用户名: 密码: 验证码:
木薯再生体系的建立和HNL24b基因的克隆及辐照诱变育种
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯作为食品以及饲料以及加工业的原料,在市场上占有的份额已经越来越大。但是由于木薯自身性状的原因制约了传统常规育种的发展。而木薯易发生采后生理性变质,易受病毒病危害,不耐寒,叶片早衰、植株含有毒性氰化物等性状很难通过传统育种的方法获得改良,因此诱变育种、基因工程育种、分子标记辅助选择育种渐渐进入了科学家的视野。本文建立了一套高效的植株再生和遗传转化体系,以便于开展木薯基因工程育种。本研究通过这个体系将克隆的生氰糖苷裂解酶HNL24b基因转化木薯,以减少植株中的氰化物含量,并期望通过块根特异性启动子patatin启动该基因的表达,从而达到使得木薯根叶中的氰化物含量有所不同的目的。同时也对木薯辐照诱变育种进行研究,并从中筛选到品质性状优良的突变株系。主要研究结果如下:
     1.建立微型薯再生体系。研究发现培养基中添有0.5 mg/L的NAA最有利于木薯茎的生长和须根的形成,添加0.5 mg/L BA和0.5 mg/L NAA有利于微型薯的形成。在初生培养阶段生长出须根最多的植株经第二阶段培养后结薯更容易。在添加0.5mg/LBA和0.5 mg/L NAA的条件下,6%(M/V)蔗糖对植株生长最有利,并在得芽率(62.34%)、株高(5.6044 cm)、微型薯得率(71.42%)、平均薯鲜重(0.6129g)上优于其它处理。
     2.研究不同激素以及光照条件对愈伤形成的影响。研究发现添加1mg/L KT和5 mg/L NAA有利于木薯幼嫩叶片形成愈伤;前期经8 h/d光照有利于愈伤的形成;前期经0 h/d光照有利于愈伤的绿化;前期培养,在0 h/d光照条件下,并在培养基中加有1 mg/L KT和2 mg/L NAA时生根率最高,可以达到97.51%。
     3.通过胚状体形成途径研究了木薯的再生体系,结果表明添加12 mg/L的picloram对于木薯胚状体的形成、胚性子叶再生以及植株的再生最有利,其再生频率分别为97.53%、98.72%、44.16%。Picloram比2,4-D和NAA更适于诱导木薯胚状体。10 mg/L的picloram更加适用于诱导次生胚状体,其诱导频率高达95.76%。低浓度的BA有利于胚性子叶的再生,高浓度的BA将促使非胚性子叶的形成。当BA浓度为0.1 mg/L时,胚性子叶的再生频率最高,可达95%。培养基添加1 mg/L的BA与1 mg/L的IBA有利于植株的再生,其频率高达47.60%,优于BA与IAA和NAA的其它配比。1 mg/L的BA与1 mg/L的NAA有利于子叶胚生根的。
     4.探讨了用不同的方法提取木薯的RNA,研究发现用改良CTAB与LiCl相结合的方法,可以提取到质量较好的RNA。
     5.本研究成功克隆到HNL24b基因,本研究克隆的MeHNL24b序列与MeHNL4的氨基酸同源性达87.72%,与HbHNL的氨基酸同源性达86.32%,与HNL24的氨基酸同源性达42.81%。预测该基因编码的蛋白中1-15位氨基酸区域属于信号肽区域,31-252位氨基酸区域属于水解酶特有的α/β折叠结构域。该蛋白具有水解酶的活化中心位点:丝氨酸,天门冬氨酸和谷氨酸(ser/asp/glu)。预测此编码蛋白域的组成元素有:1344个C、2091个H、343个N、379个O、7个S。
     6.成功从马铃薯中克隆到块根特异表达启动子Patatinb,它与已报道的patatin启动子序列有95%的相似性。
     7.成功构建原核表达载体,并获得有功能的表达蛋白,经酶活测定HNL24b的最高酶活力为2978 U/L。
     8.成功构建HNL24b基因的超表达载体、反义表达载体以及GUS表达载体,并获得转化子;成功构建了块根特异表达载体。HNL24b基因在转基因植株中的表达,能有效的减少植株中氰化物的含量。
     9.通过辐照诱变育种,获得了具有一个或多个优良性状的木薯突变株系。调查的性状包括产量、株高、赖氨酸含量、HNL表达量、采后生理变质程度。
Cassava as food, feed and raw materials of processing industry, its share of the market has been growing. However, due to its characteristics, the development of conventional breeding is limited. Cassava have some important traits, such as physiological post harvest deterioration, Vulnerable to virus damage, prematurely leaves senile and plants containing cyanide and so on. It is hard to modify these traits through traditional breeding, so scientists are paying attention to mutation breeding, genetic engineering, molecular markers assisted selection. In this paper, an efficient plant regeneration and transformation system had been established. In order to more efficiently express HNL and reduce the cyanide content in the plants, the full length DNA of HNL24b was cloned and over expressed in cassava. In order to make the roots and leaves have different cyanide content, a root specific promoter patatin had been cloned from potato and used for activating HNL24b gene expression specifically in roots. Also, the irradiation technique for inducing mutants with fine quality traits of cassava was investigated. The main results briefly were as follows:
     1. Adding 0.5 mg/L of alpha-naphthalene acetic acid (NAA) to the MS based medium was most favorable to the in vitro growth of cassava stem and fibrous roots. Combination of 0.5 mg/L BA and 0.5mg/L NAA was most favorable to the growth of micro-tubers. BA (0 mg/L-2.0 mg/L) showed effective on shoot regeneration. NAA (0 mg/L-2.0 mg/L) proved to be effective on root development. Plantlets with fibrous roots turned out to be easy to generate microtubers in vitro. The microtubers were inducted only when both BA and NAA were used in combination. MS medium supplemented with sucrose at 6%(w/v) resulted in the highest frequencies of shoot induction (62.34%), average shoots height (5.6044 cm), microtuber induction (71.42%) and average fresh weight of microtubers (0.6129 g), all superiors to other treatments, when BA (0.5 mg/ L) and NAA (0.5 mg/L) were also added to the MS medium.
     2. Addition of 1 mg/L KT and 5 mg/L NAA to MS medium showed effective on formation of cassava leaf callus. Early culture with 8 h/d light was beneficial to the growth of callus. Early culture with 0 h/d light was beneficial for the callus to grow into green. Early culture with Oh/d light and 1 mg/L KT and 2 mg/L NAA was beneficial to rooting, with the rooting rate being 97.51%.
     3. Addition of 12 mg/L of picloram resulted in the highest rate of somatic embryogenesis (97.53%), cotyledon regeneration (98.72%) and plant regeneration (44.16%). It indicated that picloram was more suitable than 2,4-D and NAA for cassava somatic embryogenesis.10 mg/L of picloram is more suitable for induction of secondary embryoids (95.76%). Low concentration of BA was most favorable to the regeneration of embryogenic cotyledons, while high concentration of BA will lead to the growth of non-embryonic cotyledon. As addition of BA at 0.1 mg/L, frequency of embryogenic cotyledon regeneration reached the highest at 95%.Addition of 1 mg/L of BA and 1 mg/L of IBA resulted in the highest frequencies of plant regeneration (47.6%). 1mg/L of BA and 1 mg/L of NAA showed effective on rooting of embryogenic cotyledons.
     4. The CTAB method combined application of LiCl turned out to be a good protocol for cassava RNA extraction with good quality.
     5. The full length cDNA of HNL24b gene was obtained by RT-PCR cloning. The sequencing result for the DNA showed that the sequence encoding for the HNL was not fully consistent with those already published. The full sequences analysis demonstrated that the highest homology of amino acid sequence about 87.72% to MeHNL4 genes, about 86.32% to HbHNL and about 42.81% to MeHNL24. The cDNA was cloned into expression vectors pBI121, pCAMBIA 1323, PET32a(+) by PCR and recombinant DNA technique. Prediction of the encoding protein indicated that the 1-15 amino acids were signal peptide region,31-252 amino acids wereα/βfold domain region. Predicted elements composition of this protein is as follow:C (1344), H (2091), N (343), O (379), S(7).
     6. The Solanum tuberosum tuber specific promoter Patatinb was cloned. The full sequences analysis demonstrated that the highest homology of sequence was about 95% to Patatin genes from Solanum tuberosum.
     7. After the transformation of PET32a(+), screening for high copy transformants, induction with SDS-PAGE analysis, enzymatic activityassay, the HNL24b efficiently expressed in BL21 and the enzyme activity reached over 2978 units/L of culture product.
     8. HNL24b gene was inserted into expression vector, antisense expression vector, GUS expression vector and transformants of those vectors were obtained. A root-specific expression vector was constructed. Expression of HNL24b gene in transgenic plants can effectively reduce the cyanide content in plants.
     9. By Gama ray irradiation, cassava mutants with one or more good traits, such as high yield, high content of lysine, high HNL expression, lower post-harvest physiological deterioration were obtained.
引文
1.陈宏,靳阳.不同剂量60Co-γ射线对水稻幼苗生长、根系蛋白及一些氧化氧化酶活性的影响.南开大学学报,1999,32:116-120
    2.陈圣栋,杨建平,曹德航.秋水仙碱诱导番茄多倍体的研究.山东农业科学,2007,3:22-24
    3.陈学珍,谢皓.60Co-γ射线辐照处理后大豆M2农艺性状的遗传变异.北京农学院学报,2002,17:1-5
    4.陈云飞,强继业.60Co-Y射线辐照对蟹爪兰几种酶比活力及MDA含量的影响.安徽农业科学,2006,34:27-28
    5.程树华,严共鸣,孙万儒.木薯a-羟腈酶的克隆、表达及其初步应用.生物工程学报,2001,17:78-83
    6.邓宽平,丁海兵,罗治霞,夏锦慧.60Co-γ射线辐照育种马铃薯新品系鉴定试验.农技服务,2008,10:25-25
    7.董颖苹,连勇,何庆才,徐涵.植物化学诱变技术在育种中的运用及其进展.种子,2005,24:25-27
    8.付凤玲,李晚忱,荣廷昭,潘光堂,谭登峰.用γ射线和叠氮化钠诱变的玉米愈伤组织筛选耐旱和雄性不育材料.核农学报,2005,19:356-359
    9.傅雪琳,何平.60Co-γ射线辐照对墨兰根状茎生长和分化的效应研究.核农学报,2000,14:333-336
    10.胡博然,徐文彪,张双灵,马峰旺.枸杞抗羟脯氨酸细胞变异系筛选及其耐盐特性的研究.西北植物学报,2003,23:422-427
    11.胡超,洪亚辉,黄丽华,赵燕.菊花辐射后代生理生化特性的研究.湖南农业大学学报,2003,29:471-473
    12.黄挺俊,江枝和.不同剂量60Co-γ射线辐照茶薪菇菌种对子实体氨基酸含量的影响.食用菌学报,2002,9:22-25
    13.纪德华,陈昌生,郑伟刚,徐燕,梁宝,麻红英.60Co-γ射线辐照坛紫菜叶状体及单克隆培养的研究.台湾海峡,2005,24:171-177
    14.姜振峰,刘志华,李文滨徐德衡,滕刚.叠氮化纳对大豆M1的生物学诱变效应.核农学报,2006,20:208-210
    15.兰芹英,李启任,何惠英,张艳军,解星云.红掌愈伤组织诱导和芽的分化.园 艺学报,2003,30:107-109
    16.雷晓,强继业,陈云飞.60Co-Y射线辐射对一品红丙二醛及几种保护酶的影响.云南农业大学学报,2006,21:855-858
    17.李斌,黄永才,覃剑峰,杨美纯.多效唑在木薯组培苗诱导生根的应用.广西热带农业,2008,3:4-6
    18.李洪清,李美茹,刘鸿先.木薯抗叶片早衰的基因工程育种.中国科学院研究生院学报,2000,17:74-80
    19.李洪清,梁承邺,黄毓文,郭俊彦.影响木薯次生胚状体发生及植株再生因素的研究.广西植物,1999,19:246-250
    20.李惠贤,杨为芳.入世后广西木薯产业发展的对策.广西农业科学,2002:97-99
    21.李林光,孙清荣,贺桂香.60Co-γ射线辐射对苹果离体叶片不定梢再生及芽生长的影响.山东农业科学,2004,3:36-38
    22.李琰,王冬梅,姜在民,唐锐.培养基及培养条件对杜仲愈伤组织生长及次生代谢产物含量的影响.西北植物学报,2004,24:1912-1916
    23.李造哲,马青枝.八种紫花苜蓿品种材料的氨基酸分析.内蒙古草业,1997,1:47-48.
    24.李正超,邱庆树.60Co-γ射线辐照改良兰娜型花生的性状选择.核农学报,1998,1:200-203
    25.梁五生,潘娟.应用分光光度法测定植物组织中的氰化物含量.浙江大学学报,2004,30:226-228
    26.刘璐璐,柴明良,徐晓薇,李方.Y射线辐照对春兰根状茎生长及抗氧化酶活性的影响.核农学报,2008,22:23-27
    27.陆璃,吕金印,刘军,高俊凤.60Co-Y射线辐照对小麦种子根尖细胞有丝分裂的影响.西北农林科技大学学报,2005,33:57-62
    28.陆柳英,朱文丽,莫饶,李开绵,陈志林.化学诱变筛选木薯抗寒突变体的初步研究.广西农业科学,2007,38:499-503
    29.马国华,许秋生,羡蕴兰.从木著嫩叶直接诱导初生体细胞胚胎发生和芽的形成.植物学报,1998,40:503-507
    30.庞基良,林波,梁海曼.激素、光照对仙客来叶片愈伤组织诱导、分化及试管苗生长的影响.园艺学报,1994,21:103-104
    31.钱晓薇.乙酸铜对蚕豆根尖细胞致畸效应.细胞生物学杂志,2005.27:351-357
    32.任少雄,王丹,李卫锋,苏乾治,苏军,彭林华,王熙.60Co-γ射线辐射唐菖蒲鳞茎诱变育种试验.福建林业科技,2000,33:34-36
    33.史燕山,骆建霞,赵国防,秦桂萍,刘学恩.晚香玉60Co-γ射线辐射诱变适宜剂量的研究.园艺学报,2003,30:748-750
    34.宋炜,刘志增.诱变技术在植物育种中的应用.河北农业大学学报,2003,26:116-119
    35.孙嘏,傅玉兰.不同剂量的60Co-γ射线辐照对3个菊花品种扦插苗的影响.安徽农业科学,2006,34:3596-3597,3599
    36.孙雪雁,金世芳.高赖氨酸酵母菌的辐照选育.科技通报,1998,14:429-432
    37.王丹,李维,万洁,高勇.木薯醇睛酶cDNA的克隆及其在甲醇酵母中的初步表达.应用与环境生物学报,2004,10:428-431
    38.王丹,万洁,李维,高勇.木薯醇腈酶(HNL)cDNA在大肠杆菌中高效表达的初步研究. 四川师范大学学报,2006,29:360-363
    39.王晶,刘录祥,赵世荣,郭会君,赵林姝,陈文华.60Co-γ射线对菊花组培苗的诱变效应.农业生物技术学报,2006,14:241-244
    40.王昆林,张金良,王莹.激光和高压均强电场诱变育种研究-激光和高压均强电场辐射对水稻种子发芽率的影响.应用激光,2006,26:198-200
    41.王黎,张治国.软紫草愈伤组织的初步培养.广西植物,1994,14:345-348
    42.王希季,林华宝,苏连凡. 中国返回式卫星的搭载任务-空间生命科学试验.中国空间科学技术,1995,5:29-36.
    43.王玉萍,刘庆昌,李爱贤,森下敏和,洪重健.慢照射与茎尖培养相结合筛选甘薯同质突变体.作物学报,2002,28:18-23
    44.王月华,韩烈保,尹淑霞,王金来,程晓霞.γ射线辐射对高羊茅种子发芽及酶活性的影响.核农学报,2006,20: 66-69
    45.魏玉波,梁乃亭,布哈丽且木,王奉斌.60Co-γ射线辐照诱发水稻茎叶超绿突变体.核农学报,2003,17:409-411
    46.翁伯琦,徐国忠,郑向丽,应朝阳,黄毅斌.决明属牧草60Co-γ射线辐射后代的若干特性研究.中国农业科学,2005,38:2566-2570
    47.吴殿星,景晓阳.60Co-γ射线诱发的籼型温敏核不育水稻叶色突变系变异分析.作物学报,1999,25:64-69
    48.吴关庭,胡张华,陈笑芸,郎春秀,陈锦清,夏英武.高羊茅辐射敏感性和辐 照处理对其成熟种子愈伤诱导的影响.核农学报,2004,18:104-106
    49.吴立蓉,贺红,张燕玲,刘星,林小桦.60Co-γ射线辐照对广藿香离体培养的影响.核农学报,2008,22:14-17
    50.许银莲,强继业.60Co-γ射线辐射对粉掌铁兰某些生理指标的影响.种子,2005,24:26-27
    51.薛守旺,周洪生.利用花粉化学诱变创造玉米自交系研究.作物杂志,1998,6:6-8
    52.杨美纯,黄永才,李斌,莫远波.木薯良种“GR911”的组织培养.广西农业生物科学,2007,6:2-6
    53.叶力勤,王利英.60Co-γ射线辐照对甘草根茎产量的影响.宁夏农林科技,1997,3:40-41
    54.叶挺梅.60Co-Y射线辐射对粉掌铁兰某些酶活力的影响.科技通报,2005,21:405-406,412
    55.尹淑霞,王月华,周荣荣.60Co-γ射线辐射对黑麦草种子发芽及POD同工酶的影响.中国草地,2005,27:75-76,79
    56.曾旋睿,蒋芳玲,吴震,郭菊叶,靳慧卿60Co-γ射线辐照对大蒜试管苗增殖、生长及抗氧化特性的影响.西北农业学报,2009,6:212-216
    57.翟国伟,邹桂花,陶跃之.60Co-γ射线辐照高粱的生物学效应及适宜诱变剂量的研究.中国农学通报,2010,8:119-123
    58.张慧琴,谢鸣,蒋桂华,吴庆,孙崇波.60Co-γ射线对草莓组培苗诱变效应.浙江大学学报,2007,33:180-183
    59.张瑞勋,冯水英,祁永斌,陆艳婷,叶胜海,张小明.不同作物品种对60Co-γ射线的辐照敏感性.中国农学通报,2008,24:266-269
    60.张盛林,李川,刘佩瑛,高启国.60Co-γ射线辐射对花魔芋性状影响初探.中国农学通报,2004,20:183-18
    61.张小冰,郝建平.辐射诱变甜荞高产突变体过氧化物酶活性及其同工酶的研究.华北农学报,1998,13:71-73
    62.赵冰,李宏.60Co-γ射线处理对菜用枸杞的影响.首都师范大学学报,2008,29:31-37
    63.赵德修,李茂寅,邢建民,童哲.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响.植物生理学报,1999,25:127-132
    64.周荣仁,杨燮荣,余叔文.利用组织培养研究植物耐盐机理及筛选耐盐突变体的进展.植物生理学通讯,1989,7:11-19
    65.周柱华,邢燕菊.辐照玉米产量配合力不同世代测验的探讨.玉米科学,1998,6; 25-28
    66. Arias-Garzon D I, Sarria R, Gelvin S. A grobacterium t umaciens Plasmids for cassava transformation. Second International Scientific Meeting, Cassava Biotechnology Network (CBN Ⅱ),1995, Bogor, Indonesia,48-49
    67. Barker W G A method for in vitro culturing of potato tubers. Science,1953, 118:384-385
    68. Batista de Souza C, Carvalho L, Mattos Cascardo J. Comparative gene expression study to identify genes possibly related to storage root formation in cassava (Manihot esculenta Crantz). Proceedings of the 6th International Scientific Meeting of the Cassava Biotechnology Network,2004, Cali, Colombia:CIAT,153
    69. Bevan M, Barker R, Goldsbrough A, Jarvis M., Kavanagh, T and Iturriaga GThe structure and transcription start site of a major potato tuber protein gene.Nucleic Acids Research,1986,14:4625-4638
    70. Bhagwat B, Vieira L G E, Erickson L R. Stimulation of in vitro shoot proliferation from nodal explants of cassava by thidiazuron, benzyladenine and gibberellic acid. Plant Cell, Tissue and Organ Culture,1996,46:1-7
    71. Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-245
    72. Cabral G B, Aragao F J L, Matsumoto K, Monte-Neshich D C, Rech L. Cassava tissue culture:multiple shoots and somatic embryogenesis. In:Roca W, Thro A, eds, Proceedings of the International Scientific Meeting of the Cassava Biotechnology Network. Proceedings of the International Scientific Meeting. Cali, Colombia: CIAT Press,1993,180-184
    73. Cabral G B, Carvalho L J C B. The formation of storage root in cassava. In: Carvalho L, Thro A, Duarte Vilarinhos A eds., Proceedings of the 4th International Scientific Meeting of the Cassava Biotechnology Network. Proceedings of the 4th International Scientific Meeting. Brasilia, Brazil:EMBRAPA Recursos Geneticose Biotecnologia,2000,345-356
    74. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceeding of the National Academy of Sciences of the United States of America,2004,101:9909-9914
    75. Chatterjee A, Porterfield D M, Smith P S, Roux S J. Gravity-airectea calcium current in germinating spores of Ceratopteris richardii. Planto,2000,210:607-610
    76. Chen F, Fu Y, Wang D, Gao X, Wang L. The effect of plant growth regulators and sucrose on the micropropagation and Microtuberization of Dioscorea nipponica Makino. Journal of Plant Growth Regulation,2007,26:38-45
    77. Chen Yongqin, Fan Jinyu, Yi Fei, Zhongxun Luo and Yunsheng Fu. Rapid clonal propagation of Dioscorea zingiberensis. Plant Cell, Tissue and Organ Culture,2003, 73:75-80
    78. Cheng P and Poulton J E. Cloning of cDNA of Prunus serotina (R)-(+)-Mandelonitrile Lyase and Identification of a Putative FAD-Binding Site. Plant and Cell Physiology,1993,34:1139-1143
    79. Coleman W K, Donnelly D J, Coleman S E. Potato microtubers as research tools:A review. American Journal of Potato Research,2001,78:47-55
    80. Danso K E, Ford-Lloyd B V. Induction of high-frequency somatic in cassava for cryopreservation. Plant Cell Reports,2002,21:226-232
    81. Du B, Zhanga W, Liua B, Hua J, Weia Z, Shia Z, Hea R, Zhua L, Chena R, Hanb B, Hea G. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceeding of the National Academy of Sciences of the United States of America,2009,106:22163-22168
    82. Finnie S J, Powell W, Dyer A F. The effect of carbohydrate composition and concentration on another culture response in barley (Hordeum vulgare L). Plant Breeding,1989,103:110-118
    83. Friebe B, Zhang P, Nasuda S, Gill BS. Characterization of a knock-out mutation at the Ge2 locus in wheat. Chromosoma,2003,111:509-517
    84. Groll J, Gray V M, Mycock D J. Development of cassava (Manihot esculenta Crantz) somatic embryos during culture with abscisic acid and activated charcoal. Joural of Plant Physiology,2002,159:437-443
    85. Groll J, Mycock D J, Gray V M, Laminski S. Secondary somatic embryogenesis of cassava on picloram supplemented media. Plant Cell, Tissue and Organ Culture, 2001,65:201-210
    86. Guan Mei,Li Xun. Effeet of 12C heavy ion beam irradiation on rape seed(Brassiea napus). Proceedings of the 12th International Rapeseed Congress,2007,1:306-312
    87. Hagen U. Radiation biology in space:A critical review. Advances in Space Research, 1989,9:3-8
    88. Halevy AH, Biran I. Hormonal regulation of tuberization in Dahlia. Acta Horticulturae,1975,47:319-330
    89. Hankoua B B, Ng S Y C, Fawole I, Puonti Kaerlas·J, Pillay M, Dixon A G O. Regenration of a wide range of African cassava genotypes via shoot organgenesis from cotyledons of maturing somatic embryos and conformity of the fileld-established regenerants.Plant Cell, Tissue and Organ Culture,2005,82: 221-231
    90. Hasslacher M, Schall M, Hayn M, Griengl H, Kohlwein S D, Schwab H. Molecular cloning of the full-length cDNA of (S)-hydroxynitrilelyasefrom hevaea brasiliensis functional expression in Escherichia coli and saccharomyces cerevisiae and identification of an active site residue. The American Society for Biochemistry and Molecular Biology,1996,271:5884-5899
    91. Hernn Ceballos, Teresa Snchez, Kay Denyer, Adriana P, Tofio, Elvia A. Rosero, Dominique Dufour, Alison Smith, Nelson Morante, Juan C. Prez and Brendan Fahy Induction and Identification of a Small-Granule, High-Amylose Mutant in Cassava (Manihot esculenta Crantz). Journal of the Science of Food and Agriculture,2008, 56:7215-7222
    92. Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S. Cell wall changes involved in the atomorphie curvature of rice coleapfilea under microgradty eonditiom in space. Plant Reports,2004,117:449-455
    93. Hughes J, Carvahlo F, Hughes M A. Purification, characterization and cloning of hydroxynitrile lyase from cassava (Manihot esculenta Cranz). Archieves of Biochemistry and Biophysics,1994,311:496-502.
    94. Hughes J, Keresztessy Z, Brown K, Suhandono S, Hughes M A. Genomic organization and structure of alpha-hydroxynitrile lyase incassava (Manihot esculenta Crantz). Archieves of Biochemistry and Biophysics,1998,356:107-116
    95. Hughes J, Lakey I H, Hughes M.A. Productionand characterization of a plant hydroxynitrilelyase in Escherichia Coli. Biotechnology and Bioengineering.1997, 53:332-338
    96. Hughes M A, Brown K, Pancoro A, Murrray B S, Oxtoby E, Hughes J. A molecular and biochemical analysis of the structure of the cyanogenicbeta-glucosidase (linamarase) from cassava(Manihot esculenta Cranz). Archieves of Biochemistry and Biophysics,1992,295:273-279.
    97. Ihemere U, Arias-Garzon D, Lawrence S, and Sayre R. Genetic modification of cassava for enhanced starch production. Plant Biotechnlogy Journal.2006,4: 453-465
    98. Kartha K K, Gamborg O L, Constabel F, Shyluk JP. Regeneration of cassava plants from apical meristems. Plant Science Letters.1974,2:107-113
    99. Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408
    100.Khuri S, Moorby J. Investigations into the role of sucrose in potato cv Estima microtuber production in vitro. Annals of Botany,1995,75:295-303
    101.Konan N K, Carcamo R, Beachy R N, Fauquet C, Schopke C. An efficient mass propagation system for cassava(Manihot esculenta) based on nodal explants and axil lary bud-derived meristems. Plant Cell Reports,1997,16:444-449
    102.Konan N K, Sangwan R S, Sangwan, Noreel B S. Efficie nt in vitro shoot regeneration systems in cassava(Manihot esculenta). Plant Breed,1994,113: 227-236
    103.Konan N K, Sangwan R S. Sangwan-Norreel B S. Somatic embryogenesis from cultured mature cotyledons of cassava(Manihot esculenta Crantz):Identification of parameters influencing the frequency of embryogenesis. Plant Cell, Tissue and Organ Culture,1994 b,37:91-102
    104.Kordyum E L.Calcium signaling in plant cells in altered gravity. Advances in Space Research,2003,32:16-21
    105.Kuhlmann U, Foroughi-Wehr B. Production of doubled haploid lines in frequencies sufficient for barley breeding programs. Plant Cell Reports,1989,8:78-81
    106.Kuroki G W and Conn E E. Mandelonitrile lyase from Ximenia americana L. stereospecificity and lack of flavin prosthetic group. Proceeding of the National Academy of Sciences of the United States of America,1989,86:6978-6981
    107.Li H Q, Guo J Y, Huang Y W, Liang C Y, Liu H X, Potrykus I, Puonti-Kaerlas J. Regeneration of cassava plants via shoot organogenesis. Plant Cell Reports,1998, 17:410-414
    108.Li H Q, Huang Y W, Liang C Y, Liu H X, Potrykus I, Puonti-Kaerlas J. Improvement of plant regeneration from cyclic somatic embryos in cassava. In:Carvalho L, Thro A eds., Cassava Biotechnology Network. Proceedings of the International Scientific Meeting. Bogor. Indonesia:CIAT Press,1995,150:289-302
    109.Li H Q, Huang Y W, Liang C Y, Liu H X, Potrykus I, Puonti-Kaerlas J. Regeneration of cassava Plants Via shoot organogenesis. Plant Cell Reports,1998,17:410-414
    110.Li H Q, Sautter C, Potrykus I, Puonti-Kaerlas J. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology,1996,14:736-740
    111.Liu Z, Park B J, Kanno A, Kameya T. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding,2005,16:189-197
    112.Loomis R S, Torrey J G. Chemical control of vascular cambium initiation in isolated radish roots. Proceedings of the National Academy of Sciences of the USA,1964,52: 3-11
    113.Lu Z X. Effect of types and concentrations of carbon sources on calli growth. Plant Physiology Commun,1981,6:1-5
    114.Ma G H. Efects of cytokine insand auxins on cassava shoot organ ogenesis and somatic embryo genesis from somatic embryo explants. Plant Cell, Tissue and Organ Culture,1998,54:1-7
    115.Ma Guohua, Xu Qiusheng. Induction of somatic embryo genesis and adventitious shoots from immature leaves of cassava. Plant Cell, Tissue and Organ Culture,2002, 70:281-288
    116.Mago R, Spielmeyer W, Lawrence G J, Lagudah E, Ellis J G, Pryor A J. Resistance genws for rye Stem rust (SrR) and barley powdery midew (Mla) are located in syntenie regions On short arm of chromosome. Genome,2004,47:112-121
    117.Maluszynski M. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica,1995,85:303-315
    118.Mantell S H, Haque S Q, Whitehall A P. Clonal multiplication of Dioscorea alata L and Dioscorea rotundata Poir yams by tissue culture. Journal of Horticultural Science,1978,53:95-98
    119.Mantell S H, Hugo S A. Effects of photoperiod, mineral strength, inorgan ic ammonium, sucrose and cytokinin on root, shoot and microtuber development in shoot cultures of Dioscorea alata L and D. bulbifera Lyams. Plant Cell, Tissue Orgen Culture,1989,16:23-37
    120.Mathews H, Schopke C, Carcamo R. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports,1993,12:328-333
    121.Medina R D, Faloci M M, Gonzalez A M, Mroginski LA. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta Crantz) can behave like storage organs. Annals of Botany,2007,6:1-15
    122.Murashige T, Skoog F. A revised medium for rapid growth.and bioassays with tobacco tissue cultures. Physiology Plant,1962,15:473-497
    123.Mussio I, Chaput H, Serraf I, Ducreux G, Sihachakr D. Adventitious shoot regeneration from leaf explants of an Africanclone of cassava(Manihot esculenta Crantz) and analysis of the confromity of regenerated plants. Plant Cell, Tissue and Organ Culture,1998,53:314-318
    124.Ng S Y C. In vitro tuberization in white yam(Dioscorea rotundata Poir). Plant Cell/Tissue and Organ Culture,1988,14:121-128
    125.Ni D X, Deng Z X. The regulation of phytohormone (plant hormone) in gene expression. Plant Physiol Commun,1992,28:462-469
    126.Osuntokun B O. Cassava diet, chronic cyanide intoxification and neuropathy in Nigerian Africans. World review of nutrition and dietetics,1981,36:141-173
    127.Pan R Z. Phytophysiology,4 th edition. Beijing, China:High Education Press.2001, 176-186
    128.Puonti-Kaerlas J, Frey P, Sautter C. Development of meristem gene transfer techniques for cassava. Proceedings of the 3rd International Scientific Meet of the Cassava Biotechnology Network,1997, Kampala, Ugandal,55
    129.Puonti-Kaerlas J. Cassava biotechnology. In:Tombs MPed., Biotechnology and genetic engineering reviews. Biotechnology and genetic engineering meeting,1998, Andover, UK,329-364
    130.Raemakers C J J M, Amati M, Starisky G, Jacobsen E, Visser R G F. Cyclic somatic embryogenesis and plant regeneration in cassava. Annals of Botany,1993b,71: 289-294
    131.Raemakers C J J M, Bessembinder J J E, Staritsky G. Induction, germination and shoot development of somatic embryos in casssava. Plant Cell, Tissue and Organ Culture,1993 a,33:151-156
    132. Raemakers C J J M, Schavemaker C M, Jacobsen E, Visser R G E. Improvements of cyclic somatic embryogenesis of cassava (Manihot eseulentrz Crantz). Plant cell reports,1993b,12:226-229
    133.Raemakers C J J M. Primary and cyclic somatic embryogenesis in cassava (Manihot esculenta Crantz). PhD theasis. Agricultural University of Wageningen, Netherlands,1993
    134.Raemakers K, Jacobsen E, Visser R. The use of somatic embryogenesis for plant propagation in cassava. MotBiotechnol,2000,14:215-221
    135.Raemakers K, Pereira I, Koehorst H, Putten v, Visser R. Indirect Somatic Embryogenesis in cassava for Genetic Modification Purposes. Plant cell culture protocols/Methods in molecular biology,2006,101-109
    136.Rogers J. Studies on Manihot esculenta Crantz(cassava)and related species. Bull Turrey Botanical,1963,90:42-54
    137.Sarria R A, Gomez A, Catano M. Towards the development of Agrobacterium tumefaciens and Particle bombardment-mediataed cassava transformation. In: Roca W M, Thro A M eds., Proceedings of the 1st International Scientific Meet of the Cassava Biotechnology Network. Proceedings of the 1st International Scientific Meeting of the Cassava Biotechnology. Cartagena Colombia:CIAT,1993a,216-221
    138.Sarria R A, Torres E, Balcazar N. Progress in Agrobacterium-mediated transformation of cassava(Manihot esculenta Crantz). Proceedings of the 2nd International Scientific Meeting,1995, Bogor, Indonesia,241-44
    139.Schopke C N, Taylor N, Catcamo R, Konan N K, Marmey P, Henshaw G G, Bcachy R N, Fauquet C. Regeneration of transgenic cassava plants(Manihot esculenta Crantz) from microbombarded embryogenlc suspension cultures. Nature Biotechnology,1996,14:731-735
    140.Siritunga D, Arias-Garzon D, White W, Sayre RT. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotechnology Journal,2004,2:37-43
    141.Siritunga D, Sayre R T. Generation of cyanogens-free transgenic cassava. Planta, 2003,217:367-373
    142.Skagen E B, Iversen T H. Effect of simulated and real weigh-lessness on early regeneration stages of Brassiea napus protoplasts. In Vitro Cellular and Developmental Biology,2000,36:312-318
    143.Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultivated in vitro. Socliety Expacta Biology,1957,1:118-130
    144.Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciotti D. A Reverse Genetic, montransgenic approach to wheat Crop Improvement by TILLIN. Nature Biotechnology,2005,23:75-81
    145.Sofiari E, Raemakers C J J M, Kanju E. Comparison of NAA and 2,4-D induced somatic embryos in cassava. Proceedings of the 3rd International Scientific Meeting of the Cassava Biotechnology Network,1997, Kampala, Uganda:African Crop Science,109-118
    146.Song R M. Biochemical and genetic study on somatic embryogenesis. Overseas Genet Breeding,1985,1:31
    147.Stamp G A, Henshaw G G. Somaticembryogenesis in cassava. Zeitschrift fur Pfl, anzenphysiologie,1982,105:183-187
    148.Stanislav A, kin G, Alla A, Oudalova, Kim J K, Dikarev V G, Dikareva N S. Cytogenetic effect of low dose γ-radiation in Hordeum vulgare seedlings:non-linear dose-effect relation ship. Radiation and Environmental Biophysics,2007,46:31-41
    149.Sudarmonovati E, Henshaw G G. The induction of somatic embryogenesis of recalcitrant cassava cultivars using picloram and dicamba. In:Roca W M, Thro A M, Proceedings of the 1st International Scientific Meet of the Cassava Biotechnology Network. Proceedings of the 1st International Scientific Meetting, 1993, Cartagena, Coloma bia,123:128-133
    150.Szabados L, Hoyos R, Roca W. In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Report,1987 b,6:248-251
    151.Taylor N J, Clarke M, Henshaw G G. The induction of somatic embryogenesis in fifteen African and one south American cassava cultivars expression in cassava root and leaf tissues. In:Roca W M, Thro A M ed., Proceedings of the 1st International Scienfific Meet of the Cassava Biotechnology Network. Proceedings of the 1st International Scienfific Meeting, Cartagena, Cololmbia:CIAT Press,1993,123: 134-139
    152.Taylor N J, Edwards M, Kiernan R J, Davey C D M, Blakesley D, Graham G, Henshaw. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Biotechnology,1996, 14:726-730
    153.Terezinha F, Bastos J L P, Ponte L F A, Juca T L. Somatic Embryogenesis in cassava Genotypes from the Northeast of Brazil. Brazilian archives of biology and technology,2007,50:201-206
    154.Torrey J G, Loomis R S. Auxin-cytokinin control of secondary vascular tissue formation in isolated roots of Raphanus. American Journal of Botany,1967,54: 1098-1106
    155.Tylleskar T, Cooke R, Banea M, Poulter N, Bikangi N, Rosling H. Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. The Lancet, 1992,339:208-211
    156.Wagner U G, Hasslacher M, Griengl H, Schwab H, Kratky C. Mechanism of cyanogenesis:the crystal structureof hydroxynitrile lyase from Hevea brasiliensis. Structure,1996,4:811-822
    157.Wajant H, Riedel D, Benz S, Mundry K W. Immunocytological localization of hydroxynitrile lyases from Sorghum bicolor L. and Linum usitatissimum L. Plant Science,1994,103:145-154.
    158.Webster B D, Radin J W. Growth and development of cultured radish roots. American Journal of Botany,1972,59:744-751
    159.White W L B, Arias-Garzon D, McMahon J M, Sayre R T. Cyanogenes is in cassava: the role of hydroxynitrilelyase in root cyanide production. Plant Physiology,1998, 116:1219-1225
    160.Woodward B, Puonti-Kaerlas J. Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica,2001,120:1-6
    161.Xie Deyu, Hong Yan. In vitro regeneration of Acacia mangium via organogenesis. Plant Cell, Tissue and Organ Culture,2001,66:167-173
    162.Xu S Y, Carlson M, Engstrom A, Garcia R, Peterson C G B, Venge P. Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scandinavian Journal of Clinical'and Laboratory Investigation,1994,54:365-376
    163.Yoko Gozu, Mineyuki Yokoyama, Masahiro Nakamura, Ryujiro Namba, Katsuyuki Yomogida, Mitsuo Yanagi and Shoji Nakamura. In vitro propagation of Iris pallida. Plant Cell Reports,1993,13:12-16
    164.Yu W C, Joyce P J, Cameron D C, Mcown B H. Sucrose utilization during potato microtuber growth in bioreactors. Plant Cell Reports,2000,19:407-413
    165.Zhang P, Jaynes J, Potrykus I, Gruissem W, Puonti-Kaerlas J. Transfer and Expression of an Artificial Storage Protein (ASP1) Gene in Cassava (Manihot Esculenta Crantz). Transgenic Research,2003,12:243-250
    166.Zhang P, Legris G, Coulin P, Potrykus I, Gruissem W, Puonti-Kaerlas J. Production of stably transformed cassava Plants via Particle bombardment. Plant Cell Reports, 2000,19:939-945
    167.Zhang P, Phansiri S, Puonti-Kaelas J. Improvemet of cassava shoot organogenesis by the use of silver nitrate invitro. Plant Cell, Tissue and Organ Culture,2001,67: 47-54
    168.Zhang P, Vanderschuren H, Futterer J, Gruissem W. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnology Journal,2005,3:385-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700