研究通报,1998,27(2):43-45.
    [49]贺光照,黄崇本,张代录,等.青蒿素局部治疗增殖性瘢痕临床观测.重庆医科大学学报,1998,23(3):260-263.
    [50]Wold Health Organization. The World Health Report 1996-fighting Disease, Fastening Devetopment. Geneva:WHO, Swizorland,1996:29
    [51]许杏祥,朱杰,黄大中,等.青蒿素类似物的立体专一性合成.化学学报.1982,40:1081
    [52]Schmil G. Hofheinz W. Total synthesis of Qinghaosu. J Am Chem Soci.1983,105:624
    [53]Averty MA, Chong WKM, Jennings WC. Stereoselective total synthesis of (+)-artemisinin, the antimalarw constituent of Artemisia annua L.. J Am Chem.1992,114:974
    [54]贺锡纯,曾美怡,李国凤,等.青蒿愈伤组织的诱导分化及含量变化植物学报.1983,25:87-90
    [55]Nair MSR, Acton N, Klayman DL, et al. production artemisinin in tissue cultures of Artemisia annua. J Nat Prod.1986,49:504~507
    [56]Fulzele DP. Tissue cultures of Artemisia annua:organogenesis and artemisinin production. Phytotherapy Research.1991,5(5):149-153
    [57]Paniego NB, Giulietti AM. Artemisia annua L:dedifferentiated and differentiated cultures. Plant Cell Tiss Org Cult.1994,36:163~168
    [58]Woerdenbag HJ, Luers JFJ, Uden W, et al. Production of new antimalarial drug in shoot cultures of Artemisia annua L. Plant Cell Tiss Org Cult.1993,32:247~257
    [59]Ferreira JFS, Janick J. Roots as an enhancing factor for the production of artemisinin in shoots cultures of Artemisia annua. Plant Cell Tiss Org Cult.1996,44:211-217
    [60]李弘剑,张毅,郭勇,等.体外胁迫促进青蒿素在黄花蒿培养细胞中合成的研究.药物生物技术.2001,8(1):12-16
    [61]秦明波,李国珍,云月,等.发根农杆菌诱导青蒿发根产生及离体培养.植物学报.1994,36:165-170
    [62]Weathers PJ, Cheetham RD, Follasbee E, et al. Artemisinin production by transformed root of Artemisia annua Biotechnol Lett.1994,16:1281~1286
    [63]蔡国琴,李国珍,叶和春,等.Ri质粒转化的青蒿发根培养及青蒿素的生物合成.生物工程学报.1995,11(4):315-320
    [64]Paniego NB, Giulietti AM. Artemisia annua:in vitro culture and the production of artemisinin. Enzyme Micro. Tech,1996,18:526~530
    [65]Vergawe A. Agrobacterium tumefaciens-mediated transformation of Artemisia annua L and regeneration of transgenic plants. Plant Cell Rep.1996,15:929~933
    [66]Liu C. Wang Y, Ouyang F, et al. Production of Artemisinin by air joot cultures of Arternisio anmca L. Biotechnology Letters,1997,19(9):927-929
    [67]葛发欢.黄花蒿中青蒿素的超临界CO2流体提取工艺研究.中国医药工业杂志,2000,31(6):250-253
    [68]郭孝武.超声技术在中草药成分提取中的应用.中草药.1993,24(10):548-549
    [69]Vonwiller SC, Haynes PK, King G, et al. An improved method for the isolation of qinghao (artemisinic) acid from Artemisia annua. Planta Med,1993,59:562
    [70]Duke MV, Paul RN, Eloshly HN, Sturtz G, Duke SO. Localisation of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. International Journal of Plant Sciences.1994;155:365-372.
    [71]Duke SO, Paul RN. Development and fine structure of the glandular trichomes of Artemisia annua L. International Journal of Plant Sciences.1993;155:107-118
    [72]Ferreira JFS, Janick J. Distribution of artemisinin acid in Artemisia annua. In:Janick J, Neff MW, editors. Progress in new crops:new opportunities new technologies. Arlington, VA:ASHA Press; 1996. pp.579-584.
    [73]Iijima Y, Davidovich-Rikanati R, Fridman E, et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiology.2004;136:3724-3736
    [74]Wagner GJ. Secreting glandular trichomes:more than just hairs. Plant Physiology. 1991;96:675-679
    [75]赵兵,王玉春,欧阳藩.青蒿素生物合成机理研究现状.广西植物.1999,19(2):154-158
    [76]Wallwaart TE, Bouwmeester HJ, Hille J. Amorpha-4,11-diene synthese:cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalaria drug artemisinin. Planta.2001,21:460-465
    [77]Matsuchita Y, Kang WY, Charlwood BV. Cloning and analysis of cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene.1996,172:207~209
    [78]陈大华,叶和春,李国风,等.植物类异戊二烯代谢途径分子生物学进展.植物学报.2000,42:551-558
    [79]Chen DH, Li CJ. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tiss Org Cult. 1999,57:157~162
    [80]Chen DH, Ye HC, Li GF. Expression of a chemeric farnesyl diphosphate synthase gene in Artemisia annua transgenic plants via agrobacterium tumefaciens-mediated transformation. Plant Sci.2000,155:179~185
    [81]文(摘).科学家用转基因细菌合成青蒿素取得进展.世界科学技术:中医药现代化,2006,8(2): 64
    [82]韦霄.黄花蒿生物特性研究.广西植物.1997,17(2):166-168
    [83]McVaugh, R.1984. Compositae. Vol.12. Flora No-VO—Galieiana:a descriptive account of the vascular plants Of Western Mexieo. ed. W. R. Anderson. Uhiversity of Michigan Presss, Ann Arbor 1998,35,49
    [84]Ferreira JFS, Janick J. Production and detection of artemisinin from Artemisia annua. Acta Hort, 1995,390:41~49
    [85]李舒养,吴祖祥,王桂青,等.广西产黄花蒿资源利用研究.广西植物,1980,(10):20-23
    [86]钟国跃,周华蓉,凌云,等.黄花蒿优质种质资源的研究.中草药.1998,29(4):264-267
    [87]Charles DJ. Germplasm variation in artemisinin content of Artemisia annua using an alternative method of artemisinin analysis from crude plant extracts. J Nat Prod.1990,53:157~160
    [88]曹有龙,陈晓斌.栽培的青蒿生长量及青蒿素含量.中药材.1996,19(8):379-381
    [89]李峰,韦霄.广西黄花蒿类型调查研究.广西植物.1997,17(3):231-234
    [90]黄正方,郑贵华,李成东.影响青蒿成分(青蒿素)含量的因素研究.西南农业大学学报.1997,19(1):93-94
    [91]刘涵芳.甘肃蒿属植物药用资源.中国中药杂志.1995,20(3).
    [92]韦霄,李锋,许成琼,等.不同栽培措施对黄花蒿产量和青蒿素含量的影响.广西科学院学报.1999.15(3):132-136
    [93]金玲,居明秋.引种青蒿中青蒿素含量的测定.基层中药杂志,1998,12(3):34
    [94]钟凤林,陈和荣,陈敏.青蒿最佳采收时期、采收部位和干燥方式的实验研究.中国中药杂志.1997,22(7):405-407
    [95]陈强,张积强.青蒿素的提取、分离和测定.宝鸡文理学院学报(自然科学版),1999,19(1): 47-48
    [96]李吉和,张慧灵,李小玲,等.内蒙古地区黄花蒿中青蒿素的SFE—HPLC测定.中药材,2000,23(12):756-758
    [97]朱卫平.野生青蒿的引种驯化和高青蒿素含量栽培品种选育目标性状的研究.湖南农业大学,博十论文,2003
    [98]向娟,李士雨,何玉娟.天津地区黄花蒿中青蒿素测定.中草药.2006,37(3):449-450
    [99]唐其展,周嘉运,何铁光,庾韦花.广西青蒿资源研究现状.广西农业科学.2006,37(1):84-87
    [100]Elhag HM, El-Domiaty MM, El-Feraly FS, et al. Selection and micropropation of high artemisinin producing clones of Artemisia annua. Phytotherapy Research.1992,6:20~24
    [101]Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y. Improvements of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnology Letters. 2007;29:1143-1146.
    [102]张小波,王利红,郭兰萍,韦霄,等.广西地形对青蒿中青蒿素含量的影响.生态学报,2009,29(2):688-697
    [103]韦青,韦霄,蒋水元,等.广西黄花蒿资源及发展策略.广西农学报,2005(3):24-26
    [104]韦树根,马小军,付金娥,等.不同产地与类型及采收方法对黄花蒿中青蒿素含量的影响.广西植物,2009,29(6):853-856
    [105]韦树根,马小军,冯世鑫,等.中国黄花蒿主产区种质资源评价.中国中药杂志,2008,33(3):241-243.
    [106]廖凯,吴卫,郑有良,等.青蒿主要农艺性状与单株产量和青蒿素含量及总量间相关分析.中国中药杂志,2009,34(18):2299-2303
    [107]陈俊意,曾祥琼,艾继周,等.三峡库区青蒿的青蒿素含量的相关和通径分析.中药材,2010,3(4):90-92
    [108]陈俊意,唐全曾,祥琼,等.三峡库区青蒿遗传多样性AFLP和RAPD比较分析.
    [109]陈俊意,张露,王志虹.三峡库区青蒿种植基地的主成分分析.西南师范大学学报(自然科学版),2011,36(1):108-112
    [110]范振涛,马小军,张明庆.青蒿素产量影响因素的研究进展.中草药2008,39(2):313-316
    [111]Wallaart TE, Pras N, Quax WJ. Seasonal variation of artemisinin and its biosynthetic precursors in plants Of Artemisia annnua of different geqgraphica lorigin:proof for the existence of chemotypes. Planta Med,2000,66(1):57
    [112]Swangwan RS, Swangwan NS, Jain DC, et al. RAPD profile based genetic characterization of chemotypic variants Artemisia annua. Biochem Mol Boil Int.1999,47:935~944
    [113]Jain DC, Mathur AK, Gupta MM, Singh AK, Verma RK, Gupta AP, Kumar S. Isolation of high artemisinin-yielding cloness of Artemisia annua. Phytochemistry. [Oxford:Elsevier Science Ltd] Nov 1996. v.43 (5) p.993-1001.
    [114]李典鹏,梁小燕,陈秀珍,等.采用薄层层析—紫外分光光度法测定广西不同产地黄花蒿中青蒿素含量.广西植物,1995,15(3):254-255
    [115]罗安才,蔡志华,静一,沈洁.重庆青蒿中青蒿素含量及其AFLP分析.分子植物育种,2009,7(6):1144-1148
    [116]王三根,梁颖.中药青篙的生态生理及其综合利用.中国野生植物资源,2003,(8):47-50.
    [117]Ferreira JFS. Nutrient deficiency in the production of artemisinin dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. Journal of Agriculture Food Chemistry. 2007;55:1686-1694.
    [118]Ferreira JFS, Laughlin JC, Delabays N, de Magalhaes PM. Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin. Plant Genetic Resources.2007;3:206-229
    [119]Ferreira JFS, Janick J. Distribution of artemisinin acid in Artemisia annua. In:Janick J, Neff MW, editors. Progress in new crops:new opportunities new technologies. Arlington, VA:ASHA Press; 1996. pp.579-584
    [120]Wang Y, Weathers PJ. Sugars proportionally affect artemisinin production. Plant Cell Reports. 2007;26:1073-1081
    [121]Fritz C, Palacios-Rojas N, Feil R, Stitt M. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco:nitrate inhibits large sectors of phenylpropanoid metabolism. The Plant Journal.2006;46:533-548. [PubMed]
    [122]Van Dam NM, DeJong TJ, Iwasa Y, Kubo T. Optimal distribution of defences:are plants smart investors? Functional Ecology.1996;10:128-136.
    [123]彭锐,王远会,马鹏,李隆云.黄花蒿中青蒿素含量与产地气象因子及土壤的关系研究.西南农业学报,2010,23(2):519-522
    [124]范振涛,马小军,冯世鑫.广西壮族自治区青蒿生态气候适宜性区划.首都师范大学学,报(自然科学版).2009,30(2):91-95
    [125]王满莲,韦霄,蒋运生等.不同土壤环境对黄花蒿生长和青蒿素含量的影响研究.植物研究,2010,30(4):424-427
    [126]范振涛,马小军,冯世鑫等.青蒿素含量等级分布模型的结果验证.中国中药杂志,2009,34(3):269-271
    [127]丁德蓉.青蒿土宜研究.土壤通报,1988,19(3):1
    [128]Singh A, Vishwakarmal R A, Hussin A. Evaluation of Artemisia annua strains for higher artemisinin production. Planta Med,1988,54:475
    [129]Sinon J E, Charles D, Cebert E, Grant I, Janick J, W hipkey A. Artemisia annua L:a apromising aromatic and medicinal. In:Janick J, Simon Jeeds. Advances in New Crops,1990, 522-526
    [130]Srivastava N K, Sharma S. Influence of micronutrient imbalance on growth and artemisinin content in Artemisia annua. Indian J pharm Sci,1990,52; 225~227
    [131]Laughlin JC. Effect of agronomic practices on plant yield and antimalarial constituents of Artemisia annua L. ACTA Hort,1993,331:53~61
    [132]Laughlin JC.Agricultural production of artemisinin:a review.Trans Rsoc Trop Med Hyg, 1994,88(wuppll):21-22
    [133]Herman J W, Niesko P, Nguyen G, et al. Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med,1994,60:272-275
    [134]许成琼,韦霄,李锋,等.黄花蒿繁殖技术研究.广西植物,1998,18(3):271-274
    [135]雷红松.黄花蒿组培苗的移栽.特种经济动植物,2004, (2):31
    [136]韦美丽,崔秀明,陈中坚等.黄花蒿栽培研究进展,现代中药研究与实践,2005,19(5):60-64
    [137]陈福泰,张桂华.植物生理学通讯.1987,5:26-30
    [138]Liersch R. Formation of artemisininin Artemisia annua during one vegetation period. Planta Med.1986,5:387~390
    [139]Sushil Kumar, Guptab SK, Poorinima Singhb, et al. High yields of artemisinin by multi-harvest of Artemisia annua crops. Industrial Crops and Products.2004,19:77-90.
    [140]韦中强,李成东,肖杰易等.施肥水平对青蒿产量和质量影响的研究.时珍国医国药,2008,19(5):1286-1287
    [141]漆小雪,韦霄,蒋运生等.青蒿素含量与土壤、植株养分含量关系的研究.广西植物,2009,29(5):627-630
    [142]王满莲,韦霄,蒋运生等.氮对黄花蒿生长、光合特性和青蒿素含量的影响.植物研究,2009,29(2):260-263
    [143]Ayanoglu F, Mert A, Kirici S.The effects of different nitrogen doses on Artemisia annua L. J Herbs Spices MedPlants,2002,9(4):399
    [144]Davies MJ, Atkinson CJ, Burns C, et al. Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Ann Bot.2009 August; 104(2):315-323
    [145]Davies MJ, Atkinsona CJ, Burns C, Arroob R, Woolleyb J. Increases in leaf artemisinin concentration in Artemisia annua in response to the application of phosphorus and boron. Industrial Crops and Products,2011,05(02):1-9
    [146]卫红,丛伟红.山东黄花蒿采收期的探讨.山东中医大学学报.2000,24(2):139-140
    [147]朱卫平,刘仲华,盛孝邦.黄花蒿不同发育期和不同分枝青蒿素含量和产量的动态变化.中国现代应用药学,2010,27(9):804-808
    [148]陈迪钊,唐根云,张智慧.黄花蒿中青蒿素含量的动态变异性研究.中南药学,2010,8(9):651-654
    [149]Wallwaart TE, Pras N, Quax WJ. Seasonal variation of artemisinin and its biosynthetic precursors in tetraploid Artemisia annua plants compared with the diploid wild-type. Planta Med.1999,65:723-728
    [150]Jeffrey B Brown, Liang GY, Lai-King S. Terpenoids from the seeds of Artemisia annua., Phytochemistry,2003,64:303-323
    [151]Central Institute of Medicinal and Aromatic Plants, India. artemisinin-rich variety of Artemisia annua developed. CIMAP-Newsletter,1989,16:1.
    [152]Delabays N, Benakis A, Collet G. Selection and breeding for high artemisinin (qinghaosu) yielding strains of Artemisia annua. First world congress on medicinal and aromatic plants for human welfare (WOCMAP). Acta Hort,1993(330):203-207
    [153]Debrunner N. Selection of genotypes of Artemisia annua L for the agricultural production of artemisinin. In proceedings of international symposium on breeding research on medicinal and aromatic plant. Quedlinburg (Germany):Syringer verlag,1996.321-327
    [154]Magalhaes PM. New hybrid lines of the antimalarial species Artemisia annua L. Acta Hort, 1999(502):377-381
    [155]Chan Kit L, et al. Selection of high artemisinin Yielding Artemisia annua. Planta Medica, 1995,61(3):285-287
    [156]陈和荣.黄花蒿新品系“京厦Ⅰ号”的选育.中国技术成果大全,1992,1: 186-187
    [157]吾维.华立复星诺华:青蒿素产业的“三国演义”.浙商攻略,2005(8):70-72
    [158]原松华.青蒿素15亿美元国际采购的诱惑.中国投资,2005(2):107-110
    [159]中国药业编辑部.世界卫生组织呼吁中国增加青蒿素产量.中国药业,2005,14(7):68
    [160]Kindermans J-M, Pilloy J, Olliaro P, Gomes M. Ensuring sustained ACT production and reliable artemisinin supply. Malaria Journal.2007;6:125-130
    [161]张荣沭,赵敏,周亚丹,韩颂.引种青蒿的青蒿素含量及生物量.林业科学,2009,45(4): 151-155·
    [162]张萍,张子忠.2001.山东引种黄花蒿青蒿素含量分析.山东中医药大学学报,25(3):229,231.
    [163]张荣沭,赵敏,韩颂.2008.引种的不同种源黄花蒿青蒿素含量的研究.林产化学与工业,28(6):83-88
    [164]韦霄,李锋,傅秀红,等.黄花蒿类型引种试验.广西科学院学报,1998,14(1):28-3
    [165]郭长强,朱海,赵渤年,等.引种黄花蒿的黄花蒿素含量测定.中药材,1996,19(12)597-598
    [166]张萍,张子忠.山东引种黄花蒿青蒿素含量分析.山东中医药大学学报,2001,25(3):231
    [167]邢颖.青蒿价低探因.中国现代中药.2006,8(9):42-43
    [168]刘天伟,屈凌波,相秉仁.影响青蒿素类药物战略发展因素分析.中国新药杂志.2006,15(13):1035-1039
    [169]国家药典委员会编.中华人民共和国药典(一部)[S].2005年版.北京:化学工业出版社,2005:137-138
    [170]张彝,邹婷,王剑文.青蒿素检测方法的研究近况.抗感染药学,2008,5(4):201-204
    [171]夏铮铮,李劲,张小松.黄花蒿中青蒿素含量测定方法的究进展.民族医药,2006,3(1):40.
    [172]陈迪钊,郑雪花,张智慧等.黄花蒿中青蒿素含量的紫外分光光度法测定.光谱实验室,2010,27(2):451-454
    [173]刘世尧,白志川.UV-Vis法测定重庆武隆县不同立地条件青蒿样品的含量.中国药房,2008,19(6):437-440
    [174]周浓,夏从龙,谢静.紫外分光光度法测定不同产地黄花蒿中青蒿素的含量.亚太传统医药.2008,4(11):46-48
    [175]齐向娟,李士雨,何玉娟.天津地区黄花蒿中青蒿素测定中草药,2006.37(3):449-451
    [176]李春莉.紫外分光光度法测定青蒿素的含量.重庆医科大学学报,2007,32(4):413-415
    [177]张海容,张娜.超声萃取-紫外分光光度法测定不同产地青蒿中的青蒿素.药物分析杂志,2007,27(3):414
    [178]刘金磊,李典鹏,韦霄等.黄花蒿中青蒿素含量的RP-HPLC法测定.广西植物2007,27(5):808-810
    [179]陈益元,黄道平,谢燕.高效液相色谱法测定青蒿草中青蒿素的研究.中国卫生检验杂志,2007,17(6):1032,1087
    [180]胥秀英,郑一敏,傅善权等.重庆道地药材青蒿高效液相色谱指纹图谱研究.时珍国医国药,2009,20(5):1188-1189
    [181]刘丽芳,王茜,李海燕等.柱前衍生RP-HPLC法测定青蒿中青蒿素的含量.中国野生植物资源,2004,23(6):60-62.
    [182]熊春媚,郭亚东,马银海等.高效液相色谱测定黄花蒿中青蒿素的含量.天然产物研究与开发,2007,19:271-273
    [183]张小燕,王小宾,李美等.RP-HPLC法测定黄花蒿中青蒿素含量.西北药学杂志,2008,23(6):370-371.
    [184]张东,杨岚,杨立新等.HPLC-UV-ELSD法同时测定青蒿中青蒿素、青蒿乙素和青蒿酸的含量.药学学报,2007,42(9):978-981
    [185]张雪,李隆云,杨宪,杨水平.不同产地的青蒿药用成分含量研究.中国药房,2009,20(5):1188-1191
    [186]薛洪宝,焦艳娜,庞国伟等.青蒿中6种成分同时定量的高效液相色谱法研究.四川大学学报(工程科学版),2009,41(4):119-124
    [187]杨宪,杨水平,张雪等.HPLC-UV-ELSD同时测定玄参中5种成分的含量.中国中药杂志,2009,34(1):21-24
    [188]杨水平,杨宪,张雪等.南方红豆杉人工林药材活性成分指纹图谱鉴别研究.北京林业大学学报,2010,(04):110-113
    [189]杨宪,杨水平,张雪.蛇床子药材的高效液相色谱指纹图谱.药学学报,2007,42(8):877-881
    [190]李志英,吕红艳,张海容.微波提取青蒿中青蒿素的研究.药物分析杂志,2010,30(8):1459-1461
    [191]鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社,1999.
    [192]皮光洁,唐书源.农业环境检测原理与应用[M].成都:成都科技大学出版社,1998.
    [193]唐启义DPS处理系统——试验设计、统计分析及数据挖掘(第2版)[M].北京:科学出版社,2010
    [194]鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998
    [195]黄建国.植物营养学[M].北京:中国林业出版社,2004
    [196]王满莲,蒋运生,韦霄等.栽培密度和施肥水平对黄花蒿生长特性和青蒿素的影响.植物营养与肥料学报,2010(1):185-190
    [197]申巍,杨水平,姚小华等.施肥对油茶生长和结实特性的影响.林业科学研究,2008,21(2):239-242
    [198]樊瑞怀,杨水平,周志春等.氮素营养对马褂木家系苗木生长效应分析.林业科学研究,2009,22(1):85-90
    [199]杨敏,李隆云,杨水平,崔广林.黄花蒿生育期间可溶性糖和氨基酸含量动态变化.时珍国医国药,2009,20(2):260-261
    [200]李隆云,钟国跃,吴叶宽,崔广林.青蒿栽培关键技术[M].北京:中国三峡出版社农业科教出版中心,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700