用户名: 密码: 验证码:
温室黄瓜叶面积、光合作用及干物质生产对叶片含氮量响应的模拟模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶面积指数(LAI)是作物冠层光合作用及水分利用模拟的重要参数,光合作用和干物质生产是作物产量和品质形成的物质基础。叶片含氮量直接影响了作物的LAI和光合作用速率,从而影响作物的干物质生产与产量。定量研究作物LAI、叶片光合作用速率以及干物质生产过程对叶片含氮量的响应,是实现作物氮素精确与优化管理的重要前提。黄瓜是我国和世界上的主要设施栽培作物。本研究以温室黄瓜为研究对象,于2005年到2008年间,在上海(121.5°E,31.2°N)农科院Venlo型现代化自控温室和上海孙桥现代化农业示范园区的2,4-连栋温室中进行了不同播期、不同栽培基质下的温室黄瓜氮素处理试验。在对试验数据进行系统分析的基础上,以光温指数为尺度,以叶片含氮量为参数,建立了叶片形态发生指标以及叶面积指数对叶片含氮量响应的模拟模型;以叶片光合作用的FvCB模型为基础,确定了FvCB模型的各个参数对叶片含氮量的响应函数;将叶面积指数对叶片含氮量响应模型与基于FvCB的叶片光合作用对叶片含氮量响应模型相结合,建立了温室黄瓜干物质生产对叶片含氮量响应模拟模型。主要结果如下:
     (1)温室黄瓜叶面积对叶片氮含量响应的模拟模型。通过温室黄瓜的不同氮素施用浓度处理试验,定量研究了黄瓜冠层叶片氮累积量的季节变化以及叶片含氮量在冠层中的垂直分布,并描述了黄瓜坐果开始时冠层叶片氮积累量及特定叶片含氮量对叶片形态发生指标参数的定量影响。在此基础上,以光温指数为尺度,以叶片含氮量为参数,建立了叶片形态发生指标以及叶面积指数对叶片含氮量响应的模拟模型。利用独立的试验数据对本模型和基于叶干重和SLA的叶面积指数预测模型进行评估和比较,结果表明,对于本模型,用坐果开始时冠层叶片氮累积量作为参数时,出叶数、叶长、LAI的预测值和实测值的r2分别为0.95、0.93、0.87,RMSE分别为2.9、0.05m、0.18 m2m-2;而用坐果开始时倒8叶的叶片含氮量作为参数时,对应的实测值和预测的r2分别为0.93、0.92、0.8,RMSE分别为3.2、0.05 m、0.39m2 m-2。对于基于叶干重和SLA的LAI预测方法,用实测的SLA作为输入,冠层LAI预测值和实测值的r2和RMSE分别为0.74和0.43 m2 m-2。表明,本文提出的模型能够较好的模拟温室黄瓜在不同温室和氮素施用浓度下的叶片生长对叶片含氮量的响应。
     (2)光合速率对叶片含氮量响应的模拟模型。以FvCB光合作用模型为基础,结合温室黄瓜叶片的净光合速率和叶绿素荧光活体测定数据,对FvCB模型的参数[暗呼吸速率(Rd)、限制光强下光系统Ⅱ中光强转化为电子传递的转化速率(κ2(LL))、最大电子传递速率(Jmax)、电子传递速率对光照响应的非直角曲线的曲率因子(θ)、Rubisco酶位点上CO2/O2的特定因子(Sc/o)、Rubisco酶的羧化能力(Vcmax)以及叶肉导度(gm)]进行了估算,确定了这些参数对叶片含氮量的响应函数。结果表明,K2(LL)、Vcmax(T0)、Jmax和Rd与叶片含氮量有较好的线性关系,而θ和gm与叶片氮含量的关系不明显。将估算出的参数作为模型输入,用独立的试验数据对模型进行检验,并与基于光合有效辐射、叶片最大光合速率以及初始光能利用率的光合作用函数(负指数方程)的预测效果相比较。结果表明,使用FvCB模型对单叶光合作用的预测值与实测值的r2和RMSE分别为0.63和5.28 mol CO2 m-2 s-1,而基于负指数方程的光合作用模型的预测值与实测值之间的r2和RMSE分别为0.65和4.94 molCO2 m-2 s-1。从总体的r2和RMSE来看,基于负指数方程的光合速率模型的预测效果略好于FvCB模型,但进一步的分析表明其对与建模环境相差较大的情况下的黄瓜单叶净光合作用速率的预测效果较差,因而稳定性和广适性差;而FvCB模型的预测精度虽稍差一些,但其对不同条件下的预测结果一致,稳定性和广适性好,且其预测精度可以通过利用翔实的数据对参数进行进一步的校正而获得提高。
     (3)将叶面积指数对叶片含氮量响应模型与基于FvCB模型的叶片光合作用对叶片含氮量响应模型相结合,建立了温室黄瓜干物质生产对叶片含氮量响应的模拟模型。将第二章中所讨论的的两种叶面积对叶片含氮量响应的模拟模型(基于叶片形态发生和基于SLA)分别与第三章中所讨论的两种光合速率对叶片含氮量响应的模拟模型(FvCB模型和负指数方程)相结合,分别用来模拟不同氮素条件下温室黄瓜的每日冠层总光合量,再与常用的呼吸作用模型和干物质生产计算方法相结合,组成四种干物质生产对叶片含氮量量响应的模拟模型,用来预测不同条件下黄瓜的干物质生产过程。用独立的试验数据进行检验,结果表明,基于叶片形态发生和FvCB模型的干物质生产模型、基于叶片形态发生和负指数方程的干物质生产模型、基于SLA法和FvCB模型的干物质生产模型、基于SLA法和负指数方程的干物质生产模型对黄瓜总干物质量的预测值与实测值之间的r2分别为0.62、0.66、0.53、0.71,RMSE分别为58.9 g m-2、54.3 g m-2、77.2 g m-2、44.8 g m-2。虽然基于叶片形态发生和FvCB模型的干物质生产模型的预测效果仅排在第三位,但其相对于基于SLA的模型,避免了破坏性取样;相对于基于叶片形态发生和负指数方程的干物质生产模型,预测结果具有更好的一致性。因此,基于叶片形态发生和FvCB模型的干物质生产模型具有较好的机理性、易用性、稳定性和广适性,且通过改进FvCB模型参数的预测方法,提高光合速率的预测精度,其对干物质生产的预测精度还可以有进一步的提高。
     本研究建立的模型可以根据定植日期、种植密度、施氮水平等栽培措施,温室内的太阳辐射、温度和CO2浓度等环境资料,定植时的叶片数、去除的老叶数、定植时的顶部叶片含氮量等易于获取的作物参数来预测上海地区单蔓整枝方式下温室黄瓜的出叶数、各叶位叶片的含氮量、各叶叶长、群体叶面积指数、光合作用速率以及干物质累积量,具有较强的机理性和简单易用的特点,可以为温室黄瓜生产中氮素精确与优化管理提供理论依据与决策支持。
Leaf area index (LAI) is an important parameter for modelling canopy photosynthesis and crop water status, photosynthesis and dry matter production are necessary to guarantee crop yield and quality formation. Leaf nitrogen content directly affects the crop LAI and photosynthesis rate, thus affects crop yield and dry matter production. Quantitative researches on the responses of crop LAI, leaf photosynthesis rate and dry matter production to leaf nitrogen are the important premise for the accuracy and optimization of nitrogen management in greenhouses. Cucumber is one of main greenhouse cultivated crops in China and in the world. Experiments of greenhouse cucumber with different planting dates, substrates and nitrogen application rates were conducted in a Venlo-type greenhouse and multi-span plastic greenhouse in Shanghai (121.5 (?),31.2 (?)) from 2005 to 2007 to collect data for model development and validation. Based on the data, first we established a model to simulate the responses of leaf morphological traits and leaf area index to leaf nitrogen content using the index of radiation and temperature (photothermal index, PTI); second, based on the FvCB photosynthesis model, the responses of parameters of FvCB model to leaf nitrogen content was determined; third, integrated the model of responses of LAI to leaf nitrogen content and responses of photosynthesis based on the FvCB model to leaf nitrogen content, we established a model of to simulate the response of dry matter production of greenhouse cucumber to leaf nitrogen content. The main results are:
     (1) Simulation of the response of leaf growth of greenhouse cucumber to leaf nitrogen content. Using the experiment data with different nitrogen application rates, seasonal time course of canopy nitrogen content and the distribution of leaf nitrogen content in canopy were quantified, then the effects of canopy nitrogen content and specific leaf nitrogen content on leaf morphological traits of greenhouse cucumber were described. On this basis, a simulation model of responses of leaf morphological traits and leaf area index to leaf nitrogen content was established. Independent experiments data were used to validate our model and SLA-based model. The coefficient of determination (r2) and the root mean squared error (RMSE) between the predicted and measured values using our method are 0.95 and 2.9 for leaf number,0.93 and 0.05 m for specific leaf length,0.87 and 0.18 m2 m-2 for LAI when using canopy nitrogen content at the start of fruit setting while using specific leaf nitrogen content (the 8th leaf counted downward) at the start of fruit setting, the r2 and RMSE are 0.93 and 3.2 for leaf number,0.92 and 0.05 m for specific leaf length and 0.8 and 0.39 m2 m-2 for LAI. For the SLA-based model, using measured SLA data as input, the r2 and RMSE are 0.74 and 0.43 m2 m-2. So, our model gives satisfactory prediction of the response of leaf growth and LAI of greenhouse cucumber to leaf nitrogen content with different nitrogen application rate in different greenhouses.
     (2) Simulation of the response of leaf photosynthesis rate to leaf nitrogen content using the FvCB model. Based on the FvCB model, parameters used for calculating photosynthesis rate (e.g. day respiration (Rd), conversion efficiency of linc into linear electron transport of PSII under limiting light (k2(LL)), electron transport capacity (Jmax), curvature factor (0 for the non-rectangular hyperbolic response of electron flux to Iinc, ribulose 1-5-bisphosphate carboxylase/oxygenase (Rubisco) CO2/O2 specificity (Sc/0), Rubisco carboxylation capacity (Vcmax) and mesophyll conductance (gm) were estimated, using combined measurements of photosynthesis rate and chlorophyll fluorescence, and the responses of these parameters to leaf nitrogen were determined. The results showed that K2(LL), Vcmax(To), Jmax and Rd increased linearly with leaf nitrogen content, but (?) and gm could be independent. Using estimated parameter as input, independent experimental data was used to validate and give the comparison between this model and the photosynthesis model which is based on the radiation, the maximum gross photosynthesis rate and initial light use efficiency (the asymptotic negative-exponential fucntion). The coefficient of determination (r2) and the root mean squared error (RMSE) between the predicted and measured values are 0.63 and 5.28μmol CO2 m-2 s"1 when using FvCB based model; r2 and RMSE between the predicted and measured values are 0.65 and 4.94μmol CO2 m-2 s-1 when using the the asymptotic negative-exponential fucntion. Though the prediction accuracy of the negative-exponential function is better than the FvCB model, but further analyses showed that the prediction accuracy of net photosynthesis rate is poor when the environment is differ from the model established, thus stability and adaptability is poor; the prediction accuracy of FvCB model is lower, but under different environment, the prediction accuracy is the consistent thus has stability and adaptability. The prediction accuracy can be improved when using more data to correction the parameters used in the model.
     (3) Integrating simulation of the responses of leaf growth and photosynthesis rate to leaf nitrogen content developed in chapter 2 and chapter 3, the responses of dry matter production to leaf nitrogen content were established. Integrating prediction of the effect of nitrogen on greenhouse cucumber leaf area developed in chapter 2 (leaf morphological traits based LAI model and SLA-based LAI model) and prediction of the effect of nitrogen on leaf photosynthesis using FvCB model and an asymptotic negative-exponential function used in Chapter 3, dry matter production of greenhouse cucumber was predicted. Independent experimental values were used to validate the model. The results show that the r2 and RMSE between the predicted and measured total dry matter based on the 1:1 line are 0.62 and 58.9 g m-2 when using leaf morphological traits based LAI model and FvCB model; 0.66 and 54.3 g m-2 when using leaf morphological traits based LAI and the asymptotic negative-exponential function; 0.71 and 44.8 g m-2 when using SLA-based LAI model and FvCB model; 0.53 and 77.2 g m-2 when using SLA-based LAI model and the asymptotic negative-exponential function, respectively. Though, using leaf morphological traits based LAI model and FvCB model did not give a better prediction as using leaf morphological traits based LAI and the asymptotic negative-exponential function and using SLA-based LAI model and FvCB model, it can avoid destructive sampling with respect to SLA-based model and prediction accuracy has a better consistency than leaf morphological leaf traits and the asymptotic negative-exponential function gives. Therefore, leaf morphological traits based LAI model and FvCB model is more applicable, stable and adaptable, the prediction accuracy can be improved through the improvement of the parameters in FvCB model to raise the prediction accuracy of photosynthesis rate.
     The model developed in this study could predict the number of appeared leaves per plant, leaf nitrogen content of each rank, specific leaf length, leaf area, leaf photosynthesis rate and dry matter production of greenhouse cucumber with the single-stem pruning in Shanghai using the easily gained crop and environmental parameters such as planting date, planting density, nitrogen application rate, PAR, temperature and CO2 concentration inside the greenhouse, the number of leaves on planting date and the removed leaves as input, therefore has strong mechanism and is easy to use, can be used for optimization nitrogen management for greenhouse fruit cucumber prediction.
引文
[1]曹卫星,罗卫红.作物系统模拟及职能管理[M].北京,北京:高等教育出版社,2003.
    [2]廖桂平,官春云,黄璜.作物生长模拟模型研究概述[J].作物研究,1998,3:45-48.
    [3]Robinson, I., Juarez, N., da Rocha, H.R., Adelaine, M.S.F., Michael, L.G., Scott, D.M.. An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs[J]. Agricultural and Forest Meteorology,2009,149:920-928.
    [4]Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F.. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography[J]. Agricultural and Forest Meteorology,2004,121:19-35.
    [5]Fassnacht, K.S., Gower, S.T., Norman, J.M., Mc Murtrie, R.E.. A comparison of optical and direct methods for estimating foliage surface area index in forests[J]. Agricultural and Forest Meteorology,1994,71:183-207.
    [6]Gower, S.T., Norman, J.M.. Rapid estimation of leaf-area index in conifer and broad-leaf plantations[J]. Ecology,1991,72,1896-1900.
    [7]Gower, S.T., Kucharik, C.J., Norman, J.M.. Direct and indirect estimation of leaf area index, fPAR, and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment, 1999,70:29-51.
    [8]Chason, J.W., Baldocchi, D.D., Huston, M.A.. Comparison of direct and indirect methods for estimating forest canopy leaf-area[J]. Agricultural and Forest Meteorology,1991,57:107-128.
    [9]Gamiely, S., Randle, W.M., Milks, W.A., Smittle, D.A.. A rapid and non-destructive method for estimating leaf area of onions[J]. Hortscience,1991,26(2):206.
    [10]Blanco, F.F., Folegatti, M.V.. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting[J], Science Agricultral (Piracicaba, Brazil),2005,62: 4.
    [11]Van Henten, E.J.. Validation of a dynamic lettuce growth model for greenhouse climate control[J]. Agricultural Systems,1994,45:55-72.
    [12]Dayan, E, Van Keulen, H., Jones, J.W., Zipori, I., Shmuel, D., Challa, H.. Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model[J]. Agricultural Systems,1993,43:145-163.
    [13]Lieth, J.H., Pasian, C.C.. A simulation model for the growth and development of flowering rose shoots[J]. Scientia Horticultrae,1991,46:109-128.
    [14]Yin, X.Y., Schapendonk, A.D.H.C.M., Kropff, M.J., van Oijen, M., Bindraban, P.S.. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence[J]. Annals of Botany,2000,85:579-585.
    [15]Van Keulen, H., Penning de Vries, F.W.T., Drees, E.M.. A summary model for crop growth[M]. In:Penning de Vries, F.W.T., Van Laar, H.H.(Eds.). Simulation of Plant Growth and Crop Production. Simulation Monographs. Pudoc, Wageningen,1982:87-97.
    [16]Leutscher, K.J., Vogelezang, J.V.M.. A crop growth simulation model for operational management support in pot plant production[J]. Agricultural Systems,1990,33:101-114.
    [17]Heuvelink, E.. Tomato growth and yield: quantitative analysis and synthesis[M]. Dissertation. Wageningen Agricultural. University, Wageningen,1996:326.
    [18]De Visser, C.L.M. ALCEPAS, an onion growth model based on SUCROS87:I. Development of the model[J]. Journal of Horticultural Science and biotechnology,1994,69:501-518.
    [19]Enoch, H.Z.. Crop responses to aerial carbon dioxide[J]. Acta Horticulturae,1990,268:17-32.
    [20]Horie, T., de Wit, C.T., Goudriaan, J., et al. A formal template for the development of cucumber in its vegetative stage[M]. Proc. Koninklijke Nederlandse Akademie van Wetenschappen (KNAW),1979,82:433-479.
    [21]Spitters, C.J.T., van Keulen, H., van Kraalingen, D.W.G.. A simple and universal crop growth simulator: SUCROS87[M]. In:Rabbinge, R., Ward, S.A., van Laar, H.H.(Eds.). Simulation and Systems Management in Crop Protection. Pudoc, Wageningen,1989:147-181.
    [22]Heuvelink, E., Marcelis, L.F.M.. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Horticultural Science,1996,71:405-414.
    [23]Lakso, A.N., Johnson, R.S.. A simplified dry matter production model for apple using automatic programming simulation software[J]. Acta Horticultrae,1990,276:141-147.
    [24]Buwalda, J.G.. A mathematical model of carbon acquisition and utilization by kiwifruit vines[J]. Ecological Modelling,1991,57:43-64.
    [25]Marcelis, L.F.M., Heuvelink, E., Goudriaan, J.. Modelling biomass production and yield of horticultural crops: a review[J]. Scientia Horticulturae,1998,74:83-111.
    [26]Loomis, R.S., Ng E., Hunt, W.F.. Dynamics of development in crop production systems[M]. In: Burris, R.H., Black, C.C.(Eds.). CO2 Metabolism and Plant Productivity[M]. University Park Press, Baltimore, MD,1976:269-286.
    [27]Kropff, M.J.. Modeling the effects of weeds on crop production[J]. Weed Research,1988,28: 465-471.
    [28]Spitters, C.J.T., Van Keulen, H., Van Kraalingen, D.W.G.. A simple and universal crop growth simulator: SUCROS87[M]. In: Rabbinge, R., Ward, S.A., Van Laar, H.H.(Eds.). Simulation and Systems Management in Crop Protection. Simulation Monographs,32. Pudoc, Wageningen, 1989,147-181.
    [29]Kropff, M.J., Spitters, C.J.T.. An eco-physiological model for interspecific competition, applied to the influence of Chenopodium album L. on sugar beet. I. Model description and parametrization[J]. Weed Research,1992,32:437-450.
    [30]Krop, M.J., van Laar, H.H., Matthews, R.B.. ORYZA1:An ecophysiological model for irrigated rice production[M]. SARP Research Proceedings. Los Banos, Philippines:IRRI,1994.
    [31]Zezgin, U.. The quantitative effects of temperature and light on the number of leaves preceding the first fruiting inflorescence on the stem of tomato (Lycopersicon esculentum, Mill.) and aubergine (Solanum melongena L.)[J]. Scientia Horticulturae,2006,109:142-146.
    [32]Arkebauer, T.J., Norman, J.M., Sullivan, C.Y.. From cell growth to leaf growth. III. Kinetics of leaf expansion[J]. Agron. J.,1995,87:112-121.
    [33]Stewart, D.W., Dwyer, L.M.. A model of expansion and senescence of individual leaves of field-grown maize (Zea mays L.)[J]. Canadian Journal of Plant Science,1994,74:37-42.
    [34]Birch, C.J., Hammer, G.L., Rickert, K.G.. Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays)[J]. Australian Journal of Agricultural Research,1998, 49:249-262.
    [35]Sinclair, T.R., Amir, J.. A model to assess nitrogen limitations on the growth and yield of spring wheat[J]. Field Crops Research,1992,30:63-78.
    [36]Villalobos, F.J., Hall, A.J., Ritchie, J.T., et al. OIL-CROP-SUN:a development, growth, and yield model of the sunflower crop[J]. Agronomy Journal,,1996,88:403-415.
    [37]Amir, J., Sinclair, T.R.. A model of temperature and solar-radiation effects on spring wheat growth and yield[J]. Field Crops Research,1991,28:47-58.
    [38]Klepper, B., Rickman, R.W., Peterson, C.M.. Quantitative characterization of vegetative development in small cereal grains[J]. Agronomy Journal,1982,74:789-792.
    [39]Dwyer, L.M., Stewart, D.W.. Leaf area development in field-grown maize[J]. Agronomy Journal, 1986,78:334-343.
    [40]Hammer, G.L., Hill, K., Schrodter, G.N.. Leaf area production and senescence of diverse grain sorghum hybrids[J]. Field Crops Research,1987,17:305-317.
    [41]Alm, D.M., Pike, D.R., Hesketh, J.D., et al. Leaf area development in some crop and weed species[J]. Biotronics,1988,17:29-39.
    [42]Cao, J., Hesketh, J.D., Zur, B., et al. Leaf area development in maize and soybean plants[J]. Biotronics,1988,17:9-15.
    [43]Muchow, R.C., Carberry, P.S.. Environmental control of phenology and leaf growth in a tropically adapted maize[J]. Field Crops Research,1989,20:221-236.
    [44]Muchow, R.C., Carberry, P.S.. Phenology and leaf-area development in a tropical grain sorghum[J]. Field Crops Research,1990,23:221-237.
    [45]Ellis, R.H., Qi, A., Summerfield, R.J., et al. Rates of leaf appearance and panicle development in rice (Oryza sativa L): a comparison at three temperatures[J]. Agricultural and Forest Meteorology,1993,66:129-138.
    [46]Tollenaar, M., Daynard, T.B., Hunter, R.B.. Effects of temperature on rate of leaf appearance and owering date in maize[J]. Crop Science,1979,19:363-366.
    [47]Thiagarajah, M.R., Hunt, L.A.. Effects of temperature on leaf growth in corn (Zea mays)[J]. Canadian Journal of Botany,1982,60:1647-1652.
    [48]Cao, W., Moss, D.N.. Temperature effect on leaf emergence and phyllochron in wheat and barley[J]. Crop Science,1989,29:1018-1021.
    [49]White, P.J., Cooper, H.D., Earnshaw, M.J., et al. Effects of low temperature on the development and morphology of rye (Secale cereale) and wheat (Triticum aestiSum)[J]. Annals of Botany, 1990,66:559-566.
    [50]Nagai, I.. Growth and performance of rice varieties under controlled temperature and photoperiod conditions[J]. International Rice Commission Newsletter,1963, Special Issue: 71-85.
    [51]Baker, J.T., Allen, Jr L.H., Boote, K.J., et al. Developmental responses of rice to photoperiod and carbon dioxide concentration[J]. Agricultural and Forest Meteorology,1990,50:201-210.
    [52]Baker, J.T., Pinter, Jr P.J., Reginato, R.J., et al. Effects of temperature on leaf appearance in spring and winter wheat cultivars[J]. Agronomy Journal,1986,78:605-613.
    [53]Boone, M.Y.L., Rickman, R.W., Whisler, F.D.. Leaf appearance rates of two winter wheat cultivars under high carbon dioxide conditions[J]. Agronomy Journal,1990,82:718-724.
    [54]Gao, L., Jin, Z., Huang, Y., Zhang, L.. Rice clock model:a computer model to simulate rice developmen[J]. Agricultural and Forest Meteorology,1992,60:1-16.
    [55]Yin, X.Y., Kropff, M.J.. The effect of temperature on leaf appearance in rice[J]. Annals of Botany,1996,77:215-221.
    [56]Ritchie, J.T.. Genetic specific data for crop modeling. In:Penning de Vries F W T, Teng P S, Metselaar K. eds. Systems approaches for agricultural development[J]. Dordrecht. Netherlands: Kluwer,1993:77-93.
    [57]Slafer, G.A., Connor, D.J., Halloran, G.M.. Rate of leaf appearance and final number of leaves in wheat: Effects of duration and rate of change of photoperiod[J]. Annals of Botany,1994,74: 427-436.
    [58]Gallagher, J.N.. Field studies of cereal leaf growth. I. Initiation and expansion in relation to temperature and ontogeny[J]. Journal of Experimental Botany,1979,30:625-636.
    [59]Baker, C.K., Gallagher, J.N., Monteith, J.L.. Daylength change and leaf appearance in winter wheat[J]. Plant, Cell and Environment,1980,3:285-287.
    [60]Kirby, E.J.M., Appleyard, M., Fellowes, G.. Effect of sowing date and variety on main shoot leaf emergence and number of leaves of barley and wheat[J]. Agronomie,1985,5:117-126.
    [61]Kiniry, J.R., Rosenthal, W.D., Jackson, B.S., et al. Predicting leaf development of crop plants[M]. In:Hodges T, ed. Predicting crop phenology. Boca Raton, Florida: CRC Press,1991: 29-42.
    [62]叶宏宝,孟亚利,汤亮,等.水稻叶龄与叶面积指数动态的模拟研究[J].中国水稻科学,2008,22(6):625-630.
    [63]Room, P.M., Maillette, L., Hanan, J.S.. Module and metamer dynamics and virtual plants[J]. Adances in Ecological Research,1994,25:105-157.
    [64]Zhao, C.J., Wang, J.H., Wu, H.R., Huang, W.J., Zheng, W.G.. Simulation models and deduction system for interspace description of wheat leaf shape. Trans CSAE.2002,18(5):221-225.
    [65]Andrieu, B., Ivanov, N., Boissard, P.. Simulation of light interception from a maize canopy model constructed by stereo plotting[J]. Agricultural and Forest Meteorology,1995,75: 103-119.
    [66]Lawless, C., Semenov, M.A., Jamieson, P.D.. A wheat canopy model linking leaf area and phenology[J]. European Journal of Agronomy,2005,22:19-32.
    [67]Watanabe, T., Room, P.M., Hanan, J.S.. Virtual rice:simulating the development of plant architecture[J]. International Rice Research Notes,2001,26:60-62.
    [68]Hanan, J.S.. Virtual plants-integrating architectural and physiological models[J]. Environ Model Software,1997,12(1):35-42.
    [69]De Koning, A.N.M.. Development and dry matter distribution in tomato:a quantitative approach. Dissertation[M]. Wageningen Agric. Univ., Wageningen,240 pp.,1994
    [70]Greenwood, D.J., Gastal, F., Lemaire, G., Draycott, A., Millard, P., Neeteson, J.J.. Growth rate and %N of field grown crops:theory and experiments[J]. Annals of Botany,1991,67:181-190.
    [71]Gruz, P., Boval, M.. Effect of nitrogen on some morphogenetic traits of temperate and tropical perennial forage grasses[M]. In:Lemaire, G., Hodgson, J., de Morales, A. de F., Carvalho, P.C., Nabinger, C.(Eds.). Grassland ecophysiology and grazing ecology. Cambridge:University Press: 151-168.
    [72]Lawlor, D.W., Kontturi, M., Young, A.T.. Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphophate carboxylase activity and nitrogen supply[J]. Journal of Experimental Botany,1989,40:43-52.
    [73]Gastal, F., Nelson, C.J.. Nitrogen use within the growing leaf blade of tall fescue[J]. Plant physiology,1994,105:191-197.
    [74]Lawlor, D.W., Boyle, F.A., Keys, A.J., Kendall, A.C., Young, A.T.. Nitrate nutrition and temperature effects on wheat: a synthesis of plant growth and nitrogen uptake in relation to metabolic and physiological processes[J]. Journal of Experimental Botany,1988,39:329-343.
    [75]Vos, J., Biemond, H.. Effect of nitrogen on the development and growth of the potato plant. I. Leaf appearance, expansion growth, life span of leaves and stem branching[J]. Annals of Botany, 1992,70:27-35.
    [76]Muchow, R.C.. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment. I. Leaf growth and leaf nitrogen[J]. Field Crops Research, 1988,18:1-16.
    [77]Longnecker, N., Robson, A.. Leaf emergence of spring wheat receiving varying nitrogen supply at different stages of development[J]. Annals of Botany,1994,64:1-7.
    [78]Uhart, S.A., Andrade, F.H.. Nitrogen deficiency in maize:I. Effects on crop growth, development, dry matter partitioning and kernel set[J]. Crop Science,1995,35:1376-1383.
    [79]Gastal, F., Belanger, G., Lemaire, G. A model of the leaf expansion rate of tall fescue in response to nitrogen and temperature[J]. Annals of Botany,1992,70:437-442.
    [80]Trapani, N., Hall, A.J.. Effect of leaf position and nitrogen supply on the expansion of leaves of field grown sunflower (Helianthus annuus L.) [J]. Plant and soil,1996,184:331-340.
    [81]Trapani, N., Hall, A.J., Weber, M.. Effects of constant and variable nitrogen supply on sunflower (Helianthus annuus L.) leaf cell number and size[J]. Annals of botany,1999,84:599-606.
    [82]MacAdam, J., Volenec, J.J., Nelson, J.C.. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue[J]. Plant physiology,1989,89:549-556.
    [83]Walch-Liu, P., Neumman, F., Bangerth, F., Engels, C.. Rapid effects of nitrogen form on leaf morphogenesis[J]. Journal of Experimental Botany,2000,51:227-237.
    [84]Kuiper, D., Kuiper, J.C., Lambers, H., Schuit, J., Staal, M.. Cytokinin concentration in relation to mineral nutrition and benzyladenine treatment in Plantago major ssp pleiosperma[J]. Physiologia Plantarum,1989,75:511-517.
    [85]Sinclair, T.R., de Wit, C.T.. Photosynthate and nitrogen requirements for seed production by various crops[J]. Science,1975,189:565-567.
    [86]Sinclair, T.R., de Wit, C.T.. Analysis of the carbon and nitrogen limitation to soybean yield[J]. Agronomy Journal,1976,68:319-324.
    [87]Ohnishi, M., Horie, T., Koroda, Y.. A simplified model for simulating leaf area development and dry matter production of rice in relation to plant N and weather conditions[M]. In: van Laar H.H., et al. (Eds.).Abstracts of the Second International Symposium on Systems Approaches for Agricultural Development,1995:30.
    [88]Hasegawa, T.. Modeling the effect of nitrogen on rice growth and development[D]. Kyoto University, Japan.1996.
    [89]Yin. X., Lantinga, E.A., Schapendonk, A.D.H.C.M., et al. Some quantitative relationship between leaf area index and canopy nitrogen content and distribution[J]. Annals of Botany,2003, 91(7):893-903.
    [90]Rajcan, I., Tollenaar, M.. Source:sink ratio and leaf senescence in maize:II Nitrogen metabolism during grain filling[J]. Field Crops Research,1999a,60:255-265.
    [91]Dreccer, M.F., Schapendonk, A.H.C.M., Slafer, G.A., Rabbinge, R.. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield[J]. Plant and soil,2000a,220: 189-205.
    [92]Crafts-Brandner, S.J., Holzer, R., Urs Feller. Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves[J]. Physiologia Plantarum,1998,102: 192-200.
    [93]Jordi, W., Schapendonk, A., Davelaar, E., Stoopen, G.M., Pot, C.S., deVisser, R., van Rhijn, J.A., Gan, S., Amasino, R.M.. Increased cytokinin leaves in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning[J]. Plant, Cell and Environment,2000,23:279-289.
    [94]Thomas, H., Stoddart, J.L.. Leaf senescence[J]. Annual Review of Plant Physiology,1980,31: 83-111.
    [95]Simpson, R.J., Dalling, T.R.. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). III. Enzymology and transport of amino acids from senescing wheat leaves[J]. Planta,1981,151:447-456.
    [96]Mutsaers, H.J.W.. Leaf growth in cotton (Gossypium hirsutum L.):I. Growth in area of main-stem and sympodial leaves[J]. Annals of Botany,1983,51:503-520.
    [97]Goudriaan, J., Monteith, J.L.. A mathematical function for crop growth based on light interception and leaf area expansion[J]. Annals of Botany,1990,66:695-701.
    [98]常丽英,顾东祥,张文宇,杨杰,曹卫星,朱艳.水稻叶片伸长过程的模拟模型.作物学报,2008,34(3):311-317.
    [99]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [100]Laisk, A., Eichelmann, H., Oja, V.. C3 photosynthesis in silico[J]. Photosynthesis Research, 2006,90:45-66.
    [101]Zhu, X.G., E., de Sturler, Long, S.P.. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate:a numerical simulation using an evolutionary algorithm[J]. Plant Physiology,2007,145:513-526.
    [102]Farquhar, G.D., von Caemmerer, S., Berry, J.A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta,1980,149:78-90.
    [103]Osaki, M., Shinano, T., Tadono, T.. Effect of nitrogen application on the accumulation of ribulose-1,5-bisphosphate carboxylase oxygenase and chlorophyll in several field crops[J]. Soil Sci Nut,1993,39:427-436.
    [104]Chiba, A., Ishida, H., Nishizawa, N.K., Makino, A., Mae, T.. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology,2003,44:914-921.
    [105]Evans, J.R.. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) [J]. Plant Physiology,1983,72:297-302.
    [106]Evans, J.R.. Partitioning of nitrogen between and within leaves grown under different irradiances[J]. Australian Journal of Plant Physiology,1989,16:533-548.
    [107]Field, C., Mooney, H.A.. The photosynthesis-nitrogen relationship in wild plants[M]. In On the economy of plant form. Givnish T.J. ed. Cambridge:University Press:25-53.
    [108]Anten, N.P.R., Schieving, F., Werger, M.J.A.. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species[J]. Oecologia,1995,101:504-513.
    [109]Nelson, C.J.. Genetic associations between photosynthetic characteristics and yield:review of the evidence[J]. Plant Physiology and Biochemistry,1988,26:543-554.
    [110]Evans, J.R., Seemann, J.R.. Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis[J]. Plant Physiology,1984,74:759-765,
    [111]Kutik, J., Natr, L., Demmers-Derks, H.H., Lawlor, D.W.. Chloroplast structure of sugar beet (Beta vulgaris L.) cultivated in normal and elevated concentrations with two contrasted nitrogen supplies[J]. Exp Bot,1995,46:1797-1802.
    [112]Kumar, P.A., Parry, M.A.J., Mitchell, R.A.C., Ahmad, A., Abrol, YR.. Photosynthesis and Nitrogen-use efficiency. In Christine H. Foyer and Graham Noctor. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism[M]. Kluwer Academic Publishers.2002:23-34.
    [113]Sivasankar, A., Lakkineni, K.C., Jain V, Abrol, Y.P.. Differential response of two wheat genotypes to nitrogen supply. I. Ontogenic changes in laminae growth and photosynthesis[J]. Journal of Agronomy and Crop Science,1998,181:21-27.
    [114]Leong, T.Y., Anderson, J.M.. Adaptation of the thylakoid membranes of pea chloroplast to light intensities. I. Study on the distribution of chlorophyll-protein complexes[J]. Photosynthesis Research,1984,5:105-115.
    [115]Evans, J.R., Terashima, I.. Effect of nitrogen nutrition on electron transport components and photosynthesis in spinach[J]. Australian Journal of Plant Physiology,1987,14:59-68.
    [116]Lawlor, D.W., Boyle, F.A., Young, A.T., Keys, A.J., Kendall, A.C.. Nitrate nutrition and temperature effects on wheat: photosynthesis and photorespiration of leaves[J]. Exp Bot,1987, 38:393-408.
    [117]Wong, S.C.. Elevated atmospheric pressure of and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants[J]. Oecologia,1979,44:68-74.
    [118]Ferrar, P.J., Osmond, C.B.. Nitrogen supply as a factor influencing photo inhibition and photosynthetic acclimatio after transfer of shade grown Solanum dulcamara to brigh light[J]. Planta,1986,168:563-570.
    [119]Jain, V, Pal, M., Lakkineni, K.C., Abrol, Y.P.. Photosynthetic characteristics in two wheat genotypes as affected by nitrogen nutrition[J]. Biology Plant,1999,42:217-222.
    [120]Caemmerer, S., von Farquhar, G.D.. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta,1981,153:376-387.
    [121]Khamis, S., Lamaze, T., Lemoine, Y., Foyer, C.. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation[J]. Plant Physiology,1990,94:136-144.
    [122]Makino, A., Sato, T., Nakano, H., Mae, T.. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances[J]. Planta,1997,203:390-398.
    [123]Millard, P., Catt, J.W.. The influence of nitrogen supply on the use of nitrate and ribulose-1,5-bisphosphate carboxylase oxygenase as leaf nitrogen stores for growth of potato-tubers (Solanum tuberosum L)[J]. Exp Bot,1988,39:1-11.
    [124]Govindjee, S.K.. Sixty-three years since Kautsky:Chlorophyll a fluorescence[J]. Australian Journal of plant physiology,1995,22:131-160.
    [125]Genty, B., Briantais, J.M., Baker, N.R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochemica et BiophysicaActa,1989,990:87-92.
    [126]Schreiber, U., Bilger, W., Neubauer, C.. Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis[J]. Ecological Studies,1994,100:49-70.
    [127]Krause, G.H., Weis, E.. Chlorophyll fluorescence and phtotosynthesis:The basis[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313-349.
    [128]van Kooten, O., Snel, J.F.H.. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research,1990,25(4):147-150.
    [129]Demming-Adams, B., Adams, W.W., Barker, D.H.. Plant Physiology,1996,98:253-264.
    [130]Wolfgang Bilger, Olle Bjorkman. Role of the xanthophyll cycle in photo protection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research,1990,25(3):173-185.
    [131]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [132]董彩霞,赵世杰,田纪春,孟庆伟,邹琦.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].作物学报,2002,28(1):59-64.
    [133]张旺锋,勾玲,王振林,李少昆,余松烈,曹连莆.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898.
    [134]郭天财,冯伟,赵会杰,薛国典,王化岑,王永华,姚战军.两种穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报,2004,30(2):115-121.
    [135]Goudriaan, J.. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange[J]. Agricultural and Forest Meteorology,1998,43: 155-169.
    [136]Peri, P.L., Moot, D.J., Mcneil, D.L.. A canopy photosynthesis model to predict the dry matter production of cock foot pastures under varying temperature, nitrogen and water regimes[J]. Grass and Forage Science,2003,58:416-430.
    [137]Gijzen, H.. Simulation of photosynthesis and dry matter production of greenhouse crops[J]. Simulation Report CABO-TT, nr.28. Wageninegen:Centre for Agrobiological Research, Wageninegen Agricultural University,1992:17-21.
    [138]Bouma, T.J., Broekhuysen, A.G.M., Veen, B.W.. Analysis of root respiration of solanum tuberosum as related to growth, ion uptake and maintenance of biomass[J]. Plant Physiology and Biochemistry,1996,34:795-806.
    [139]de Wit, C.T.. Simulation of assimilation, respiration and transpiration of crops[M]. Published by Wiley in New York.1978.
    [140]MeCree, K.J.. Sensitivity of sorghum grain yield to ontogenetic changes in respiration coefficients[J]. Crop Science,1988,28:114-120.
    [141]Vertregt, N., Penning, de Vries, F.W.T.. A rapid method for determining the efficiency of biosynthesis of plant biomass[J]. Journal of Theoretical Biology,1987:128.
    [142]Gifford, R.M.. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs. short-term distinctions for modelling[J]. Glob. Change Biology,1995,1:385-396.
    [143]Amthor, J.S.. The role of maintenance respiration in Plant growth[J]. Plant Cell Environ,1984,7: 561-569.
    [144]Poorter, H., Remkes, C., Lambers, H.. Carbon and nitrogen economy of 24 wild species differing in relative growth rate[J]. Plant Physiology,1990,94:621-627.
    [145]Heuvelink, E.. Dry matter production in a tomato crop:measurements and simulation[J]. Ann als of Botany,1995,75:369-379.
    [146]Grossman, Y.L., Dejong, T.M.. PEACH:a simulation model of reproductive and vegetative growth in peach trees[J]. Tree Physiology,1994,14:29-45.
    [147]Shinano, T., Osaki, M., Tadano, T.. Problems in methods of estimation of growth and maintenance respiration[J]. Soil Science and Plant Nutrition,1996,42:773-784.
    [1]Xu, R., Dai, J., Luo, W., Yin, X., Li, Y., Tai, X., Han, L., Chen, Y., Lin, L., Li, G., Zou, C., Du, W., Diao, M.. A photothermal model of leaf area index for greenhouse crops[J]. Agricultural and Forest Meteorology,2010,150:541-552.
    [2]李合生.现代植物生理学[M].高等教育出版社.2006.pp.76.
    [3]Yin, X.Y., Lantiga, E.A., Schapendonk, ADH.C.M., Zhong, X.H.. Some quantitative relationship between leaf area index and canopy nitrogen content and distribution[J]. Annals of Botany,2003,91:893-903.
    [4]Spitters, C.J.T., van Keulen, H., van Kraalingen, D.W.G.. A simple and universal crop growth simulator:SUCROS87[M]. In:Rabbinge, R., Ward, S.A., van Laar, H.H.(Eds.). Simulation and Systems Management in Crop Protection. Pudoc, Wageningen,1989:147-181.
    [5]Dayan, E, Van Keulen, H., Jones, J.W., Zipori, I., Shmuel, D., Challa, H.. Development, calibration and validation of a greenhouse tomato growth model:Ⅰ. Description of the model[J]. Agricultural Systems,1993,43:145-163.
    [6]Heuvelink, E., Marcelis, L.F.M.. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Horticultural Science,1996,71:405-414.
    [7]Lieth, J.H., Pasian, C.C.. A simulation model for the growth and development of flowering rose shoots[J]. Scientia Horticulturae,1991,46:109-128.
    [8]Leutscher, K.J., Vogelezang, J.V.M.. A crop growth simulation model for operational management support in pot plant production[J]. Agricultral Systems,1990,33:101-114.
    [9]Kropff, M.J., van Laar, H. H.. Matthews, R.B.. ORYZA1-an ecophysiological model for irrigated rice production[M]. IRRI, Los Banos, The Phillippines.1994.
    [10]Yin, X., Schapendonk, A.H.C.M., Kropff, M.J., van Oijen, M., Bindraban, P.S.. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence[J]. Annals of Botany,2000,85:579-585.
    [11]Booij, R., Kreuzer, A.D.H., Smit, A.L., van der Werf, A.. Effect of nitrogen availability on dry matter production, nitrogen uptake and nitrogen interception of Brussels sprouts and leeks[J]. Netherlands Journal of Agricultural Science,1996,44:3-9.
    [12]Vos, J., van der Putten, P.E.L.. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts[J]. European Journal of Agronomy,2001,14:209-220.
    [13]Terry, N.. Developmental physiology of sugar beet. II. Effects of temperature and nitrogen supply on the growth, soluble carbohydrate content and nitrogen content of leaves and roots[J]. Journal of Experimental Botany,1970,21:477-496.
    [14]Marcelis, L.F.M., Gijzen, H.. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticultrae,1998,476:237-242.
    [15]Goudriaan, J., van Laar, H.H..1994. Modelling potential crop growth processes[M]. Leaf area growth. Dordrecht: Kluwer.
    [16]Greenwood, D.J., Gastal, F., Lemaire, G., Draycott, A., Millard, P., Neeteson, J.J.. Growth rate and %N of field grown crops:theory and experiments[J]. Annals of Botany,1991,67:181-190.
    [17]Gruz, P., Boval, M.. Effect of nitrogen on some morphogenetic traits of temperate and tropical perennial forage grasses. In:Lemaire, G., Hodgson, J., de Morales, A.F., Carvalho, P.C., Nabinger, C..(eds.) Grassland ecophysiology and grazing ecology[M]. Cambridge:University Press,151-168.
    [18]Gastal, F., Belanger, G., Lemaire, G. A model of the leaf expansion rate of tall fescue in response to nitrogen and temperature[J]. Annals of Botany,1992,70:437-442.
    [19]Chiba, A., Ishida, H., Nishizawa, N.K., Makino, A., Mae, T.. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology,2003,44:914-921.
    [20]Evans, J.R.. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology,1983,72:297-302.
    [21]Evans, J.R.. Partitioning of nitrogen between and within leaves grown under different irradiances[J]. Australian Journal of Plant Physiology,1989,16:533-548.
    [22]Peng SB, Rebecca M, Laza C, Garcia FV, Cassman KG.1995. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice[J]. Communication in Soil Science and Plant Analysis, 26(5&6):927-935.
    [23]Trapani, N., Hall, A.J.. Effect of leaf position and nitrogen supply on the expansion of leaves of field grown sunflower(Helianthus annuus L.)[J]. Plant and soil,1996,184:331-340.
    [24]Kropff, M.J., Spitters, C.J.T.. An ecophysiological model for interspecific competition, applied to the influence of Chenopodium album L. on sugar beet. I. Model description and parametrization[J]. Weed Research,1992,32:437-450.
    [25]Van Delden, A., Kropff M.J., Haverkort A.J.. Modeling temperature- and radiation-driven leaf area expansion in the constracting crops potato and wheat[J]. Field Crops Research,2001,72: 119-142.
    [26]Marcelis, L.F.M.. A simulation model for dry matter partitioning in cucumber[J]. Annals of Botany,1994,74:43-52.
    [27]Bertin, N.. Competition for assimilates and fruit position affect fruit set in indeterminate greenhouse tomato[J]. Annals of Botany,1995,75:55-65.
    [1]Yin, X.Y., Struik, P.C., Romero, P., Harbinson, J., Evers, J.B., van der Putten, P.E.L., Vos, J.. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model:a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy[J]. Plant, Cell and Environment,2009,32:448-464.
    [2]Laisk, A., Eichelmann, H., Oja, V.. C3 photosynthesis in silico[J]. Photosynthesis Research, 2006,90:45-66.
    [3]Farquhar, G.D., von Caemmerer, S., Berry, J.A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta,1980,149:78-90.
    [4]Harley, P.C., Thomas, R.B., Reynolds, J.F., Strain, B.R. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant, Cell and Environment,1992b,15:271-282.
    [5]Wullschleger, S.D.. Biochemical limitations to carbon assimilation in C3 plants-a retrospective analysis of the A/Ci curves from 109 species[J]. Journal of Experimental Botany,1993,44: 907-920.
    [6]Ethier, G.J., Livingston, N.J., Harrison, D.L., Black, T.A., Moran, J.A.. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves[J]. Plant, Cell and Environment,2006,29:2168-2184.
    [7]Dubois, J.J.B., Fiscus, E.L., Booker, F.L., Flowers M.D., Reid, C.D.. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis[J]. New Phytologist,2007,176:402-414.
    [8]Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaa, E.L.. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant, Cell and Environment,2007,30:1035-1040.
    [9]Krause, GH., Weis, E.. Chlorophyll fluorescence and photosynthesis:The basis[J]. Annu Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
    [10]Chiba, A., Ishida, H., Nishizawa, N.K., Makino, A., Mae, T.. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology,2003,44:914-921.
    [11]Evans, J.R., Seemann, J.R.. Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis[J]. Plant Physiology,1984,74:759-765.
    [12]von Caemmerer, S.. Biochemical models of leaf photosynthesis[M]. Techniques in Plant Sciences, No.2, p.165.CSIRO Publishing, Collingwood, Victoria, Australia.2000
    [13]Farquhar, G.D., Wong, S.C.. An empirical model of stomatal conductance[J]. Australian Journal of Plant Physiology,1984,11:191-210.
    [14]B.E., Medlyn, E., Dreyer, D., Ellsworth, M., Forstreuter, P.C., Harley, M.U.F., Kirschbaum, X., Le Roux, P., Montpied, J., Strassemeyer, A., Walcroft, K., Wang, D., Loustau. Temperature response of parameters of a biochemically based model of photosynthesis. Ⅱ. A review of experimental data[J] Plant, Cell and Environment,2002,25:1167-1179.
    [15]Loreto, F., Harley, P.C., Di Marco, G., Sharkey, T.D.. Estimation of mesophyll conductance to CO2 flux by three different methods[J]. Plant Physiology,1992,98:1437-1443.
    [16]Centritto, M., Loreto, F., Chartzoulakis, K.. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salted-stressed olive saplings[J]. Plant, Cell and Environment,2003,26:585-594.
    [17]During, H.. Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (VitisVinifera L.)[J]. Agricultural Systemss,2003,42:65-68.
    [18]Flexas, J., Diaz-Espejo, A., Berry, J.A., Cifre, J., Galmes, J., Kaldenhoff, R., Medrano, H., Ribas-Carbo, M.. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization[J]. Journal of Experimental Botany,2007a,58:1533-1543.
    [19]Leuning, R.. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell and Environment,1995,18:339-355.
    [20]Long, S.P., Postl, W.F., Bolhar-Nordenkampf, H.R.. Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and toxonomic groupings[J]. Planta,1993, 189:226-234.
    [21]Laisk, A., Eichelmann, H., Oja, V, Talts, E., Scheibe, R.. Rates and roles of cyclic and alternative electron flow in potato leaves[J]. Plant and Cell Physiology,2007,48:1575-1588.
    [22]Yin, X., Harbinson, J., Struik, P.C.. Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light[J]. Plant, Cell and Environment,2006,29:1771-1782.
    [23]Evans, J.R.. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. Ⅱ. Stability through time and comparison with a theoretical optimum[J]. Australian Journal of Plant Physiology,1993,20:69-82.
    [24]Genty, B., Briantais, J.M., Baker, N.R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et BiophysicaActa,1989,990:87-92.
    [1]Yin, X.Y., Struik, P.C., Romero, P., Harbinson, J., Evers, J.B., van der Putten, P.E.L., vos, J.. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model:a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy[J]. Plant, Cell and Environment,2009,32:448-64.
    [2]Leutscher, K.J., Vogelezang, J.V.M.. A crop growth simulation model for operational management support in pot plant production[J]. Agricultural Systems,1990,33:101-114.
    [3]Goudriaan, J.. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange[J]. Agricultural and Forest Meteorology,1998,43: 155-169.
    [4]Peri, P.L., Moot, D.J., Mcneil, D.L.. A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes[J]. Grass and Forage Science,2003,58:416-430.
    [5]Goudriaan, J., van Laar, H.H.. Modelling potential crop growth processes[M]. The Netherlands: Kluwer Academic Publishers,1994.
    [6]Gijzen, H.. Simulation of photosynthesis and dry matter production of greenhouse crops[M]. Simulation Report CABO-TT, nr.28. Wageninegen:Centre for Agrobiological Research, Wageninegen Agricultural University,1992, pp:17-21.
    [7]Bouma, T.J., Broekhuysen, A.G.M., Veen, B.W.. Analysis of root respiration of solarium tuberosum as related to growth, ion uptake and maintenance of biomass[J]. Plant Physiology and Biochemistry,1996,34:795-806.
    [8]de Wit, C.T.. Simulation of assimilation, respiration and transpiration of crops[M].1978.
    [9]Vertregt, N., Penning de Vries, F.W.T.. A rapid method for determining the efficiency of biosynthesis of plant biomass[J]. Journal of Theoretical Biology,1987,128(1):109-119.
    [10]Gifford, R.M.. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs. short-term distinctions for modeling[J]. Global Change Biology,1995,1:385-396.
    [11]Amthor, J.S.. The role of maintenance respiration in Plant growth[J]. Plant Cell and Environment,1984,7:561-569.
    [12]Poorter, H., Remkes, C., Lambers, H.. Carbon and nitrogen economy of 24 wild species differing in relative growth rate[J]. Plant Physiology,1990,94:621-627.
    [1]Xu, R., Dai, J., Luo, W., Yin, X., Li, Y., Tai, X., Han, L., Chen, Y., Lin, L., Li, G., Zou, C., Du, W., Diao, M.. A photothermal model of leaf area index for greenhouse crops[J]. Agricultural and Forest Meteorology,2010,150:541-552.
    [2]Yin, X.Y., Struik, P.C., Romero, P., Harbinson, J., Evers, J.B., van der Putten, P.E.L., Vos, J.. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model:a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy[J]. Plant, Cell and Environment,2009,32:448-464.
    [3]Gijzen, H.. Simulation of photosynthesis and dry matter production of greenhouse crops[J]. Simulation Report CABO-TT, nr.28. Wageninegen: Centre for Agrobiological Research, Wageninegen Agricultural University,1992:17-21.
    [4]Dayan, E, Van Keulen, H., Jones, J.W., Zipori, I., Shmuel, D., Challa, H.. Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model[J]. Agricultural Systems,1993,43:145-163.
    [5]Heuvelink, E.. Tomato growth and yield: quantitative analysis and synthesis[M]. Dissertation. Wageningen Agricultural. University, Wageningen,1996:326.
    [6]Yin, X., Schapendonk, A.H.C.M., Kropff, M.J., van Oijen, M, Bindraban, P.S.. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence[J]. Annals of Botany,2000,85:579-585.
    [7]Marcelis, L.F.M., Gijzen, H.. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticultrae,1998,476:237-242.
    [8]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质累积模拟模型[J].农业工程学报,2003,19(4):241-244.
    [9]谢祝捷,陈春宏,余纪柱,等.上海自控温室黄瓜干物质生产和分配模拟模型研究[J].上海农业学报,2004,1:75-79.
    [10]孙忠富,陈人杰.温室作物模型研究基本理论与技术方法的探讨[J].中国农业科学,2002,35:320-324.
    [11]孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初探[J].中国生态农业学报,2003,2(11):84-88.
    [12]Vos, J., van der Putten, P.E.L.. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts[J]. European Journal of Agronomy,2001,14:209-220.
    [13]Terry, N.. Developmental physiology of sugar beet. Ⅱ. Effects of temperature and nitrogen supply on the growth, soluble carbohydrate content and nitrogen content of leaves and roots[J]. Journal of Experimental Botany,1970,21:477-496.
    [14]Peng SB, Rebecca M, Laza C, Garcia FV, Cassman KG.1995. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice[J]. Communication in Soil Science and Plant Analysis, 26(5&6):927-935.
    [15]Chiba, A., Ishida, H., Nishizawa, N.K., Makino, A., Mae, T.. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology,2003,44:914-921.
    [16]Evans, J.R.. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology,1983,72:297-302.
    [17]Evans, J.R.. Partitioning of nitrogen between and within leaves grown under different irradiances[J]. Australian Journal of Plant Physiology,1989a,16:533-548.
    [18]Yin, X.Y., Lantiga, E.A., Schapendonk, ADH.C.M., Zhong, X.H.. Some quantitative relationship between leaf area index and canopy nitrogen content and distribution[J]. Annals of Botany,2003,91:893-903.
    [19]Goudriaan, J.. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange[J]. Agricultural and Forest Meteorology,1998,43: 155-169.
    [20]Gifford, R.M.. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs. short-term distinctions for modeling[J]. Global Change Biology,1995,1:385-396.
    [21]Amthor, J.S.. The role of maintenance respiration in Plant growth[J]. Plant Cell and Environment,1984,7:561-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700