用户名: 密码: 验证码:
抗甜瓜枯萎病生防菌及其生物有机肥的生防机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是世界十大水果之一,广泛种植于温带和热带地区,中国甜瓜种植面积和产量分别占世界的48.5%和56.3%。甜瓜枯萎病是一种维管束病害,由甜瓜专化型枯萎病菌尖孢镰刀菌(Fusarium oxysporum f sp melonis)引起,在甜瓜全生育期均可发生。近20年来,随着保护地栽培方式大范围推广,连作甜瓜枯萎病发生更趋严重。甜瓜枯萎病的防治是一种世界性的难题,传统的化学及农业防治措施通常会带来环境问题或成本高、劳动强度大等不能成功的应用于农业生产。目前,对于生物防治甜瓜枯萎病虽有报道,但仅局限于生防效果方面,对机理方面研究甚少,另外,可供商品化开发应用的生防产品并不多。
     本论文在分离获得5株对甜瓜枯萎病原菌具有高效拮抗作用细菌的基础上,研制出一种抗甜瓜枯萎病的专用生物有机肥,通过盆栽、大田及室内试验研究了其生防效果与机理。采用绿色荧光蛋白标记技术对生防菌株枯草芽孢杆菌Y-IVI进行了标记,并通过盆栽及室内检测试验研究了其对甜瓜生长的促生作用及在根际土壤及植株体内的定殖情况。
     主要结果如下:
     1.甜瓜枯萎病致病菌的分离是生物防治此病害的前提工作。从安徽和县采集甜瓜枯萎病发病植株,用尖孢镰刀菌选择性培养基分离获得致病菌。通过菌落形态及大、小型分生孢子,厚垣孢子显微观察结果表明分离到的菌株为尖孢镰刀菌。根据柯赫法则用孢子悬液接种甜瓜幼苗20 d后,枯萎病发病率达到80%。因此,可以确定分离得到的尖孢镰刀菌为甜瓜枯萎病致病菌。以其为靶标菌株,利用平板对峙法从健康甜瓜植株根际土壤中初筛获得对枯萎病病原菌有显著拮抗作用的5株细菌(Y-6,Y-8,Y-10, Y-12, Y-IVI)及2株真菌(A1,P1)。5株拮抗细菌发酵液对甜瓜种子萌发均无抑制作用。与对照相比,经菌株Y-10, Y-IVI处理的甜瓜种子发芽率分别提高了10%和5%,胚根长度显著高于其余3株拮抗细菌发酵液的处理。拮抗菌株发酵液对病原菌的生长均有显著的抑制作用,菌株Y-6、Y-8、Y-10、Y-12和Y-IVI发酵液浓度为10%时对病原菌的抑制率分别为54%、67%、75.3%、68%和72.4%,表明菌株Y-10, Y-IVI抑菌效果强于其它菌株。室内检测结果表明菌株Y-IVI可产生铁载体、吲哚乙酸和氨等促生类物质。经生理生化及16S rDNA分子鉴定,确定Y-10, Y-IVI分别为多粘类芽孢杆菌(Genbank accession number GQ849013)和枯草芽孢杆菌(Genbank accession number GQ475486).
     2.通过盆栽试验研究了堆肥和拮抗菌株Y-IVI、Y-10、Al和P1固体二次发酵生产的生物有机肥对甜瓜枯萎病的生防效果。结果表明:施用生物有机肥降低了枯萎病发病率并提高了植株生物量,营养钵育苗和盆钵移栽时均施用生物有机肥的处理甜瓜枯萎病发病率为20%,而对照的发病率为80%;施用生物有机肥显著降低了甜瓜植株茎和根系中病原菌的数量,营养钵育苗和盆钵移栽时均施用生物有机肥Ⅱ的处理甜瓜植株茎和根系中病原菌的数量分别为2.27×103和6.67 x 103CFUg-1FW,而对照植株茎和根系病原菌数量分别为8.17×104和3.67 x 104 CFU g-1FW,病原菌分别降低了97%和82%;施用生物有机肥改变了土壤微生物区系,根际土壤中细菌、放线菌数量与对照相比显著增加,而真菌和病原菌数量大大减少;营养钵育苗和盆钵移栽时均施用生物有机肥的甜瓜植株叶片中与抗病相关的酶活性低于对照。总之,营养钵育苗和大田移栽时均施用生物有机肥可显著降低甜瓜枯萎病发病率,提高产量并改善土壤微生物区系。之后,用绿色荧光蛋白标记Y-IVI(GY-IVI)研究了其对甜瓜生长的促生作用及其在甜瓜植株体内及根际土壤中定殖的情况。结果表明:种子和土壤均经过标记菌株GY-IVI处理(GY-IVIs+GY-IVIp)的甜瓜植株地上部、根系干重等显著高于对照;接种30 d后处理GY-IVIs+GY-IVIp根际土壤中标记菌株GY-IVI仍维持在108 CFU g'DW,与接种时的浓度相比并无显著性变化,而甜瓜植株茎及根系内部标记菌株GY-IVI的含量分别为106和107 CFU g-1DW,在对照处理的根际及植株体内均未检测到标记菌株。综上所述,菌株GY-IVI能促进甜瓜植株的生长并能够稳定的定殖在根际土壤和植株内部而对植物产生促生作用。
     3.室内试验结果表明:拮抗菌株B.subtilis Y-IVI发酵液稀释10倍后对病原菌仍具有拮抗作用;发酵液中产生的抗真菌活性物质耐酸,耐热,在pH 2处理24h或80℃水浴2h后仍有拮抗作用,并且对胃蛋白酶和蛋白酶K稳定。用HCl沉淀法从发酵液中提取出脂肽类粗提物,此粗提物对多种病原真菌具有抑制作用。用高效液相色谱反复纯化粗提物,最终收集到2个对病原真菌具有较强抑制作用的色谱峰。通过串联质谱仪测定其分子量分别为1028.7、1042.7、1056.7和1463、1477、1491 Da,这两组物质分别属于伊枯草菌素A和芬枯草菌素。菌株Y-IVI在Landy培养基中产伊枯草菌素最高浓度为89.75 mg-1。
     4.通过盆栽试验研究了菌株Y-IVI制成的生物有机肥(BIO)对甜瓜枯萎病的防效及其生防机理。结果表明,营养钵育苗和盆钵移栽时均施用BIO的处理与对照相比,甜瓜枯萎病发病率降低了91%,干重增加了3倍。施用BIO能显著降低病原菌在植株茎、根际土及非根际土中的数量,而且拮抗菌株Y-IVI能成功定殖在甜瓜植株茎及根际土壤中,移栽1 0-60 d内拮抗菌株Y-IVI在根际土壤中的数量维持在107CFUg-1土。营养钵育苗施用BIO的甜瓜根际土壤中抗菌脂肽类物质iturin A的含量为78μg·g-1FW。移栽10 d时施用BIO的甜瓜植株叶片中水杨酸含量为17.5μg·g-1FW,显著高于对照。综上所述,施用BIO能有效地防治甜瓜枯萎病,其主要机制是拮抗菌株Y-IVI能成功的定殖在甜瓜植株体内及根际土壤中,防止病原菌的入侵,且能在甜瓜植株根际产生抗病原真菌的活性物质iturin A以抑制病原菌生长繁殖。此外,Y-IVI能诱导甜瓜产生系统抗性。我们首次从植物-土壤-生防菌-病原菌相互作用的根际土壤中成功检测并定量了抗菌脂肽类物质。
Muskmelon (Cucumis melo. L) is one of the ten most popular fruits in the world and has been grown over temperate and tropical lands. Muskmelon planting in China accounts for 48.5% of the total world muskmelon cropping area and 56.3% of its production. Muskmelon fusarium wilt, a vascular wilt, which is caused by soil-borne pathogen Fusarium oxysporum f.sp melonis that infects the crop in the whole growth periods, is always a disaster for farmers all over the world. Thus control of the disease is an urgent need worldwidely. In recent twenty years, the severity of the disease in China becomes heavier than ever due to wide replanting problems from intensive farming. While chemical control is challenged by environment and human safety, farming control such as crop rotation and field management is usually time-and labor-consuming. Therefore, biological control has gathered much attention across many research fields to replace chemical inputs with environment-friedly biotechnological products. However, few reports have been found on the biocontrol mechanisms. Biocontrol products are also rare in market.
     In the present study, we developed a new bio-organic fertilizer to control muskmelon fusarium wilt disease and then investigated its biocontrol mechanisms on muskmelon by pot experiments and lab tests. Furthermore, we tagged the biological agent of Bacillus subtilis Y-IVI by green fluorescent protein technique to facilitate enumeration of its real population from complex environments. Pot experiment and series of lab tests were carried out to investigate Y-IVI's promotion effects on muskmelon growth and its colonization ability in the rhizosphere and the interior of plant tissues.
     The main results obtained were listed as follows:
     1. Isolation of Fusarium wilt pathogen is the fundamental prerequisite step for biological control of the wilt disease. The pathogen was isolated from tissue of a diseased muskmelon plant (collected from Hexian County, Anhui Province, China) using Fusarium-selective medium. Based on the mycelium, conidiophores and hlamydospore characteristics, the isolated fungus was identified as Fusarium spp. Furthermore, the isolated Fusarium spp was confirmed as the responsible pathogen by procedures described in Koch's postulation. The wilt disease incidence was 80% after inoculation of the conidia suspension 20 days. Five bacteria (Y-6, Y-8, Y-10, Y-12 and Y-IVI) and two fungi (Al and Pl) with strong antagonistic activities against Fusarium oxysporum f.sp melonis (FOM) were isolated from healthy muskmelon rhizosphere soil by using in vitro antagonism tests. The filtrate suspensions of 5 antagonistic bacteria have no negative effect on muskmelon seed germination. The germination rate of seeds treated with filtrate suspension of Y-10 and Y-IVI were increased by 10% and 5% compared with control, respectively, in addition, the radical length in these two treatments was significantly higher compared with others. The culture filtrates of antagonistic bacteria can highly inhibit pathogen growth in vitro antagonistic tests. The pathogen inhibition rate was 54%,67%,75.3%,68% and 72.4% corresponding to 10% filtrate suspension concentration of microbes Y-6, Y-8, Y-10, Y-12 and Y-IVI, respectively. These results showed that microbes of Y-10 and Y-IVI have stronger inhibition effect on FOM and could be used as potential biocontrol agents. Laboratory tests showed that B. subtilis Y-IVI can produce indole acetic acid, siderophores and ammonia. Based on morphological and biochemical characteristics and 16S rDNA technology, Y-10 and Y-IVI were respectively identified as Paenibacillus polymyxa (Genbank accession number GQ849013) and Bacillus subtilis (Genbank accession number GQ475486). The two antagonistic fungi microbes Al and PI were tentatively identified as Aspergilis spp and penicillum spp, respectively.
     2. Pot experiments were performed to investigate the effects of different bio-organic fertilizers (BIOs) made from organic fertilizer and different antagonistic microbes(Y-IVI, Y-10, Al and PI). BIOs decreased the incidence of fusarium wilt disease and increased melon yield. The disease incidence of treatments with double application (BIOs applied both in the nursery and the pot soil) was 20%, much lower than control (80%). Application of BIOs strongly reduced the number of pathogen colony-forming units (CFU) in stems and roots of melon. Pathogen populations were 2.27×103 and 6.67×103 CFU g"1 FW (fresh weight) on BIOII-treated stems and roots, respectively, and 8.17×104 and 3.67 x 104 CFU g-1 FW on control stems and roots, respectively; i.e., CFUs were reduced by 97% and 82%, respectively. Microbial community structure was ameliorated by all BIOs. The number of bacteria and actinomycota in rhizosphere soil increased markedly under all BIO applications compared to control. In contrast, pathogen and fungal density was dramatically higher in the rhizosphere of control plants. The activities of defense enzymes in the leaves of melons receiving double application of BIOII were lower than those of control plants. In conclusion, the most effective treatment was double application of BIOII, which minimized the incidence of wilt disease, maximized biomass production, and altered microbial community structure. In addition, greenhouse experiments were carried out to investigate the abilities of Bacillus subtilis Y-IVI to promote plant growth and to colonize the rhizosphere and interior tissues of muskmelon. The inoculation of soil with green fluorescent protein-tagged Y-IVI (GY-IVI) significantly increased plant shoot and root dry weights as compared with the noninoculated soils. The inoculation of soil with B. subtilis GY-IVI maintained approximately 108 colony-forming-units (CFU) of GY-IVI per gram of dry rhizosphere soil for one month. The GY-IVI recovered from the interior of crowns and roots in the inoculated soil were 106 and 107 CFU g-1 dry weight, respectively, suggesting that GY-IVI acted as an endophyte.
     3. The culture filtrate of B. subtilis Y-IVI has antifungal activity even after diluted to 10% of its suspension. The compounds in extracts were aciduric by adjusting pH to 2 for 24 h and thermostable by heating at 80℃for 2 h. They were also stable to digestion by pepsin and Proteinase K. The crude lipopeptides from culture filtrate were further extracted by HCl precipitation and purified by high-performance liquid chromatography (HPLC). Two peaks that were detected by HPLC had antifungal activities. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis showed that the mass spectra of the two peaks were characterized by two series of homologous ion peaks, one with molecular weights of 1028.7,1042.7 and 1056.7 and the other with molecular weights of 1463,1477 and 1491. The two series of compounds were ascribed to iturin A and fengycin, respectively. The maximum production of iturin by strain Y-IVI inoculated in Landy medium was 89.75 mg L-1. Fengycin production was not measured due to lack of its standard reagent. In conclusion, we provided biochemical evidence that strain Y-IVI was able to producing antifungal compounds and hence had great potential to be used in biological control of plant diseases.
     4. A bio-organic fertilizer (BIO) secondarily fermented with antagonistic strain Bacillus subtilis Y-IVI was used to control this disease. Pot experiments were carried out to investigate the efficacy and elucidate the biocontrol mechanisms of the disease. Application of BIO reduced the incidence of muskmelon wilt disease by 91% and significantly increased plant dry weight by 3.1 times compared with the control amended with nothing. The BIO treatment significantly decreased FOM densities in plant shoots, rhizosphere soil and bulk soil. The colony-forming-unit (CFU) of FOM in rhizosphere soil of the BIO treatment was 1000-fold lower than that in the control. The previously lab-screened bacterial strain, Y-IVI, could effectively colonize rhizosphere soil and plant shoots. The logarithmic CFU of strain Y-IVI maintained between 7.6 and 6.7 in rhizosphere soil sampled from 10 to 60 days after transplanting into the BIO treatment. The average concentration of antifungal lipopeptide Iturin A in the BIO treatment was 78.1μg·g-1 of fresh rhizosphere samples. Ten days after transplanting, the content of salicylic acid in BIO treated plant leaves was 17.5μg·g-1 fresh weight, which was significantly higher than that in the control which showed that the BIO can induce plant systemic resistance. In conclusion, BIO can effectively control muskmelon Fusarium wilt, possibly because the antagonistic microbes in BIO effectively colonized the rhizosphere and plant shoots to preclude pathogen invasion. Furthermore, the antagonistic microbes in BIO produce antifungal lipopeptides in the rhizosphere and induce plant systemic resistance at an early stage of attack by pathogens. We first checked and quantified rhizosphere production of iturin and surfactin by biocontrol agents under interactions of plant-pathogen-biocontrol agents.
引文
Adams, P.B., Fravel, D.R., Dynamics of Sporidiesmium, a naturally occurring fungal mycoparasite. In: Lumsden RD, Vaughn JL, eds. Pest management:biologically based technologies. Washington, DC, USA: Am. Chem. Soc.1993, pp:189-195
    Ahmad, F., Ahmad, I., Khan, M.S., Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res.2008,163:173-181
    Alabouvette, C., Fusarium-wilt suppressive soils from the Chateaurenard region: review of 10-years study. Agronomie 1986,6:273-284
    Alabouvette, C., Lemanceau, P., Steinberg, C., Recent advances in the biological control of Fusarium wilts. Pestic. Sci.1993,37:363-373
    Alabouvette, C., Olivain, C., Migheli, Q., Christian Steinberg, C., Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 2009,184:529-544
    Asghar, H.N. et al. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol. Fert. Soils 2002,35:231-237
    Baker, K.F., Snyder, W.C., Ecology of soil-borne plant pathogens, prelude to biological control. Los Angeles, CA, USA: University of California Press Berkeley.1965
    Bakker, P.A., Bakker, A.W., Warugg, J.D., Bioassay for studying the role of siderophores in short potato rotation. Soil Biol. Biochem.1987,19:443-449
    Backman, P.A., Sikora, R.A., Endophytes: an emerging tool for biological control. Biol. Control 2008, 46:1-3
    Bakker, P.A.H.M., Pieterse, C.M.J., van Loon, L.C., Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 2007,97:239-243
    Boddey, R.M. et al. Biological nitrogen fixation associated with sugarcane and rice: contribution and prospects for improvement. Plant Soil 1995,174:195-209
    Cella, A., Expression and quantification of firefly luciferase under control of Rhizobium miloiloti symbiotic promoters. J. Bioluminescence Chemiluminescence 1991,5:177-184
    Chan, Y.K., Savard, M.E., Reid, L.M., Cyr, T., McCormick, W.A., Seguin, C., Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat. BioControl 2008, DOI 10.1007/s10526-008-9201-x
    Chen, N., Hsiang, T., Goodwin, P.H., Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J. Microbiol. Meth.2003,53:113-122
    Chet, I., Baker, R., Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology 1981,71:286-290
    Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J., Kim, S.D., Roberts, D.P., Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biot.2008,80:115-123
    Compant, S. et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action, and future prospects. Appl. Environ. Microb.2005,.71:4951-4959
    Compant, S., Clement, C., Sessitsch, A., Plant growth-promoting bacteria in the rhizo-and endosphere of plants:Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem.2009, doi:10.1016/j.soilbio.2009.11.024
    Couteaudier, Y., Alabouvette, C., Quantative comparison of Fusarium oxysporum competitiveness in relation with carbon utilization. FEMS Microbiol. Ecol.1990,74:261-268
    Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., Tsien, R.Y., Understanding, improving and using green fluorescent proteins. Trends Biochem.Sci.1995,20(11):448-445
    De Boer, W., Verheggen, P., Klein Gunnewiek, P.J.A., Kowalchuk, GA., van Veen, J.A., Microbial community composition affects soil Fungistasis. Appl. Environ. Microb.2003,69:835-844
    De Cal, A., Garcl a-Lepe, R., Pascual, S., Melgarejo, P., Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato. Plant Pathol. 1999,48:260-266
    De'fago, G, Haas, D., Pseudomonads as antagonists of soil-borne plant pathogens:modes of action and genetic analysis. In:Bollag JM, Stotsky G, eds. Soil biochemistry. New York, USA: Marcel Dekker Inc,1990, pp:249-291
    Dilfuza, E., The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol.2007,36:184-189
    Drahos. Traek in green ombinant organis msinthe environment:p-galactosidase as a selective nonantibiotic marker for fluorescent pseudomonads. Bioresource Technol.1986,.4:433-444
    Duijff, B.J., Meijeran, J.W., Bakker, P.A.H.M., et al. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth. J. Plant. Pathol.1993,99:277-289
    Duijff, B.J., Pouhair, D., Olivain, C, Alabouvette, C., Lemanceau, P., Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WSC417r and by non-pathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol.1998,104:903-910
    Duijff, B.J., Recorbet, G., Bakker, P.A.H., Loper, J.E., Lemanceau, P., Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of non-pathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 1999,89: 1073-1079
    Eparvier, A., Alabouvette, C., Use of ELISA and GUS-transformed strains to study competition between pathogenic and non-pathogenic Fusarium oxysporum for root colonization. Biocontrol Sci. Techn. 1994,4:35-47
    Errampalli, D., Leung, K., Cassidy, M.B., Kostrzynska, M., Blears, M., Lee, H., Trevors, J.T., Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Meth.1999,35:187-199
    FAO. (Food and agriculture organization of the United Nations).Statistical Database, http://www.fao.org/. 2006
    Fravel, D.R., Larkin, R.P., Reduction of Fusarium wilt of hydroponically-grow basil by Fusarium oxysporum strain CS-20. Crop Prot.2002,21:539-543
    Fuchs, J.G, Moenne-Loccoz, Y., Defago, G, Non-pathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt of tomato. Plant Dis.1997,81:492-496
    Fugro, P.A., Kelaskar, A.J., Talathi, P.G., Carbendazim (Bavistin 50 WP) in management of fusarium wilt watermelon. Pestology 2002,26(3):32-34
    Gerlach, K.S., Bentley, S., Moore, N.Y., Aitken, E.A.B., Pegg, K.G., Investigation of non-pathogenic strains of Fusarium oxysporum for suppression of Fusarium wilt of Banana in Australia,28. In: Alabouvette C, ed. Second International Fusarium Workshop. Dijon, France: INRA-CMSE,1999, pp:54
    Ghosh, S., Penterman, J.N., Little, R.D., Chavez, R., Glick, B.R., Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol. Bioch.2003,41:277-281
    Glick, B.R., Patten, C.L., Holquin, G., Penrose, D.M., Biochemical and Genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London.1999
    Hameeda, B. et al, Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res.2008,163:234-242
    Hammerschmidt, R., Induced disease resistance: how do induced plants stop pathogens? Physiological and Molecular Plant Pathol.1999,55:77-84
    Han, J.G., Sun, L., Dong, X.Z., Cai, Z.Q., Sun, X.L., Yang, H.L., Wang, Y.S., Song, W., Characterization of a novel plant growth-promoting bacteria strain Delftia tsurnihatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol.2005,28: 66-76
    Ho, W.C., Ko, W.H., Soil microorganisms effects of environmental and edaphic factors. Soil Biol. Biochem.1985,17:167-170
    Hoffland, E., Hakulinem, J., Van Pelt, J.A., Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 1996,86:757-762
    Hosein, S.G., ,Millette, D., Butler, B.J., et al. Catabolic gene probe analysis of an aquifer microbial community degrading creosote-related polycyclic aromatic and heterocyclic compounds. Microbiol. Ecol.1997,34 (2):81-89
    Hou, X.W., Boyetchko, S.M., Brkic, M., Olson, D., Ross, A., Hegedus, D., Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biot.2006,72:644-653
    Inbar, J., Menendez, A., Chet, L., Hyphal interaction between Trihoderma Harzianum and Sclerotinia Sclerotiorum and its role in biological control. Soil Biol. Biochem.1996,28(6):757-763
    Jefferson, R.A., Burgess, S.M., Hirsh, D., β-glucuronidase from Escherichia coli as a gene fusion marker. Proc. Natl. Acak. Sci USA.1986,86:8447-8451
    Jones, E.E., Clarkson, J.P., Mead, A., Whipps, J.M., Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant pathol.2004,53:621-623
    Karlidag, H., Esitken, A., Turan, M., Sahin, F., Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 2007,114:16-20
    Katzube, K., Akasaka, Y., Nakatani, F., Biocontrol of Fusarium wilt of spinach by using nonpathogenic Fusarium oxysporum.2. Investigation of inoculation methods. Annals of Reporter Plant Protection North Japan 1994,445:72-75
    Khalid, A., Arshad, M., Zahir, Z.A., Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microb.2004,96:473-480
    Kloepper, J.W., Beauchamp, C.J., A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol.1992,38:1219-1232
    Knoester, M. et al. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant-Microbe Interact 1999, 8:720-727
    Kuc, J., Plant immunization and its applicability for disease control. In:Chet I, ed. Innovative approaches to plant disease control. New York, USA:John Wiley and Sons,1987, pp:255-274
    Kuklinsky-Sobral, J. et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol.2004,6:1244-1251
    Larkin, R.P., Fravel, D.R., Efficacy of various fungal and bacterial biocontrol organisms for the control of Fusarium wilt of tomato. Plant Dis.1998,82:1022-1028
    Larkin, R.P., Fravel, D.R., Mechanism of action and dose-response relationships governing biological control of Fusarium wilt of tomato by non-pathogenic Fusarium spp. Phytopathology 1999,89: 1152-1161
    Larkin, R.P., Hopkins, D.L., Martin, F.N., Suppression of fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease suppressive soil. Phytopathology 1996,86:812-819
    Larrainzar, E., O'Gara, F., Morrissey, J.P., Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu. Rev. Microbiol.2005,59:257-277
    Lee, S.C., Kim, S.H., Park, I.H., Chung, S.Y., Choi, Y.L., Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch. Microbiol.2007,188:307-312
    Lemanceau, P., Alabouvette, C., Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot.1991,10:279-286
    Lemanceau, P., Bakker, P.A.H.M., De Kogel, W.J., Alabouvette, C., Schippers, B., Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and Pseudobactin 358 upon pathogenic Fusarium oxysporum f.sp. dianthi. Appl. Environ. Microbiol.1993,59:74-82
    Li, L., Mo, M., Qu, Q., Luo, H., Zhang,, K.Q., Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant Pathol.2007,17:329-340
    Ling, N., Xue, C., Huang, Q.W., Yang, X.M., Xu, Y.C., Shen, Q.R., Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 2010,55:673-683
    Liu, X., Zhao, H., Chen, S., Colonization of maize and rice plants by Bacillus megaterium C4. Curr. Microbiol.2006,52:186-190
    Loannou, N., Poullis, C.A., Heale, J.B., Fusarium wilt of watermelon in Cyprus and its management with soil solarization combined with fumigation or ammonium fertilizers. Bulletin OEPP.2000,30 (2):223-230
    Lockwood, J.L., Fungistasis in soils. Biol. Rev.1977,52:1-43
    Lorang, J.M., Tuori, R.P., Martinez, J.P., Sawyer, T.L., Redman, R.S., Rollins, J.A., Wolpert, T.J., Johnson, K.B., Rodriguez, R.J., Dickman, M.B., Ciuffetti, L.M., Green fluorescent protein is lighting up fungal biology. Appl. Environ. Microbiol.2001,67:1987-1994
    Lu, Z.X., Tombolini, R., Woo, S., Zeilinger, S., Lorito, M., Jansson, J.K., In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol.2004,70:3073-3081
    Lubeck, M., Knudsen, I.M.B., Jensen, B., et al. GUS and GFP transformation of the biocontrol strain Clonostachys rosea Ik726 and the use of these marker genes in ecological studies. Mycol. Res. 2002,106(7):815-826
    Lugtenberg, B.J.J., Dekkers, L., Bloemberg, G.V., Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol.2001,39:461-490
    Luo, J., Ran, W., Hu, J., Yang, X.M., Xu, Y.C., Shen, Q.R., Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 2010,74:2039-2048
    Ma, Y., Chang, Z.Z., Zhao, J.T., Zhou, M.G, Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol. Control 2008,44:24-31
    Magie, R.O., Fusarium disease of gladioli controlled by inoculation of corms with non-pathogenic Fusaria. Proceedings of the Florida State Horticultural Society 1980,93:172-175
    Mall R.D, Hartz T.K, Use solarization to control Fusarium wilt of watermelon. Plant Dis.1986,70 (8): 762-766
    Mandeel, Q., Baker, R., Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 1991,81:462-469
    Manjula, K., Kishore, G.K., Podile, A.R., Whole cells of Bacillus subtilis AF1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can. J. Microbiol.2004,50(9):737-744
    Marques, A.P.G.C., Pires, C., Moreira, H., Rangel, A.O.S.S, Castro, P.M.L., Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem.2010, doi:10.1016/j.soilbio.2010.04.014
    Minuto, A., Migheli, Q., Garibaldi, A., Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot.1995,14:221-226
    Mishra, P.K. et al. Enhanced soybean(Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SBl in presence of Bacillus thuringiensis-KRl. Acta Agric. Scand. B Soil Plant Sci. 2009,59:189-196
    Moyne, A.L., Shelby, R., Cleveland, T.E., Tuzun, S., Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol.2001,90:622-629
    Nassar, A.H., El-Tarabily, K.A., Sivasithamparam, K., Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fert. Soils 2005,42:97-108
    Neveu, B., Caroline, Labbe, C. Belanger, R.R., GFP technology for the study of biocontrol agents in tritrophic interactions: A case study with Pseudozyma flocculosa. J. Microbiol. Meth.2007,68: 275-281
    Niranjan Raj, S., Deepaka, S.A., Basavarajua, P., Shettya, H.S., Reddy, M.S., Kloepper, J.W., Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot.2003,22:579-588
    Normander, B., Hendriksen, N.B., Nybroe, O., et al. Green fluorescent protein marked Pseudomonas fluorescens: localization, viability and activity in the natural barley rhizosphere. Appl. Environ. Microbiol.1999,65:4646-4651
    O'Kane, D.J., Lingle, W.J., Wmpler, J.E., Legocki, R.P., Szaly, A.A., Visualization of bioluminescence as a marker of gene expression in Rhizobium in feeted soybean root nodules. Mileted soybean root nodules. Plant Mol. Biol.1988,10:387-399
    Ordentlich, A., Migheli, Q., Chet, I., Biological control activity of three Trichoderma isolates against Fusarium wilts of cotton and muskmelon and lack of correlation with their lytic enzymes. J. phytopathol.1991,.133(3):177-186
    Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R. Y., Remington, S J., Cyrstal strueture of the Aequoera Victoria green fluoreseent protein. Science.1996,273 (5280):1392-1395
    Pieterse, C.M.J., van Wees, S.C.M., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H, Weisbeek, P.J., van Loon, L.C., A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 1998,10:1571-1580
    Poonguzhali, S., Madhaiyan, M., Yim, W.J., Kim, K.A., Sa, T.M., Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl. Microbiol. Biot.2008,78:1033-1043
    Postma, J., Luttikholt, A.J.G., Colonization of carnation stems by a non pathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f. sp. dianthi. Can. J. Bot.1996,74:1841-1851
    Postma, J., Van Elsas, J.D., Govaert, J.M., et al. Dynamics of Rhiwhium leguminosarum bv. Trifolii introduced into soil as determined by immunofluorescence and selective plating techniques. FEMS Microbiol. Ecol.1998,53:251-260
    Pusey, P.L., Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Dis.1984, 68:753-756
    Quan, C.S., Zheng, W., Liu, Q., Ohta, Y., Fan, S.D., Isolation and characterization of a novel Burkholderia cepaci with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biot.2006,72:1276-1284
    Ramos, H.J.O., Roncato-Maccari, L.D.B, Souza, E.M., Soares-Ramos, J.R.L., Hungria, M., Pedrosa, F.O., Monitoring Azospirillum-Weat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotechnol.2002,97:243-252
    Reuber, T.L., Long, S., Walker, G.C., Regulation of Rhizobium meliloti exa genes in free-living cells and in planta examined by using Tnpho A fusion. J. Bacteriol.1991,173:426-434
    Rouxel, F., Alabouvette, C., Louvet, J., Recherches sur la resistance des sols aux maladies. Ⅳ-Mise en evidence du role des Fusarium autochtones dans la resistance d'un sol a la Fusariose vasculaire du Melon. Annales de Phytopathologie 1979,11:199-207
    Ryals, J.A., Neuenschwander, U.H.,Willits, M.G., Molina, A., Steiner, H.Y., Hunt, M.D., Systemic acquired resistance. Plant Cell 1996,8:1808-1819
    Sharma, A., John, B.N., Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res.2003, 158:243-248
    Shimomura, O., Johnson, F.H., Saiga, Y., et al. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J [J]. Cell Comp. Physiol. 1962,59:223-239
    Sivan, A., Chet, I., The possible role of competition Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 1989,79:198-203
    Smith, S.N., Snyder, W.C., Relationship of inoculum density and soil types to severity of Fusarium wilt of sweet potato. Phytopathology 1971,61:1049-1051
    Steffan, R.J., Atlas, R.M., DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol.1988,54:2185-2191
    Taghavi, S. et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl. Environ. Microbiol.2009,75:748-757
    Tamietti, G., Valentino, D., Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot.2006,25:389-397
    Tezuka, N., Makino, T., Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry. Ann. Phytopathol. Soc. Japan 1991,57:506-511
    Thrane, C. et al. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol.2000,33:139-146
    Tramier, C., Antonini, C., Bettachini, A., Biological control of Fusarium wilt of carnations with different Fusarium oxysporum strains. EPPO Bulletin 1988,18 (1):13-17
    Trionfetti Nisini, P, Colla, G., Granati, E., Temperino O., Grino, P., Saccardo, F., Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Sci. Hortic.2002,93: 281-288
    Ugoji, E.O,, Laing, M.D., Hunter, C.H., Colonization of Bacillus spp on seeds and in plant rhizoplane. J. Environ. Biol.2005,26(3):459-466
    Van Gulik, W.M., Hoopen, H.J.G., Heijen, J.J.A, Structured model describing carbon and phosphate-limited growth of Catharanthus roseus plant cell suspension in batch and chemostat culture. Biotechnol. Bioeng.1993,41:771-780
    Van Peer, R., Niemann, G.J., Schippers, B., Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 1991,81:728-734
    Van Wees, S.C.M., van der Ent, S., Pieterse, C.M.J., Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol.2008,11:443-448
    Veena, M.S., van Vuudre, J.W.L., Indirect immunofluorescence colony staining method for detecting bacterial Pathogens of tomato. J. Microbiol. Meth.2002,49:11-17
    Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003,255:571-586
    Vidhyase karan, P., Kamala, N., Ramanathan, A., et al, Paranidharan. Phytoparasitica 2001, pp:155-166
    Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R.,Woo, S.L., Lorito, M., Trichoderma-plant-pathogen interactions. Soil Biol. Biochem.2008,40:1-10
    von der Weid, I., Artursson, V, Seldin, L., Jansson, J.K., Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J. Microb. Biot.2005,12: 1591-1597
    Wang, J., Liu, J., Chen, H., Characterization of inhibitory Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biot.2007,76:889-894
    Ward, W.W., Bokman, S.H., Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 1982,21: 4335-4540
    Welbaum, G., Sturz, A.V., Dong, Z., Nowak, J., Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci.2004,23:175-193
    Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., Thomashow, L.S., Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol.2002,40: 309-348
    Weller, D.M., Raaijmakers, J.M., McSpadden Gardener, B.B., Thomashow, L.S., Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol.2002,40: 309-348
    Winstanley, C., Morgan, J.A.W., Pickup, R.W., Saunders, J.R. Use of a xylE marker gene to monitor survival of recomibinant pseudomonas populations in lake water by culture on non-selective media. Appl. Environ. Microbiol.1991,57:1905-1913
    Woo, S.L., Lorito, M., Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J, eds. Novel biotechnologies for biocontrol agent enhancement and management. Dordrecht, the Netherlands: Springer,2007, pp:107-130
    Yang, L.P., Xie, J.T., Jiang, D.H., Fu, Y.P., Li, G.Q., Lin, F.C., Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World J. Microb. Biot.2008,24:909-915
    Yang, X.M., Chen, L.H., Yong, X.Y., Shen, Q.R., Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol. Fert. Soils 2011,47:239-248
    Zaidi, S., Usmani, S., Singh, B.R., Musarrat, J., Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 2006,64:991-997
    Zakria, M. et al. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. On Brassica oleracea. Soil Sci. Plant Nutr.2008,54:507-516
    Zhang, T., Shi, Z.Q., Hu, L.B., Cheng, L.G., Wang, F., Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J. Microb. Biot.2008,24:783-788
    Zheng, G., Slavik, M., Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl. Bacteriol.1999,28:363-3671
    Yoshihisa Homma,日本土传病害防治现状(下篇).世界农业,1993,6:41-43
    丁春国.两株细菌对土传病害的生防效果的评价.南京农业大学硕十论文,2007,pp:34-45
    杜立新,冯书亮,曹克强.枯草芽孢杆菌BS 2208和BS 2209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,2004,27(6):78-82
    范寰.防治黄瓜枯萎病拮抗细菌的筛选.天津轻工业学院学报,2000,3:29-32
    冯东沂,李宝栋.黄瓜枯萎病病原菌研究及抗病育种进展.中国蔬菜,2005,5:56-58
    高增贵,李天来,王玥,陈捷.甜瓜枯萎病拮抗内生细菌筛选.西北农林科技大学学报(自然科学版),1995,33(1):85-87
    郝变青,马利平,乔雄梧.GFP标记的植物促生菌B96-Ⅱ-gfp的定殖能力研究.中国生态农业学报,2010,18(4):861-865
    何红,蔡学清,洪永聪,关雄,胡方平.辣椒内生细菌的分离及拮抗细菌的筛选.中国生物防治,2002,18(4):171-175
    胡小加,张银波,张学江.恶臭假单胞菌P861(Gus)在油菜根部定殖的生态研究.植物营养与肥料学报,1999,5(4):359-365
    黄艳青,刘学军,徐韶,庄敬华.木霉菌对甜瓜枯萎病的防治.农业科技与装备,2009,2:181
    纪明山,王英姿,程根武,李博强,张国辉,李艳丽,回文广.西瓜枯萎病拮抗菌株筛选及田间防效试验.中国生物防治,2002,18(2):71-74
    金扬秀,谢关林,孙祥良,蔡雪涛.大蒜轮作与瓜类枯萎病发病的关系.上海交通大学学报(农业科学版),2003,21(1):9-13
    梁建根,竺利红,吴吉安,桑金隆,姚杭丽,施跃峰.生防菌株B-3对辣椒枯萎病的防治及其鉴定.植物保护学报,2007,34(5):529-533
    梁启美,齐东梅,贾洁,惠明,牛天贵.棉花黄枯萎病拮抗菌的筛选及抗菌蛋白B110-a的初步鉴定.植物保护,2005,31(5):25-28
    李春杰,徐艳丽,李兆林,邵洪涛,司兆胜.大豆根腐病菌拮抗细菌筛选及抗生作用.大豆科学,2004,24(3):174-177
    吕卫光,张春兰,袁飞,彭宇.嫁接减轻设施黄瓜连作障碍机制初探.华北农学报,2000,15,:153-156
    马双武,刘君璞,等.甜瓜种质资源描述规范和数据标准.北京:中国农业出版社,2006
    马艳,赵江涛,常志州,等.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效.江苏农业学报,2006,22(4):388-393
    马跃.我国甜瓜设施栽培生产的现状与发展.中国西瓜甜瓜,2001,(2):38-40
    戚佩坤.瓜类枯萎病菌专化型研究简介.华南农业大学学报,1995,16(4):110-114
    苏世鸣,任丽轩,霍振华,杨兴明,黄启为,徐阳春,周俊.沈其荣.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学,2008,41(3):704-712
    孙祥良.轮作与甜瓜类枯萎病发病率的关系.浙江农业大学(农业与生命科学版),2003,29(1):65-66
    孙玉宝,张国桥,杜念华,等,甜瓜抗枯萎病的遗传与育种.长江蔬菜,2000,2(2):1-3
    田连生,王伟华,石万龙,李书生,史延茂,张根伟,张丽萍.木霉对尖镰孢菌的拮抗机制及生防效果研究.植物保护,2001,27(4):47-48
    田涛,乔雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报,2004,34(4):346-351
    王坚主编.中国西瓜甜瓜.北京:中国农业出版社,2000
    徐韶,庄敬华,高增贵,黄艳青,朱有勇,陈捷.内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性.中国生物防治,2005,21(4):254-259
    徐雪莲,代鹏.2株抗枯萎病尖镰孢菌内生细菌菌株的分离及鉴定.果树学报,2007,24(4):483-486
    许文耀,吴刚.噁霉灵与溴菌腈混配对香蕉枯萎病菌的抑制效果.植物保护学报,2004,31(1):91-95
    杨长成,庄敬华,高增贵,魏汉莲,刘秋晨.恶霉灵与多菌灵对甜瓜枯萎病的防治效果.北方园艺,2010.7:151-153
    杨宇,吴元华,郑亚楠.瓜类枯萎病拮抗放线菌的筛选.北方园艺,2006,4:177-179
    姚震声,陈中义,陈志谊,等.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究.生物工程学报,2003,19(5):551-555
    虞伟斌,杨兴明,沈其荣,徐阳春.K3解磷菌的解磷机理及其对缓冲容量的响应.植物营养与肥料学报,2010,16(2),354-361
    张炳欣,张平.植物根围外来微生物定殖的检测方法.浙江大学学报(农业与生命科学版),2000,26(6):624-628
    张淑梅,王玉霞,李晶,等.基因标记枯草芽孢杆菌BS 268A在黄瓜上定殖.生物技术2006,16(4):73-74
    张学君,赵军,王金生.枯草芽孢杆菌B3菌株对小麦根系和茎基部的定殖作用研究.生物防治通报,1994,10(4):171-174
    张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果.植物病理学报,2000,30(1):91
    周小林.甜瓜枯萎病菌致病专化型测定及其所致病害防治技术研究.硕士论文,2005,pp:16-32
    朱培淼,杨兴明,徐阳春,欧阳红,沈其荣.高效解磷细菌的筛选及其对玉米苗期生长的促进作用.应用生态学报,2007,18(1):107-112
    庄敬华,高增贵,刘限,陈捷,杨宇.营养元素对木霉菌防治甜瓜枯萎病效果的影响.植物保护学报,2004,31(4):422-425
    庄敬华,杨长成,高增贵,徐韶,郑雅楠.枯草芽孢杆菌B6对甜瓜枯萎病的生防作用.果树学报,2008,25(6):891-895
    Amico, E.D., Cavalca, L., Andreoni, V., Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol.2005,52:153-162
    Behal, V., Bioactive products from Streptomyces. Adv. Appl. Microbiol.2000,47:113-156
    Collavino, M.M., Sansberro, P.A., Morginski, L.A., Aguilar, O.M., Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fertil. Soils 2010,46:727-738
    Cotxarrera, L., Trillas-Gay, M.I., Steinberg, C., Alabouvette, C., Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem.2002,34: 467-476
    De Cal, A., Biological control of Fusarium oxysporum f.sp. lycopersici. Plant Pathol.1995,44:909-917
    De Cal, A., Garci'a-Lepe, R., Melgarejo, P., Induced resistance by Penicillium oxalicum against of Fusarium oxysporum f. sp. lycopersici: histological studies of infected and induced tomato stems. Phytopathology 2000,90:260-268
    De Cal, A., Pascual, S., Melgarejo, P., Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol.1997,46:72-79
    Gordon, S.A., Weber, R.P., Colorimetric estimation of indole acetic acid. Plant Physiol.1951,26: 192-195
    Gong, M., Wang, J.D., Zhang, J., Yang, H., Lu, X.F., Pei, Y., Cheng, J.Q., Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Bioch. Bioph. Sin.2006,38:233-240
    Hervas, A., Linda, B., Datnoff, L.E., Jimenez-Diaz, R.M., Effect of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol. Control 1998,13:166-176
    Jackson, M., Karwowski, J.P., Humphrey, P.E., Kohl, W.L., Barlow, G.J., Tanaka, S.K., Calbistrins, novel antifungal agents produced by Penicillium restrictum. I. Production, taxonomy of the producing organism and biological activity. J. Antibiot.1993,46:34-38
    Kaiserer, L., Oberparleiter, C., Weiler-Go, R., Burgstaller, W., Leiter, E., Marx, F., Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch. Microbiol.2003,180:204-210
    Kandhari, J., Majumder, S., Sen, B., Impact of Aspergillus niger AN27 on growth promotion and sheath blight disease reduction in rice. Pest Manag. Sci. December 2000, pp:21-22
    Kaur, N.P., Mukhopadhyay, A.N., Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop Pest Manage1992,38:372-375
    Komada, H., Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res.1975,8:114-125
    Kumagai, H., Nishida, H., Imamura, N., Tomoda, H., Omura, S., The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot.1990,43:1553-1558
    Larena, I., Sabuquillo, P., Melgarejo, P., De Cal, A., Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. Phytopathology 2003,151: 507-512
    Lee, Y.H., Lee, W.H., Lee, D.K., Shim, K., Factors relating to induced systemic resistance in watermelon by plant growth promoting Pseudomonas species. J. Plant Pathol.2001,17:174-179
    Lim, S.H., Kim, K.S., Kim, S.D., Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microb.1991,57: 510-516
    Matsukuma, S., Ohtsuka, T., Kotaki, H., Shirai, H., Sano, T., Watanabe, K., Nakayama, N., Itezona, Y., Fujiu, M., Shimma, N., Yokose, K., Okuda, T., A new series of natural antifungals that inhibit P450 lanosterol C-14 demethylase 1. Taxonomy, fermentation, isolation and structural elucidation. J Antibiot.1992,45:151-159
    Minuto, A., Minuto, G., Migheli, Q., Mocioni, M., Gullino, M.L., Effect of antagonistic Fusarium spp. and different commercial biofungicide formulations on Fusarium wilt of basil (Ocimum basilicum L.). Crop Prot.1997,6:765-769
    Okada, H., Kamiya, S., Shiina, Y., Suwa, H., Nagashima, M., Nakajima, S., Shimokawa, H., Sugiyama, E., Kondo, H., Kojiri, K., Suda, H., BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. J. Antibiot.1998,51:1081-1086
    Phae, C.G., Saski, M., Shoda, M., Kubota, H., Characteristic of Bacillus subtilis isolated from composts suppressing phytopathogenic micro-organisms. Soil Sci. Plant Nutr.1990,36:575-586
    Rojo, F.G., Reynoso, M.M., Ferez, M., Chulze, S.N., Torres, A.M., Biological control by Trichoderma species of Fusarium solani causing peanut crown root rot under field conditions. Crop Prot.2007,26: 549-555
    Sabuquillo, P., De Cal, A., Melgarejo, P., Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol. Control 2006,37:256-265
    Silo-Suh, L.A., Lethbridge, B.J., Raffel, S.J., He, H.Y., Clardy, J., Handelsman, J., Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microb.1994,60: 2023-2030
    Suarez-Estrella, F., Vargas-Garcia, C., Lopez, C.M.J., Capel, J.M., Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot.2007,26: 46-53
    Tawfic, A.A., Allam, A.D.A., Improving cumin production under soil infestation with Fusarium wilt pathogen:Ⅱ field trial of different landraces and seed treatments. Assoc. Univ. Bull Environ. Res. 2004,7:47-63
    Weller, D.H., Biological control of soilborne plant pathogen in the rhizosphere with bacteria. Ann. Rev. Phytopathol.1998,26:379-407
    Booth, C.,著陈其焕译.镰刀菌属.农业出版社,1988,pp:190-191
    川出武夫.甜瓜对抗枯萎病的抗性.中国西瓜甜瓜,2002,4:43-45
    杜秉海主编.微生物学实验.北京农业大学出版社.1994
    方中达.植病研究方法.农业出版社,1998
    梁建根,王建明.辣椒枯萎病病原的初步研究.山西农业大学学报,2002.,22(1):29-30
    孙玉宏,张国桥,杜念华,等.甜瓜抗枯萎病的遗传与育种.长江蔬菜,2003,1:1-3
    尹敬芳,张文华,李健强,李永红,侯红利,周向阳.辣椒疫病生防菌的筛选及其抑菌机制初探.植物病理学报,2007,37(1):88-94
    张荣意,谭志琼.芒果炭疽病生防细菌的筛选,鉴定及生防潜能的初步研究.热带作物学报,1998,19(3):21-27
    Adhikari, T.B., Joseph, C.M., Yang, G.P., Phillips, D.A., Nelson, L.M., Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol.2001,47:916-924
    Ahmad, F., Ahmad, I., Khan, M.S., Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res.2008,163:173-181
    Asada, K., Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol. Plantarum 1992,85:235-241
    Asghar, H.N. et al. Screening rhizobacteria for improving the growth, yield and soil content of canola (Brassica napus L.). Aust. J. Agric. Res.2004,55:187-194
    Asghar H.N., Zahir, Z.A., Arshad, M., Khalig, A., Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv. Agron.2002,62:146-151
    Avdiushko, S.A., Ye, X.S., Kuc, J., Detection of several enzymatic activities in leaf prints of cucumber plant. Physiol. Mol. Plant P.1993,42:441-454
    Bark, R., Ecology of the fungus Fusarium:competition. In:Nelson PE, Tousson TA, Cook RJ, eds. Fusarium Diseases, Biology, and Taxonomy. University Park: Pennsylvania State University Press 1981, pp:245-249
    Borrero, C., Trillas, M.I., Ordovas, J., Tello, J.C., Aviles, M., Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 2004,94:1094-1101
    Borrero, C., Ordovas, J., Trillas, M.I., Aviles, M., Tomato fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biology (R). Soil Biol. Biochem.2006,38:1631-1637
    Boutler, J.I., Boland, G.J., Trevors, J.T., Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J. Microb. Biot.2000,16:115-134
    Boulter, J.I., Trevors, J.T., Boland, G.J., Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J. Microb. Biot.2002,18:661-671
    Brimner, T., Boland, G., A review of the non-target effects of fungi used to biologically control plant diseases. Agr. Ecosyst. Environ.2003,100:3-16
    Brussaard, L., Ruiter, P.C., Brown, G.G., Soil biodiversity for agricultural sustainability. Agr. Ecosyst. Environ.2007, www.sciencedirect.com
    Cakmakcl, R., Erat, M., Erdagan, U., Figen-Donmez, M., The influence of plant-growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil Sci. 2007,170:288-295
    Cappuccino, J.C., Sherman, N., Negative staining. In: Cappuccino, J.C., Sherman, N. (Eds.), Microbiology: A Laboratory Manual, third ed. Benjamin/ Cummings Pub Co, Redwood City,1992, pp:125-179
    Cattelan, A.J., Hartel, P.G., Fuhrmann, J.J., Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J.1999,63:1670-1680
    Cebolla, B., Busto, J., Ferrer, A., Miguel, A., Maroto, J.V., Methyl bromide alternatives on horticultural crops. Acta Hort.2000,532:237-242
    Champaco, E.R., Martyn, R.D., Miller, M.E., Comparison of Fusarium solani and Fusarium oxysporum as causal agents of fruit rot and root rot of muskmelon. Hort. Sci.1993,28:1174-1177
    Chanway, C.P., Shishido, M., Nairn, J., Jungwirth, S., Markham, J., Xiao, G., Holl, F.B., Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecol. Manag.2000,133:81-88
    Chelius, M.K., Triplett, E.W., Immunolocalization of dinitrogenase reductase produced by Klebsiela pneumoniae in association with Zea mays L. Appl. Environ. Microb.2000,66:783-787
    Chen, C., Richard, R., Nicole, B., Paulitz, T.C., Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mole. Plant P.2000,56:13-23
    Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X.R., Wang, X.L., Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol. Biot.2009, DOI 10.1007/s 11274-009-0222-0
    Chen, N., Hsiang, T., Goodwin, P.H., Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J. Microbiol. Meth.2003,53:113-122
    Cotxarrera, L., Trillas-Gay, M.I., Steinberg, C, Alabouvette, C., Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato. Soil Biol. Biochem.2002, 34,1467-476
    De Cal, A., Biological control of Fusarium oxysporum f.sp. lycopersici. Plant Pathol.1995,44:909-917
    De Cal, A., Pascual, S., Melgarejo, P., Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol.1997,46:72-79
    De Cal, A., Garci a-Lepe, R., Melgarejo, P., Induced resistance by Penicillium oxalicum against of Fusarium oxysporum f. sp lycopersici: histological studies of infected and induced tomato stems. Phytopathology 2000,90:260-268
    Degenhardt, J., Gershenzon, J., Baldwin, I.T., Kessler, A., Attracting friends to feast and foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol.2003,14:169-176
    Dommergues, Y.R., The plant-microorganism system. In: Dommergues, Y. R., Krupa, S.V. (Eds.), Interactions between Nonpathogenic Soil Microorganisms and Plants. Elsevier, Amsterdam, Netherlands,1978, pp:1-37
    Egamberdiyeva, D., Hoflich, G., Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. Plant Growth Regul.2002,38:219-224
    El-Hassan, S.A., Gowen, S.R., Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Phytopathology 2006, 154:148-155
    Fravel, D.R., Deahl, K.L., Stommel, J.R., Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol. Control,2005,34:165-169
    Garcia-Limones, C., Hervas, A., Navas-Cortes, J.A., Jimenez-Diaz, R.M., Tena. M., Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mole. Plant P.2002,61:325-337
    Garret, S.D., Pathogenic Root-Infecting Fungi. Cambridge University Press, London, UK.1970
    Glick, B.R., The enhancement of plant growth by free-living bacteria. Can. J. Microbiol.1995,41: 109-117
    Glick, B.R., Bashan, Y., Genetic manipulations of plant-growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotech. Adv.1997,15:353-378
    Glick, B.R., Patten, C.L., Holquin, G., Penrose, D.M., Biochemical and genetic mechanisms usedby plant growth pPromoting bacteria. Imperial College Press, London.1999.
    Glick, B.R., Penrose, D.M., Li, J., A model for the lowering of plant ethylene concentrations by concentrations by plant growth promoting bacteria. J. Theor. Biol.1998,190:63-68
    Gong, M., Wang, J.D., Zhang, J., Yang, H., Lu, X.F., Pei, Y., Cheng, J.Q., Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Bioch. Bioph. Sin.2006,38:233-240
    Hallmann, J., Berg, B., Spectrum and population dynamics of bacterial root endophytes. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (Eds.), Microbial Root Endophytes. Springer, Berlin Heidelberg, 2007, pp:15-31
    Han, J., Sun, L., Dong, X.Z., Cai, Z.Q., Sun, X.L., Yang, H.L., Wang, Y.S., Song, W., Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol.2005,28:66-76
    Hartman, G.L., Huang, Y.H., Li, S., Phytotoxicity of Fusarium solani culture filtrates from soybeans and other hosts assayed by stem cuttings. Aust. J. Plant Pathol.2004,33:9-24
    Hervas, A., Linda, B., Datnoff, L.E., Jimenez-Diaz, R.M., Effect of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol. Control 1998,13:166-176
    Hoitink, H.A.J., Boehm, M.J., Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu. Rev. Phytopathol.1999,37:427-446
    Hoitink, H.A.J., Stone, A.G., Han, D.Y., Suppression of plant disease by composts. Hort. Sci.1997,32: 184-187
    Kandhari, J., Majumder, S., Sen, B., Impact of Aspergillus niger AN27 on growth promotion and sheath blight disease reduction in rice. Pest Manag. Sci. December 2000, pp:21-22
    Kamnev, A.A., Lelie, D., Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Rep.2000,20:239-258
    Karlidag, H., Esitken, A., Turan, M., Sahin, F., Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 2007,114:16-20
    Kaur, N.P., Mukhopadhyay, A.N., Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop Pest Manage.1992,38:372-375
    Kinsella, K., Cristian, P., Schulthess., Thomas F. Morris., James D. Stuart., Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem.2009,41:374-379
    Kloepper, J.W., Rodriguez-Ubana, R., Zehnder, GW., Murphy, J.F., Sikora, E., Fernandez, C., Plant root bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Austr. Plant Pathol.1999,28:21-26
    Komada, H., Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Protect. Res.1975,8:114-125
    Kuklinsky-Sobral, H.L., Araujo. W.L., Mendes, R., Geraldi, I.O., Pizzirani-Kleiner, A.A., Azevedo, J.L., Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol.2004,6:1244-1251
    Larena, I., Sabuquillo, P., Melgarejo, P., De Cal, A., Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. Phytopathology 2003, 151:507-512
    Larkin, R.P., Fravel, D.R., Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis.1998,82:1022-1028
    Ling, N., Xue, C., Huang, Q.W., Yang, X.M., Xu, Y.C., Shen, Q.R., Development of a mode Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 2010, DOI 10.1007/s 10526-010-9290-1
    Lugtenberg, B.J.J., Dekkers, L., Bloemberg, G.V., Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol.2001,39:461-490
    Lu, Z.X., Tombolini, R., Woo, S., Zeilinger, S., Lorito, M., Jansson, J.K., In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol.2004,70:3073-3081
    Marques, A.P.G.C., Pires, C., Moreira, H., Rangel, A.O.S.S., Castro, P.M.L., Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem.2010, doi:10.1016/j.soilbio.2010.04.014
    Martyn, R.D., Amador, J., Fusarium wilt (Fusarium oxysporum f. sp. melonis Race 0) of muskmelon in Texas. Plant Dis.1987,71:469
    Mayak, S. et al. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem.2004,42:565-572
    McDonald, I.R., Riley, P.W., Sharp, R.J., McCarthy, A.J., Factors affecting the electroporation of Bacillus subtilis. J. Appl. Bacteriol.1995,79:213-218
    Mehnaz, S., Lazarovits, G., Inoculation effects of Pseudomonas putida, Gluconabacter azotocaptans and Azospirilum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecol.2006,51: 326-335
    Mishra, K., Kumar, A., Pandey, K., RAPD based genetic diversity among different isolates of Fusarium oxysporum f. sp. lycopersici and their comparative biocontrol. World J. Microb. Biot.2010.26: 1079-1085
    Morsya M.R., Jouvebm, L., Hausmanbm, J., Hoffmannbm, L., Stewartam, J.M., Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Plant Physiol.2007,164:157-167
    Muslim, A.H., Horinouchi and Hyakumachi, M., Biological control of fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 2003,44:77-84
    Nagorska, K., Bikowski, M., Obuchowskji, M., Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol.2007,54:495-508
    Nakano, Y., Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol.1981,22:867-880
    Nelson, L.M., Plant-growth-promoting rhizobacteria (PGPR):prospects for new inoculants. Crop Manag. 2004, doi:10.1094/CM-2004-031-05-RV
    O'Connell, P.F., Sustainable agriculture—a valid alternative. Outlook Agric.1992,21:5-12
    Pan, B., Bai, Y.M., Leibovitch, S., Smith, D.L., Plant growth promoting rhizobacteria and kinetin as ways to promote corn growth and yield in short season areas. Eur. J. Agron.1999,11:179-186
    Pang, Y.D., Liu, X.G., Ma, Y.X., Chernin, L., Berg, G., Gao, K.X, Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant Pathol.2009,124:261-268
    Park, C.S., Paulitz, T.C., Baker, R., Biocontrol of fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non-pathogenic isolates of Fusarium oxysporum. Phytopathology 1988,78:190-194
    Phae, C.G., Saski, M., Shoda, M., Kubota, H., Characteristic of Bacillus subtilis isolated from composts suppressing phytopathogenic micro-organisms. Soil Sci. Plant Nutr.1990,36:575-586
    Ramos, H.J., Roncato-Maccari, L.D., Souza, E.M., Soares-Ramos, J.R., Hungria, M., Pedrosa, F.O. Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotechnol.2002,97:243-252
    Raviv, M., Reuveni, R., Zaidman, B.Z., Improved medium for organic transplant. Biol. Agric. Hortic. 1998,16:53-64
    Ren, L.X., Su, S.M., Yang, X.M., Xu, Y.C., Huang Q.W., Shen Q.R., Intercropping with aerobic rice suppressed fusarium wilt in watermelon. Soil Biol. Biochem.2008,40:834-844
    Rodriguez, H., Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv.1999,17:319-339
    Rojo, F.G., Reynoso, M.M., Ferez, M., Chulze, S.N., Torres, A.M., Biological control by Trichoderma species of Fusarium solani causing peanut crown root rot under field conditions. Crop Prot.2007,26: 549-555
    Rosas, S.B., Avanzini, G., Carlier, E., Pasluosta, C., Pastor, N., Rovera, M., Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca. Soil Biol. Biochem.2008, doi: 10.1016/jsoilbio.2008.10.009
    Rossum, M.W.P.C., Alberda, M., Plas, L.H.W., Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci.1997,130:207-216
    Sabuquillo, P., De Cal, A., Melgarejo, P., Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol. Control 2006,37:256-265
    Sessitsch, A., Reiter, B., Berg, G., Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Can. J. Microbiol.2004,50:239-249
    Soriano-Martin, M.L., Pcrras-Piedra, A., Porras-Soriano, A., Use of microwaves in the prevention of Fusarium oxysporum f.sp. melonis infection during the commercial production of melon plantlets. Crop Prot.2006,25:52-57
    Solomon, B.D., Barnes, J.R., Halvorsen, K.E., Grain and cellulosic ethanol:history, economics, and energy policy. Biomass Bioenerg.2007,31:416-425
    Sturz, A.V., Christie, B.R., Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till. Res.2003,72:107-123
    Suarez-Estrella, F., Vargas-Garcia, C., Lopez, C.M J., Capel, J.M., Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot.2007,.26: 46-53
    Suarez-Estrella, F., Elorrieta, M.A., Vargas-Garcia, M.C., Lopez, M.J., Moreno, J., Selective isolation of antagonist micro-organisms of Fusarium oxysporum f. sp. melonis. Biological Control of Fungal and Bacterial Plant Pathogens, International Organization for Biological Control (IOBC) West Palaeartic Regional Sector (WPRS). Bulletin 2001,24:109-112
    Tamietti, G., Valentino, D., Soil solarization as an ecological method for the control of fusarium wilt of melon in Italy. Crop Prot.2006,25:389-397
    Tao, F., Zhang, M., Yu, H.Q., Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions. J. Food Eng.2007,79:1302-1309
    Tawfic, A.A., Allam, A.D.A., Improving cumin production under soil infestation with Fusarium wilt pathogen:II field trial of different landraces and seed treatments. Assiut University Bulletin for Environmental Researches 2004,7:47-63
    Turgeon, N., Laclamme, C., Ho, J., Duchaine, C., Elaboration of an electroporation protocol for Bacillus cereus ATTC14579. J. Microbiol. Meth.2006,67:543-548
    Turner, J.T., Backman, P.A., Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis.1991,75:347-353
    Vessey, J.K., Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 2003,255,571-586
    Weller, D.M., Biological control of soilborne pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol.1988,26:379-407
    Weller, D.M., Raaijmakers, J.M., Mc Spadden Gardener, B.B., Thomashow, L.S., Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol.2002,40: 309-348
    Whipps, J.M., Developments in the biological control of soilborne plant pathogens. Adv. Bot. Res.1997, 26:1-134
    Wu, H.S., Yang, X.M., Fan, J.Q., Miao, W.G., Ling, N., Xu, Y.C., Huang, Q.W., Shen. Q.R., Suppression of fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 2008, DOI 10.1007/s 10526-008-9168-7
    Zahir, A.Z., Arshad, M., Frankenberger, Jr., W.T., Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv. Agron.2004,81:97-168
    Zaidi, S., Usmani, S., Singh, B.R., Musarrat, J., Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 2006,64:991-997
    Zhang, S.S., Raza, W., Yang, X.M., Hu, J., Huang, Q.W., Xu, Y.C., Liu, X.H., Ran, W., Shen, Q.R., Control of fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer. Biol. Fert. Soils 2008,44:1073-1080
    Zhao, H.C., Zhao, H., Wang, B.C., Wang, J.B., Effect of local stress induction on resistance-related enzymes in cucumber seeding. Colloid. Surface. B.2005,43:37-42
    Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H., Thonart, P., Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 2001,91:551-561
    Behal, V.,2000. Bioactive products from Streptomyces. Adv. Appl. Microbiol.47,113-156.
    Besson, F., Michel, G, Isolation and characterization of new iturins:iturin D and iturin E. J. Antibiot. 1987,40:437-442
    Beatty, P.H., Jensen, S.E., Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol.2002,48:159-169
    Bie, X.M., Lu, Z.X., Lu, F.X., Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Meth.2009,79:272-278
    Carrillo, C., Teruel, J.A., Aranda, F.J., Ortiz, A., Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. BBA-Biomembranes 2003,1611:91-97
    Chan, Y.K., Savard, M.E., Reid, L.M., Cyr, T., McCormick, W.A., Seguin, C., Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat. BioControl 2008, DOI 10.1007/s10526-008-9201-x
    Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J., Kim, S.D., Roberts, D.P., Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol.2008,80:115-123
    De Cal, A., Sztejnberg, A., Sabuquillo, P., Melgarejo, P., Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biol. Control 2009,51:480-486
    Eckart, K., Mass spectrometry of cyclic peptides. Mass Spectrom Rev.1994,13:23-55
    Hervas, A., Linda, B., Datnoff, L.E., Jimenez-Diaz, R.M., Effect of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol. Control 1998,13:166-176
    Hsieh, F.C., Lin, T.C., Meng, M., Kao, S.S., Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Curr. Microbiol.2008,56:1-5
    Huang, Y., Wild, B.L., Morris, S.C., Postharvest biological control of Penicillium digitatum decay on citrus fruit by Bacillus pumulus. Annu. Appl. Biol.1992,130:367-372
    Kajimura, Y., Sugiyama, M., Kaneda, M., Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J. Antibiot.1995,48:1095-1103
    Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., Ziessow, D., Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci.1998,204:1-8
    Landy, M., Warren, G.H., Rosenman, S.B., Colio, L.G., An antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Med.1948,67:539-541
    Leelasuphakul, W., Sivanunsakul, P., Phongpaichit, S., Purification, characterization and synergistic activity of (3-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight pathogens. Enzyme Microb. Tech.2006,38:990-997
    Lee, Y.K., Senthilkumar, M., Kim, J.H., Swarnalakshmi, K., Annapurna, K., Purification and partial characterization of antifungal metabolite from Paenibacillus lentimorbus WJ5. World J. Microbiol. Biotechnol.2008,24:3057-3062
    Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Antibiotic production and biocontrol activity by Bacillus subtilis and Bacillus pumilus CL45. J. Appl. Bacteriol.1995,78: 97-108
    Li, L., Mo, M., Qu, Q., Luo, H., Zhang, K.Q., Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant Pathol.2007,117:329-340
    Maget-Dana, R., Peypoux, F., Iturins, a special class of pore forming lipopeptides: biological and physicochemical properties. Toxicology 1994,87:151-174
    Ma, Y., Chang, Z.Z., Zhao, J.T., Zhou, M.G., Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol. Control 2008,44:24-31
    Mhammedi, A., Peypoux, F., Besson, F., Michel, G., Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J. Antibiot.1982,35:306-311
    Mizumoto, S., Shoda, M., Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biot. 2007,76:101-108
    Moyne, A.L., et al Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol.2001,90:622-629
    Nagorska, K., Bikowski, M., Obuchowski, M., Multicellularbehaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol.2007,54:495-508
    Ongena, M., et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol.2007,9:1084-1090
    Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiol.2008,16:115-125
    Peypoux, F., Pommier, M.T., Das, B.C., Besson, F., Delcambe, L., Michel, G., Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J. Antibiot.1984,37: 1600-1604
    Peypoux, F., Pommier, M.T., Marion, D., Ptak, M., Das, B.C., Michel, G, Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot.1986,39:636-641
    Phae, C.G, Shoda, M., Kubota, H., Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng.1990,69:1-7
    Pinchuk, I.V., Bressollier, P., Sorokulova, I.B., Verneuil, B., Urdaci, M.C., Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol.2002,153:269-276
    Quan, C.S., Zheng, W., Liu, Q., Ohta, Y., Fan, S.D., Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol.2006,72:1276-1284
    Roberts, D.P., Lohrke, S.M., Meyer, S.L.F., Buyer, J.S., Bowers, J.H., Jacyn Baker, C., Li, W., de Souzaf, J.T., Lewis, J.A., Chung, S., Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot.2005,24:141-155
    Romero, D., de Vicente, A., Rakotoaly, R.H., Dufour, S.E., Veening, J.W., Arrebola, E., Cazorla, F.M., Kuipers, O.P., Paquot, M., Perez-Garcia, A., The Iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe In. 2007,20:430-440
    Sandrin, C, Peypoux, F., Miehel, G., Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal Properties by Bacillus subtilis. Appl. Biochem. Biotech.1990,12(4):370-375
    Sehneider, J., Taraz, K., Budzikiewicz, H., et al. The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 1999,54(11):859-865
    Silo-Suh, L.A., Lethbridge, B.J., Raffel, S.J., He, H.Y., Clardy, J., Handelsman, J., Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microb.1994,60: 2023-2030
    Solaiman, D., Applications of microbial biosurfactants. Inform:2005,16:408-410
    Stein, T., Bacillus subtilis antibiotics:structures, synthesis and specific functions. Mol. Microbiol.2005, 56:845-857
    Tawfic, A.A., Allam, A.D.A., Improving cumin production under soil infestation with Fusarium wilt pathogen:II field trial of different landraces and seed treatments. Assoc. Univ. Bull Environ. Res. 2004,7:47-63
    Vanittanakom, N., Loeffler, W., Fengycin-a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F-29-3. J. Antibiot. (Tokyo) 1986,39:888-901
    Vater, J., Lipopeptides, an attractive class of microbial surfactants. Progr. Colloid Polymer Sci.1986,72: 12-18
    Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., Cameotra, S.S., Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolate from petroleum sludge. Appl. Environ. Microb.2002,68: 6210-6219
    Raza, W., Yang, X.M., Wu, H.S., Wang, Y., Xu, Y.C., Shen, Q.R., Isolation and characterization of fusaricidin-type compound producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J. Plant Pathol.2009,125:471-483
    Wu, H.S., Yang, X.M., Fan, J.Q., Miao, W.G., Ling, N., Xu, Y.C., Huang, Q.W., Shen, Q.R., Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 2008, DOI 10.1007/s 10526-008-9168-7
    Williams, B.H., Hathout, Y, Fenselau, C., Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J. Mass Spectrom 2002,37:259-264
    Yang, L.P., Xie, J.T., Jiang, D.H., Fu, Y.P., Li, G.Q., Lin, F.C., Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J. Microb. Biot.2008,24:909-915
    Yoshida, S., Hiradate, S., Tsulamoto, T., et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology.2001,91:181-187
    Yu, GY, Sinclair, J.B., Hartman, G.L., Bertagnolli, B.L., Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem.2002,34:955-963
    Zhang, T., Shi, Z.Q., Hu, L.B., Cheng, L.G, Wang, F., Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J. Microb. Biot.2008,24:783-788
    高学文,姚仕义,Pham H.等.枯草芽抱杆菌BZ菌株产生的表面活性素变异体的纯化和鉴定.微,43(5):647-753
    Bolwerk, A., Lagopodi, A.L., Lugtenberg, B.J., Bloemberg, G.V., Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol. Plant Microbe In.2005,18:710-721
    Borrero, C., Ordovas, J., Trillas, M.I., Aviles, M., Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biolog (R). Soil Biol. Biochem.2006,38:1631-1637
    Chatterton, S., Jayaraman, J., Punja, Z.K., Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulate. Biol. Control 2008,46:267-278
    de Weert, S., Vermeiren, H., Mulders, I.H.M., Kuiper, I., Hendrickx, N., Bloemberg, G.V., Vanderleyden, J., Mot, R.D., Ben, J.J., Lugtenberg, B.J J., Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe In.2002,15:1173-1180
    El-Hassan, S.A., Gowen, S.R., Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Phytopathology 2006,154:148-155
    Fridlender, M., Inbar, J., Chet, I., Biological control of soil-borne plant pathogens by a b-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem.1993,25:1211-1221
    Hoitink, H.A.J., Boehm, M.J., Biocontrol within the context of soil microbial communities: asubstrate-dependent phenomenon. Annu. Rev. Phytopathol.1999,37:427-446
    Hsieh, F.C., Lin, T.C., Meng, M., Kao, S.S., Comparing Methods for identifying Bacillus Strains Capable of producing the Antifungal Lipopeptide Iturin A. Curr. Microbiol.2008,56:1-5
    Kinsella, K., Cristian, P., Schulthess., Thomas F. Morris., James D. Stuart., Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem.2009,41:374-379
    Komada, H., Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res.1975,8:114-125
    Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R., Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol.2004,186: 1084-1096
    Li, L., Mo, M., Qu, Q., Luo, H., Zhang, K.Q., Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant Pathol.2007,117:329-340
    Ling, N., Xue, C., Huang, Q.W., Yang, X.M., Xu, Y.C., Shen, Q.R., Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy t o Fusarium wilt. Biocontrol 2010, DOI 10.1007/s 10526-010-9290-1
    Mandal, S., Mallick, N., Mitra, A., Salicylic acid-induced resistance to Fusariumoxysporum f. sp. Lycopersici in tomato. Plant Physiol. Bioch.2009,47:642-649
    Mazzola, M., Manipulation of rhizosphere bacterial communities to induce suppressive soils. J. Nematol. 2007,39:213-20
    Ma, Y., Chang, Z.Z., Zhao, J.T., Zhou, M.G., Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol. Control 2008,44:24-31
    Mizumoto, S., Shoda, M., Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biot. 2007,76:101-108
    Muslim, A.., Horinouchi H., Hyakumachi, M., Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 2003,44:77-84
    Noble, R., Coventry, E., Suppression of soil-borne plant diseases with composts:A review. Biocontrol Sci. Techn.2005,15(1):3-20
    Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol.2008,16:115-125
    Ongena, M., Thonart, P., Resistance induced in plants by non-pathogenic microorganisms:elicitation and defense responses. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (Vol.3) (Teixeira da Silva, J.A., ed.), Global Science Books. In 2006, pp:447-463
    Pang, Y.D., Liu, X.G., Ma, Y.X., Chernin, L., Berg, G, Gao, K.X., Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant Pathol.2009,124:261-268
    Saikia, S., Singh, T., Kumar, R., Srivastava, J., Srivastava, A.K., Singh, K., Arora, D.K., Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea, Microbiol. Res.2003,158:203-213
    Shapiro, A.D., Gutsche, A.T., Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Anal. Biochem.2003,320:223-233
    Suarez-Estrella, F., Vargas-Garcia, C., Lopez, C.M.J., Capel, J.M., Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f.sp. melonis. Crop Prot.2007,26: 46-53
    Tjamos, E.C., Strategies in developing methods and applying techniques for the biological control of Verticillium dahliae. American Phytopathological Society Press, St. Paul, Minnesota.2000
    Turner, J.T., Backman, P.A., Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis.1991,75:347-353
    Van Loon, L.C., Bakker, P.A.H.M., Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In PGPR: Biocontrol and Biofertilization (Siddiqui, Z.A., ed.),2006, pp.39-66
    Verberne, M.C., Brouwer, N., Delbianco, F., Linthorst, H.J.M., Bol, J.F., Verpoorte, R., Method for the extraction of the Volatile compound Salicylic Acid from Tobacco Leaf material. Phytochem. Analysis 2002,13:45-50
    Whipps, J.M., Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot.2001,52:487-511
    Yang, L.P., Xie, J.T., Jiang, D.B., Fu, Y.P., Li, G.Q., Lin, F.C., Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World J. Microb. Biot.2008,24:909-915
    Zhang, S.A., Moyne, A.L., Reddy, M.S., Kloepper, J.W., The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco Biol. Control 2002,25:288-296
    Zhang, S.S., Raza, W., Yang, X.M., Hu, J., Huang, Q.W., Xu, Y.C., Liu, X.H., Ran, W., Shen, Q.R., Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol. Fert. Soils 2008a,44:1073-1080
    Zhang, T., Shi, Z.Q., Hu, L.B., Cheng, L.G., Wang, F., Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J. Microb. Biot.2008b,24:783-788
    Zhou, T., Paulitz, C., Induced resistance in the biocontrol of Pythiu aphanidermatum by Pseudomonas spp. on cucumber. J. Phytopathol.1994,142:51-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700