用户名: 密码: 验证码:
黄河三角洲盐碱地造林技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在盐碱地利用和造林技术研究方面,世界多国包括中国都取得了重要成果,提出了许多行之有效的措施,但还远没有适应盐碱地绿化美化的需求。该项研究选择黄河三角洲盐碱地,采用随机区组、多因素正交试验等田间试验设计进行了盐碱地造林技术、造林树种适应性和耐盐生理指标的测定,在对测定数据采用Excel和SPSS软件进行统计分析的基础上,选择树木耐盐有关的多个指标进行了聚类分析和层次分析评价,研究取得如下结果:
     1.黄河三角洲土壤粘重,试验地为重壤土和轻粘土;通透性差,土壤总孔隙度为:38%-50%,非毛管孔隙最大值为:6%;含盐量高,为2 g.kg-1-6 g.kg-1;有机质和养分含量低,有机质只有4.68 g.kg-1,土壤碱解氮、速效磷和速效钾含量分别为:0.74mg.kg-1、13.14 mg.kg-1和168mg.kg-1。试验地表层土壤含盐量随时间的变化受到基部土壤含盐量的影响;土壤含盐量的水平分布与土壤含水量负相关;土壤含盐量的垂直分布形态也受到土壤水分变化的影响,当表层土壤含水量接近或不足5%时,土壤含盐量的垂直变化大。
     2.三种不同客土处理(基部加10cm河沙、加10cm稻糠、加5cm河沙+5cm稻糠)试验表明:绒毛白蜡三种客土造林成活率分别为对照的135%、134%和127%;刺槐是190%、176%和149%;侧柏都为对照的181%。绒毛白蜡和侧柏的株高、地径生长也显著高于对照。对绒毛白蜡而言,土壤含盐量越高,其客土造林效果越明显,在重度盐碱地造林成活率、高、径生长分别是对照的200.6%、224.3%、196.0%;客土不同处理之间以基部加入10cm稻糠效果最好。不同树种最佳的基盘配方不同,绒毛白蜡和侧柏以草炭含量30%和50%为好,而刺槐是70%。基盘配方对沙柳的成活和生长影响不大。
     3.造林地的含盐量对造林成果起着至关重要的作用,绒毛白蜡和侧柏在含盐量高的地块上成活率显著降低,在轻、中、重三种不同地块上,绒毛白蜡的成活率分别为94.1%、83.3%和22.2%,侧柏的成活率分别为88.9%、72.2%和11.1%;而刺槐除了与含盐量有关外,还与土壤质地关系密切。成活率分别为33.3%、16.7%和77.8%。不同树种的高、径生长都是在轻度和中度盐碱地生长良好,而重度盐碱地明显制约树木的生长。
     4.对树种耐盐性试验中采用的16个树种的生理指标SOD、POD和CAT活性,叶绿素、类胡萝卜素、可溶性糖、可溶性蛋白、脯氨酸和MDA含量,细胞膜透性进行了测定,发现不同树种间叶绿素与可溶性糖、SOD显著正相关,相关系数分别为0.662和0.657;SOD和CAT显著正相关,相关系数为0.412,POD与相对电导率显著负相关,相关系数为-0.431。
     5通过分析评价提出:构树、绒毛白蜡、紫穗槐、侧柏、沙柳、枸杞,对盐碱地具有较强的适应性,可以作为黄河三角洲盐碱地造林的首选树种;中等推荐树种有:木槿、合欢、君迁子、金银花、桑树和刺槐;本次研究不推荐树种:白榆、臭椿、毛桃和山杏。
The research on land use and afforestation technology in saline soils has achieved a lot of important results both in China and abroad. Nowadays, a number of effective measures were put forward and applied in practice, but it was far from the needs in view of land greening and landscape constructing in saline-alkaline land reclamation. Under the situation, to meet the challenge of the big gap, the study was performed by taking the saline land in Yellow River Delta region as experimental site, and planting techniques such as tree species adaptability and physiological indicators of salt-tolerance were quantitatively determined with the design of field experiment, i.e. randomized block and multi-factor orthogonal. All the measured data were treated based on statistical analysis by Excel and SPSS program. Among them, multiple indicators of salt-tolerance were evaluated by cluster analysis and Analytic Hierarchy Process. The results were achieved and reported as following:
     1. The soil in Yellow River Delta is characterized with heavy clay, poor permeability and low content of organic matter & nutrients. The soil type is heavy loam and light clay in the experimental sites, total soil porosity is among 38% and 50%; the maximum of non-capillary porosity reaches 6%. Soil salt contents are from 2 g.kg-1 to 6 g.kg-1, and organic matter content is only 4.68 g.kg-1; alkali-hydrolyzable nitrogen, available phosphorus and potassium contents are 0.74mg.kg-1,13.14 mg.kg-1 and 168mg.kg-1 respectively.While soil salinity of surface soil can be changed under the base of the impact of soil salinity over time. Horizontal distribution of soil salinity is negatively correlated with soil moisture. The vertical distribution of soil salinity patterns is impacted by soil moisture change. It changes significantly when soil moisture falls to 5%.
     2. Three different treatments of alien soil (plus 10cm riversand,10cm rice bran,5cm riversand+5cm rice bran) are tested and the result shows that comparing with control group, the survival rates of Fraxinus velutina with alien soils are 135%、134% and 127%. For Robinia pseudoacacia, they are 190%、176% and 149% respectively. And for Platycladus orientalis, survival rates all are 181%. Moreover for plantlet height and basal diameter of F. velutina and P. orientalis,,they are also significantly higher than the ones in control. In terms of F. velutina, the result shows that the higher of soil salinity, the much more obvious effects to alien soil afforestation. And its survival rate, height and basal diameter reach to 200.6%、224.3%、196.0% compared with the value in control. For soil treatment, plus rice bran is better with other approaches. The best formulations of seed-base are various among specific species, i.e. peat content of 30% and 50% are better for F. velutina and P. orientalis, the peat content of 70% is the best for R. pseudoacacia. But there is little effect on the growth of Salix psammophila.
     3 Salt content in afforestation sites plays a vital role to the test results. For example, in higher salt content lands the survival rates are significantly lower for F. velutina and P. orientalis. Plantation results in three different plots with light, moderate and heavy salt, the survival rates of F. velutina are 94.1%,83.3%,22.2%, and 88.9%、72.2%,11.1% for P. orientalis. Besides soil salt content, soil texture is also closely related with the survival of R. pseudoacacia, the survival rates are 33.3%,16.7% and 77.8% respectively. All the tested trees can grow well in the soils with light and moderate salt content, and the growth of trees are restricted significantly in soils with heavy salt.
     4. The physiological indicators including activities of SOD, POD and CAT, contents of chlorophyll, soluble sugar, soluble protein, praline and MDA, and cell membrane permeability of 16 tested species have been determined. The results indicate that the contents of chlorophyll, soluble sugar, and SOD activities are positively correlated and correlation coefficients are 0.662 and 0.657 respectively. The relationship between SOD activity and CAT is positive, and correlation coefficient is 0.412. While the relationship between POD activity and cell conductance is negative, and correlation coefficient is-0.431.
     5. Through the physiological indicators analysis and afforestation experiment, the following conclusions could be presented. The trees such as Broussonetia papyifera, Fraxinus velutina, Amorpha fruticosa, Salix psammophila Platycladus orientalis, Lycium chinense are with high salt tolerance under the test conditions. These trees can be chosen as pioneer species for afforstation in saline-alkali land in Yellow River Delta. And Hibiscus syriacus, Albizia julibrissin, Diospyros lotus, Lonicera japonica, Morus alba and Robinia pseudoacacia are the moderately recommended species, while Ulmus pumila, Ailanthus altissima, Amygdalus persica and Armeniaca sibirica are not recommended species for afforestation in the region.
引文
1.曹文.黄河三角洲地区耕地资源可持续利用研究[J].中国人口资源与环境,2001,11(51):26-27
    2.陈长平,王文卿,林鹏.盐度对无瓣海桑幼苗的生长和某些生理生态特性的影响[J].植物学通报,2000,17(5):457461
    3.陈淑清.滨州市盐碱地的治理与开发[J].河北农业科学.2009,13(6):94-95,97
    4.陈文利,徐朗莱,沈文飚,刘友良.盐胁迫下两品种大麦叶片H202累积及其清除酶活性的变化[J].南京农业大学学报,1999,22(2):97-100
    5.陈效民.江苏滨海盐渍土水分动态及贮水性能[J].江苏农业科学,1996(2):44-47
    6.单长卷.土壤干旱对刺槐幼苗水分生理的影响[J].安徽农业科学,2005,33(10):1852—1853.
    7.单秀枝,魏由庆,严慧峻.表土有机质含量对水盐运动影响的模拟研究[J].土壤肥料,1996(5):1-5
    8.董晓霞,赵树慧,孔令安等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13
    9.杜军华,冯桂莲.高榕盐胁迫对蚕豆(Vicia faba L.)叶绿素a和b含量的影响[J].青海师范大学学报,2000,(4):36-38,64
    10.樊秀彩,潘兴,刘崇怀,郭景南,李民.葡萄种质的耐盐性鉴定评价[J].农业工程学报,2004,20(suppl):133-136
    11.范玲玲.四种柃属植物(Eurya)的耐盐性研究.南京林业大学硕士学位论文,申请学位级别:硕士,专业:植物学.指导教师:汤庚国20080601
    12.房用,姜楠南,梁玉.黄河三角洲盐碱地造林抑盐效应分析[J].林业科技开发,2009,23(3):15—19
    13.苑增武,张孝民,毛齐来,等.大庆地区主要造林树种耐盐碱能力评价[J].防护林科技,2000,(1):15—16
    14.冯蕾.三种园林树木耐盐性研究.河北农业大学,硕士学位论文,申请学位级别:硕士.专业:园林植物与观赏园艺,指导教师:白志英.20080607
    16.龚洪柱,魏庆莒.盐碱地造林学[M].北京:中国林业出版社,1986
    17.桂枝,高建明.盐胁迫对6种苜蓿品种脯氨酸含量和超氧化物歧化酶活性的影响[J].天津农学院学报.2007,12(4):52-55.
    1.郭房庆,周建明,汤章城.NaCl胁迫下小麦突变体和野生型叶片中一些有机溶质积和基因表达差异[J].植物生理学报,1999,25(3):263-268
    19.郭喜军,李成军,李峰.盐碱地引种文冠果及柽柳初步研究[J].防护林科技,2009,9(3):30-31
    20.侯本栋.黄河三角洲典型生态系统退化特征研究.山东农业大学硕士学位论文,20070620第30页
    21.韩希忠,赵保江.黄河三角洲耐盐园林树种的选择[J].中国林业,2002,10(A):40
    22.胡学俭,孙明高,夏阳,张金凤,李国雷,曹永富.. NaCI胁迫对无花果与海棠膜脂过氧化作用及保护酶活性的影响[J].两北植物学报,2005,25(5):937943
    23.黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报, 1997,27(4):509-514
    24.惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究[J].中国农学通报,2002,18(5):29-34.
    25.克热木·伊力,袁琳,齐曼·尤努斯,杨文英.盐胁迫对阿月浑子SOD、CAT、POD活性的影响[J].新疆农业科学,2004,41(3):129-134
    26.李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学学报,1994,17(3):52-56
    27.李国雷.盐分胁迫下13个树种反映特性的研究。山东农业大学硕士学位论文,2004a
    28.李国雷,孙明高,夏阳,张金凤,魏海霞.NaCl胁迫下黄栌、紫荆的部分生理生化反应动态变化规律的研究[J].山东农业大学学报(自然科学版).2004b,35(2):173-176
    29.李静,赵庚星,范瑞彬.黄河三角洲土地利用及土地覆盖变化驱动力分析[J].西北农林科技大学学报(自然科学版),2003,31(3): 117-122
    30.李磊,赵檀方,胡延吉.大麦苗期耐盐性鉴定指标的研究[J].莱阳农学院学报1998,15(4):253-257
    31.李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154-158.
    32.李得庆.盐碱地造林技术研究[J].林业机械与木工设备,2010,38(12)::37-38
    33.李清顺,卢志伟.渭南市卤泊滩盐碱地造林方法探讨[J].林业调查规划,2009,34(4):123-125
    24.廖祥儒,贺普超,朱新立.盐渍对葡萄光合色素含量的影响[J].园艺学报,1996,23(3):300-302
    25.林大仪.土壤学[M].北京:中国林业出版社,2002:181
    36.林广思.华南滨海区主要抗风耐盐碱园林绿化植物及其种植要点[J].林业调查规划,2004,29(3):78—81.
    37.凌朝文,刘艳华.盐碱地造林学[M].天津:天津科学技术出版社,1982,29.
    38.逢效栋.在我国前景看好的盐碱地绿化工程[J].生物教学,2000,25(8):43-44.
    39.刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,14(1):18-19
    40.刘宛,胡文玉,谢甫绨等. NaCl胁迫及外源自由基对离体小麦叶片02和膜脂质过氧化的影响[J].植物生理学通讯,1995,31(1):26-29
    41.刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,4):1-7
    42.龙明杰,曾繁森.高聚物土壤改良剂的研究进展[J].土壤通报,2000,31(5):199-202.
    43.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社.1999 a,12-13
    44.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社.1999 b,85-87
    45.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社.1999 c,150-152
    46.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社.1999 d,179-180
    47.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社.1999 e,193-194
    48.吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱酯化[J].中国科学(C辑),1996,26(1):26-30
    49.马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院报,1998 a,18(1):33-41
    50.马焕成,蒋东明.木本植物抗盐性研究进展[J].西南林学院学报,1998 b,18(1):52-59
    51.马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998c,18(1):15-23
    52.马建刚.连云港海堤盐渍土立地条件与林木生长关系的研究.硕士学位论文.南京林业大学,2005,p4指导老师:胡海波20050601,申请学位级别:硕士专业:水土保持与荒漠化防治
    53.马淑玲,王秋丰.盐碱地造林技术[J].林业实用技术,2005,(12):14-15.
    54.孟康敏.绒毛白蜡等树种耐盐里研究[J].辽宁林业科技,1999,(3):43-46
    55.米志英.库布齐沙漠沙柳培育关键技术研究.2008内蒙古农业大学,水土保持与荒漠化防治博士论文.
    56.聂新辉.棉花抗旱耐盐生理指标的鉴定及抗旱耐盐相关cDNA片段的分离.新疆农业大学硕士学位论文,指导教师,曲延英,20070601
    57.宁建风,刘兆普,刘玲,等. NaCI对库拉索芦荟的胁迫效应研究[J].华北农学报,2005,20(5):70-75.
    58.钱琼秋,魏国强,朱祝军,等.不同品种黄瓜幼苗光合机构对盐胁迫的响应[J].科技通报,2004,20(5):459—-463.
    59.秦永建.滨海盐碱地刺槐林生长衰退机理研究。山东农业大学硕士学位论文20090603指导教师:曹帮华
    60.任崴,罗廷彬,王宝军,等.新疆生物改良盐碱地效益研究[J].干旱地区农业研究,2004,22(4):211-214
    61.茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究,2005,12(2):135-140.
    62.上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1985,67-70
    63.邵艳军,山仑,李广敏.干早胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报.2006,1(14):68-70.
    64.宋尚文,孙明高,吕延良,马万侠,张鹏.盐胁迫对3个桑树品种幼苗光合特性的影响[J].西南林学院学报,2010,30(3):20-23
    65.沈国舫.尊重自然规律,建设生态环境[J].中国水土保持科学,2003,1(1):3-4
    66.沈惠娟,曾斌.干旱、低温胁迫对SOD、POD活性的影响[J].南京林业大学学报,1992,16(4):54-57
    67.舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递[J].生物工程进展,2000,20(3):3-6.
    68.苏洪君,孙钊,钱喜友.土壤调理剂在盐碱地造林试验研究[J].林业科技情报,2005,37(4):1-4
    69.孙方行,孙明高,魏海霞,等.NaCl胁迫对紫荆幼苗膜脂过氧化及保护酶活性的影响[J].河北农业大学学报,2006,29(1):16—19
    70.孙方行,李国雷,夏阳,孙明高,张金凤,魏海霞.刺槐对盐分胁迫的生理生化反应[J].山东林业科技,2004,150(1):5-7.
    71.孙国荣,阎秀峰等.盐胁迫对星星草幼苗保护酶系统的影响[J].草地学报,2001,9(1):34-38
    72.孙骏威,翁晓燕,李峤.缺钾对水稻不同品种光合和能量耗散的影响[J].植物营养与肥料学报,2007,13(4):577-584
    73.宋玉珍,安志刚,崔晓阳,李玉文.大庆苏打盐碱地造林研究[J].森林工程,2009,25(3): 39-42
    74.宋丹,张华新,白淑兰,闫杰,刘涛.植物耐盐种质资源评价及滨海盐碱地引种研究与展望[J]·内蒙古林业科技,2006,(1):37-38
    75.汤章城.逆境条件下植物脯氨酸的积累及可能的意义[J].植物生理学通讯,1984,(3):51—54
    76.汤章城.逆境条件下植物脯氨酸的累积及可能的意义[J].植物生理学通讯,1984,(1):15-27
    77.万劲,石雷,张金政,汤庚国.盐胁迫对鸢尾叶片生理指标的影响[J].南京林业大学学报(自然科学版)2006,30(1)::57-60
    78.汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学,2004,37(8):1245-1250
    79.汪贵斌,曹福亮,游庆方,等.盐胁迫对4树种叶片中和+的影响及其耐盐能力的评价[J].植物资源与环境学报,2001,10(1):30-34.
    80.汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报,2003,27(3):11-14
    81.汪良驹,刘友良,马凯,等.盐胁迫对无花果愈伤组织自由基代谢的影响[J].侯喜林,常有宏主编.园艺学进展(第二辑).南京:东南大学出版社,1998,235-241
    82.汪月霞,孙国荣,王建波.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,26(1)122-128
    83.王红,黄河三角洲土壤盐分时空变异研究.2005-南京大学博士论文,:地图学与地理信息系统
    84.王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465
    85.王文杰,贺海升,祖元刚,赵修华,杨磊,关宇,许慧男,于兴洋.施加改良剂对重度盐碱地盐碱动态及杨树生长的影响[J].生态学报,2009.29.No.(5):2272-2278
    86.王艳青,陈雪梅,李悦等.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,23(4):66-70
    87.王英,盐碱土地区绿化植树的措施与建议[J].中国农学通报,2004,20(6):97-98
    88.王永忠,沈振荣.脱硫废弃物改良盐碱地田问试验研究[J].宁夏农林科技,2009,(2):11-12
    89.王友平.绒毛白蜡优良无性系生长及生理生化特性评价的研究[J].山东农业大学硕士学位论文20090603.指导教师:孙明高,刘德玺
    90.王玉祥,刘静,乔来秋,何洪兵,赵进红,王建华,盖广玲.41个引种树种的耐盐性评定与选择[J].西北林学院学报,2004,19(4)::55-58
    91.王政宏,孔祥生,吕淑芳,等.盐胁迫下大豆叶片有机物质及荧光参数的变化[J].河南科技大学学报.2003,23(4):30-34.
    92.王丽燕,赵可夫.NaCl胁迫对海蓬子离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报,2004,30(1):94-98)。
    93.魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学,2004,37(11):1754,--1759
    94.翁森红,李维炯,刘玉新,张凌云,于得花,徐化凌.关于植物的耐盐性和抗盐性的研究[J].内 承古科技与经济,2005(10):15-17
    95.吴凤萍,韩清芳,贾志宽.4个白花苜蓿品系种子萌发起耐盐性研究[J].草业科学,2008,25(8):57-62
    96.吴丽云,曹帮华.盐碱地绒毛白蜡和苦楝种子抗盐萌发机理[J].物学通报2005,22(6):668-672
    97.吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报,2002,26(3):19-22
    98.武德,曹帮华,于志鹏,刘欣玲,张大鹏.盐碱胁迫下绒毛白蜡种子的萌发特性[J].江西农业大学学报,2007,29(1):55-58
    99.武应霞.不同树种采用种基盘造林时出苗情况初报[J].河南林业科技,2003,23(3):3-4
    100.郗金标,邢尚军,张建锋,等.几种重盐碱地土壤改良利用模式的比较[J].东北林业大学学报,2003(6):99-101
    101.肖国栋,相培应,赵天雪,等.河西地区盐碱地造林技术[J].防护林科技,2010,94(1):114
    102.夏江宝,刘信儒,王贵霞,等.土壤水分及环境因子对刺楸叶片气体交换的影响[J].水土保持学报,2005,19(2):179—183.
    103.肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818—825.
    104.邢尚军,郗金标,张建锋, 宋玉民,刘德玺,马丙尧.黄河三角洲常见树种耐盐能力及其配套造林技术[J].东北林业大学学报2003,31(6):94-95
    105.邢尚军,张建锋.黄河三角洲土地退化机制与植被恢复技术[M].北京: 中国林业出版社2006.11
    106.许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387
    107.扬喜田,等.播种造林种基盘基质的改良研究[J].中国水土保持科学,2003,1(4):87-91
    108.杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    109.杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展,200,28(4):70-76
    110.杨晓慧,蒋卫杰,魏氓,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业人学学报(自然科学版),2006,37(2):302-305
    111.杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845
    112.叶庆华,刘高焕,田国良.黄河三角洲土地利用时空复合变化图谱分析[J].中国科学,D辑,地球科学,2004,34(5):461-474
    113.汤章城.植物生理与分子生物学[M].北京:科学出版社.2001,752-753.
    114.俞仁培.对盐渍土资源开发利用的思考[J].土壤通报,2001,32(6):138-140
    115.袁琳,克热木·伊力,张利权.NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985-991
    116.岳增璧,张学培,朱金兆,李国华,景峰.滨海盐碱地种基盘育苗研究[J].陕西农业科学,2009,(4):96-98
    117.张宝泽.田菁和碱苋菜耐盐性能的研究[J].山东师范大学学报,1997,12(3):308-310
    118.张川红,沈应柏,尹伟伦.盐胁迫对国槐和核桃幼苗光合作用的影响[J].林业科学研究,2002a,15(1):41—-46
    119.张川红,沈应柏,尹伟伦.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002b,38(2):27-31
    120.张川红.北方几个造林树种抗盐能力与抗盐机理研究[D].北京:北京林业大学,1999.
    121.张恩平,张淑红,司龙亭等.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响[J].沈阳农业大学学报,2001,32(6):446-448
    122.张建锋,邢尚军,郗金标,等.黄河三角洲可持续发展面临的环境问题与林业对策[J].东北林业大学学报,2002a(6):115-119
    123.张建锋,张旭东,周金星,刘国华,李冬雪。世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005,12(6):28-30
    124.张建锋,盐碱地生态修复原理与技术[M].北京,中国林业出版社,2008a
    125.张建锋.盐碱地的生态修复研究[J].水土保持研究,2008b,15(4):74-78.
    126.张建锋.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研充,2003 a(2)::16-22
    127.张建锋,邢尚军,郗金标,宋玉民.树木耐盐的生理指标测定[J].东北林业大学学报,2003b,31(6):90-92
    128.张建锋,宋玉民,邢尚军.等.盐碱地改良利用与造林技术[J].东北林业大学学报,2002c30(6):124—-129
    129.张建锋.中国盐碱地造林绿化的理论与实践.在刘小京,刘孟雨主编“盐生植物利用与区域农业可持续发展”.北京:气象出版社,2002b 221-225.
    130.张洁明.三种园林植物耐盐生理生态学特性研究.天津师范大学硕士学位论文.申请学位级别:硕士,20060420
    131.张立宾,盐生植物的耐盐能力及其对滨海盐渍土的改良效果研究.山东农业大学硕士论文,2005-1205
    132.张玲菊,黄胜利,周纪明,夏国华,黄有军.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].江西农业大学学报,2008,30(5):833-838
    133.张笑颜,朱立新,贾克功.5种核果类果树的耐盐性与抗盐性分析[J].北京农学院学报,2008,23(2):19-23
    134.张永宏.盐碱地种植耐盐植物的脱盐效果[J].甘肃农业科技,2005(3):48-49
    135.张兆英,于秀俊.植物抗盐性评价生理指标的分析[J].沧州师范专科学校学报,200622(4)51-53
    136.赵可夫.植物抗盐生理[M].中国科学技术出版社,1993a.
    137.赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社,1993b
    138.赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999a,7,40-41
    139.赵可夫.李法曾.中国盐生植物[M]北京:科学出版社,1999b,15
    140,赵可夫等.中国盐生植物的种类、类型、植被及其经济潜势.刘小京,刘镒掰.盐生植物利用与区域农业可持续发展.北京:气象出版社.2002:1—9.
    141.赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社2005a.25
    142.赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社2005b.24
    143.赵梁军.观赏植物生物学[M].北京:中国农业大学出版社,2002
    144.郑海雷,林鹏.培养盐度对海莲和木榄幼苗保护系统得影响[J].厦门大学学报,1998,37(2):278-282
    145.中国树木志编委会中国树木志[M].1978
    146.中国科学院上海植物生理研究所上海市植物生理学会.现代植物生理学[M]北京:科学出版社.199912月第一次印刷,2004年5月第二次印刷302页
    147.中国园林建设网(http://www.china-landscape.net)原文链接:http://www.china-landscape.net/wz/1675.htm
    148.周世权,马,恩威.植物分类学[M].北京:中国林业出版社,1995
    149.朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338
    150.朱新广,张其德,匡廷云.对小麦光合功能的伤害主要是由离子效应造成的[J].植物学通报,2000,17(4):360—365.
    151.朱咏莉,刘军,王益权.国内外土壤结构改良剂的研究利用综述[J].水土保持学报,2001,15(6):140-142.
    152.朱振贤.几种主要造林树种盐胁迫响应及耐盐机理研究.南京林业大学硕士学位论文申请学位级别:硕士,20070601
    153.邹燕敏,徐永辉,蔡平.盐碱地园林绿化栽培技术[J].北方园,2008,(3):177-179
    154. Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods Enzymol,1955, (2):764-775
    155. Comey HJ, Sasse JM Ades PK. Assessment of salt tolerance in cuealyors using chlorophyll fluorescence attributes[J]. New Forests,2003,26(3):233-246
    156. Flowers TJ, Effect ofsalinity on seed sot in dce[J]. Plant Cell Environ,1995,18(6):1-87
    157. Foolad M R, Winieov I. Mapping salt tolerance genesin tomato (Lycopersicum esculentum) using trait—based marker analysis[J]. Theor Appl Genet,1993, (87):184-192
    158. Friedman R. Altman A. The effect of salt stress on poyamie bioynthesis and content in mungbean plants and in halo—phytes[J]. Physiol plant.1989, (76):295~302
    159. Gale J. Plants in saline Environments [J]. New York:Springer,1975
    160. Hansen, EH; Munns, DN. Effects of CaSO4 and NaCl on growth and nitrogen fixation of Leucaena leucocephala[J]. Plant and Soil, Dordrecth,1988,107(4):95~99
    161. Haro R, Baneulosma, Quintero FJ, et al. Genetic basis of sodium exclusion and sodium tolerance in yeast, a model for plant [J]. Physiol Plant,1993,(89):868-874
    162. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Plant Mol Biol,2000, (51):463~499.
    163. Hernandez J A, Campillo A and Jimenez A. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants [J]. New Phytol,1999,141 (2):241-251
    164. Humphrey A. Partitioning in chi odium ion in the germination seed of two forage legumes under varied salinity and tem—perature regimes[J]. Commu Soil Sci Plant Anal,1995, (26):3357~3370
    165. Kalir A, Poljakoff Mayber A. Changes in activity of malate dehydrogenase, catalase, peroxidase and superoxide dismutase in leaves of Halimione porlulacoides (L) aellen exposed to high sodium chloride concentrations[J]. Ann.Bot.1981,47:75-85
    166. Kovda VA. Loss of productive land due to salinazation [J]. Ambio, ⅩⅡ.1983, (2):91-93
    167. Lerner H R. Adaption to salinity at the plant cell level[J]. Plant and soil,1985,89:3~14
    168. Levitt J. Responses of plants to environmental stress (2ndEd).New york:Academic Press,1980,365-434
    169. Mainguet M. Aridity drought and human development. Berlin:Springer-verlag.1999
    170. Moran JF, Becana M, Iturkeonnaetxei, et al.Drought induces oxid ative stress in pea plant.1994,94:346-352
    171. Munns R,Termaat A. Whole plant response tO salinity [J]. Plant Physiol,1986,13:143-160
    172. Niknam S R, McComb Jen. Salt tolerance screening of selected Australian woody species-a review[J]. Forest Ecology and Management,2000.(139):1-19.
    173. Petrusalm, Winicoll. Proline status in salt tolerant and salt sensitive alfafacellllines and plants in response to NaCI [J]. Plant Physiol Biochem,1997,(35):303-310
    174. Pinsley RT, Swift MJ. Amelioration of soil by trees—A review of current concepts and practices. London:Marlborough House.1986
    175. Rana Munnsl and Mark Tester. Mechanisms of Salinity Toleranceb[J]. Annual Review of Plant Biology Vol.59:651-681 (Volume publication date June 2008)
    176. SONG Fu-nan, YANG Chuan-ping, LIU Xuc-mci. Effect of salt stress on activity of superoxide dismutase(SOD)in Ulmus pumila L[J]. Journal of Forestry Research,2006,17(1):13-1643
    177. Sreenivasulu N, Ramanjulu S, Ramachandra KK. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance [J]. Plant Sci Shannon,1999,141(1):1-9
    178. Stewert R C, Bewley J D. Lipid peroxidation associated with accelerated aging of soybeanaxes [J]. Plant Physiol,1980,65:245-248.
    179. Szabolcs I. Salt-Affected soils CRC Press, Inc. Boca Raton, Florida.1989.
    180. Takahama U, Oniki T. A peroxidase, phenolics, ascorbate system can scavenge hydrogen peroxide in plant cells [J]. Physiol Plant,1997,101:845-852
    181. Werner A, Stelzer R. Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl [J]. Plant-Cell--Environment,1990,13:243-255.
    182. X.M.Niu et al.Plant Physiol:1996(3):679-686
    183. YE Chun-Jiang, ZttAO Ke-Fu. Effects ofadaptation to elevated Salinity on some enzymes' salt-tolerance in Vitro and physiological changes of celgrass[J]. Aota Botanica sinica.2002,44(7): 788~794
    184. Zhang Jianfeng,Xing Shangjun, Zhang Xudong. Principle and practice of forestation in saline soil in China[J]. Chinese Forestry Science and Technology,2004,3 (2):62-70.
    185. Zhu JK. Salt and drought stress signal transduction in plants[J].. Annu. Rev. Plant Biol.2002,53: 247~273.
    186. Irrigation Water Management:Introduction to irrigation http://www.fao.org/docrep/R4082E/R4082E00.htm FAO 1985
    187. Role of forestry in combating desertification http://www.fao.org/docrep/T0115E/T0115E00.htm FAO 1993
    188. Negus, T.R. Sprayseed for Puccinellia establishment Dept. of Agric. (1980) W. Aust. Farmnote 17/80.
    189. Negus, T.R. Puccinellia-its grazing value and management Dept. (1982) Agric. W. Aust. Farmnote 34/82.
    190. Malcolm, C.V. Seeding shrub pastures on saltland Dept. of Agric. (1983) W. Australia Farmnote 43/83
    191. Massoud, F.I.1977. Basic principles for prognosis and monitoring of salinity and sodicity. In:Proc. International Conference on Managing Saline Water for Irrigation. Texas Tech. University, Lubbock, Texas.16-20 August 1976. pp.432-454.
    192. Abrol I.P. Yadav J.S.P. Massoud F.I. Salt-Affected Soils and their Management Soil Resources, Management and Conservation Service FAO Land and Water Development Division 1988 http://www.fao.org/docrep/x5871 e/x5871 e01.htm#TopOfPage
    193. Pichu Rengasamy. World salinization with emphasis on Australia[J]. Journal of Experimental Botany,2006,57(5):1017-1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700