用户名: 密码: 验证码:
双层堤基渗透破坏机理和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堤防是世界上历史最悠久的防洪工程措施,也是防御洪水的最后一道屏障,其重要性不言而喻。而堤基渗透破坏在以往以及可预见的岁月里,仍将是堤防工程的最直接和最大的威胁。尽管对堤基渗透破坏的研究在以往取得了一定的成果,但仍对其产生、发展(包括渗流出口的形成)规律的缺乏深刻认识,使得堤防工程的实践多依靠经验。因而,本文针对双层堤基渗透破坏发展过程进行了以下几个方面的工作:
     1.双层堤基渗透破坏试验技术研究针对双层堤基的特点,对试验装置和方法进行了研究。制作了适合双层堤基特点的试验装置。对模型试验的比尺进行了分析。
     针对当前堤基渗透破坏模型试验中缺乏对覆盖层的影响研究,着重分析了不同覆盖层与下卧砂层接触性质,并根据试验结果,指出了分析了有机玻璃、水泥砂浆、密闭柔性水袋三类覆盖层模拟材料对堤基渗透破坏发展、上溯的影响,认为覆盖层的作用不仅起到隔水的作用,也体现到对下卧砂层的约束作用,而后者往往被忽视。
     考虑到渗流出口是渗透破坏的必要条件。因此,根据双层堤基典型断面,研究了在试验中如何实现覆盖层薄弱区的模拟,提出了通过改变模拟材料的配比达到对覆盖层性质的控制。
     2、双层堤基渗透破坏过程试验研究。这项研究主要有两部分:
     1)渗流出口形成过程试验研究
     通过改变堤后覆盖层薄弱区不同尺寸,研究堤后覆盖层在下卧承压水作用下形成渗流出口的一般规律。同时还研究了覆盖层薄弱区土层厚度和土体性质对其破坏规律的影响。
     2)双层堤基渗透破坏发展、上溯试验研究
     首先,采用水泥砂浆为覆盖层模拟材料,对渗流出口砂沸和集中渗流通道形成过程进行了一般规律的试验研究。其次,对膨润土、柔性水袋两种覆盖层模拟材料进行了对比试验研究。最终,从试验研究中认识堤基渗透发展上溯的实质和规律
     3、渗透破坏发展过程机理研究
     基于试验研究结果,对渗流出口状态进行了分析,指出渗流出口是渗透破坏的必要条件,没有渗流出口就没有渗透破坏。
     以试验为基础,研究了堤基渗透破坏发展、上溯的内在因素的影响,提出了堤基渗透破坏发展过程的最终型式为土体整体破坏,其实质是土体抗渗强度与渗流强度相互作用的结果。基于对渗透破坏发展上溯过程机理的认识,提出了考虑渗流力以及土体应力环境下土体渗透稳定判据,以及考虑土体运移稳定的泥沙动力学平衡判据。考虑到堤基渗透破坏区域较小,堤基大部分区域仍按满足达西定律的稳定渗流场计算。同时,将集中渗流通道做为渗流场的边界条件处理。根据等效水力半径将集中渗流通道简化为半圆形变截面通道,按照水力学管流特点给出水头和流量关系。
     4、数值模拟研究
     1)渗透破坏发展过程数值模拟研究依据对渗透破坏发展实质的认识,并基于破坏区域相对堤基整个区域较小的特点,采用二维轴对称有限元计算土体渗流场。取以渗流通道走向纵剖面为计算面,采用二维平面应变法计算应力场,并结合提出的两个判据,对堤基渗透破坏发展过程进行数值模拟计算,计算结果与砂槽试验结果相近,表明该方法是可行、合理的。
     应用双层堤基渗透破坏发展有限元程序对双层堤基进行数值模拟研究,提出了“无害管涌”的准确含义。
     2)覆盖层破裂数值模拟研究
     根据试验观察和分析认为,双层堤基覆盖层在承压水作用下形成渗流出口的过程其实质就是裂缝出现、发展的过程,提出了基于的断裂力学理论基础,采用扩展有限元法对覆盖层破坏进行数值模拟,由此对这方法在参考文献的基础上进行了研究,并开发线弹性二维覆盖层裂缝扩展有限元程序。数值模拟结果与试验对比表明该方法是可行、合理的。
     应用上述程序对覆盖层在承压水作用下开裂,以及裂缝扩展过程进行了数值模拟,其结果表明:薄弱区周围,即堤脚部位是最可能发生渗透破坏的部位。实际工程中,仅增加覆盖层压重,尽管提高承压的能力,但使得破坏形式发生改变,出现破坏很突然。这对汛期抢险工作极为不利。
Dike is the world's oldest flood control engineering measures. And it is the last line of flood protection. The importance of dike engineering is self-evident. Seepage failure, in the past and for the foreseeable years, was and will be the most direct and biggest threaten to the dike. Although the research on seepage failure made a little progress, the general law of seepage failure is still not enough to be recognized. To improve the awareness of seepage failure of double-layers foundation of dike, the following jobs are carried out in this dissertation:
     1. Research on the experimental technique of model test. According to the characteristics of double-layer of dike foundation, the test apparatus is designed and the method is studied. The scales of model test are analyzed.
     In view of the lack research on the impact of overburden layer on the development of seepage failure, the nature of contact between the different simulating materials and sand is emphatically analyzed. According to the test results, the effection of the covering layer is not only impervious. The stress effection is also not neglected.
     Considering the seepage exit as the necessary condition of seepage failure, how to simulate the weak spots of the overburden layer is studied. By changing the ratio of compositions, the characteristic of overburden layer is controlled.
     2.Experimental research on the seepage failure.
     1) Experimantal study on the formation of seepage exit
     By changing the size of the weak spot of the overburden layer, the general law is studied on the formation of seepage exit. Also the effection of the properties and the thickness of the covering layer on the formation of seepage exit are researched.
     2) Experimatal research on the development of seepage failure
     First, using cement mortar as the covering layers, progress of the seepage exit and concentrated seepage channel are analyzed. Secondly, results of experiments, using the bentonite and seal flexible water bag as the overburden layer, are compared. The effection of overburden layer on the seepage failure is analyzed.
     3. Research on the mechanism of seepage failure Based on the experimental results, the mechanism of formation of seepage exit is analyzed. It is pointed out that the seepage exit is the necessary condition of seepage failure.
     According to the results of experiments on the development of seepage failure, the influence of the inner factors on the seepage failure is studied. It is put forward that the final failure model of seepage failue is flow soil. The development of concentrated channel is the result of interaction between the anti-permeability of soil and seepage strength. Based on understanding of the seepage failure mechanism, two criterions are derivate. One is the stress strength, considering the seepage force. The other is the limited balance of the rotational moments of soil particle.
     Considering the failure zone is lesser, Darcy law is still satisfied on the most of the region. Meanwhile the relationship between the water head and flow is available throught the hydraulic method.
     4. Research on numerical simulation
     1) Numerical simulation on the progress of seepage faiure Based on understanding of seepage failure mechanism, the seepage field is computed by axisymmetric FEM. Compared the results between the experiment and numerical simulation, the above research method and two criterions on the seepage failure are reasonable, feasible.
     By applying of above program on the simulation of seepage failure, the precise definition of“harmless piping" is put forward.
     2) Numerical simulation of seepage exit formation
     According to the experimental observation and analysis, the formation of seepage exit is result of cracking and expansion. Based the theory of fracture machanics, the formation of seepage exit may be simulated by the extended finite element method. And on the basis of the references, the program of linear elastic 2-D extended finite element is developed. Compared the results between the experiment and numerical simulation, the above research method are reasonable, feasible.
引文
[1] 1998年洪水长江、松花江大堤险情分析[J].防汛与抗旱. 1998(04), 116-119.
    [2] Seed, R.B.,R.G. Bea,R.I. Abdelmalak, et al., Investigation of the Performance of the New Orleans Flood Protection System in Hurrican Katrina on August 29, 2005. 2006.
    [3]周红星,曹洪,叶锋.北江大堤石角段8+750~11+316渗流场分析研究.第五届全国渗流学术研讨会论文集. 2006.中国江苏南京:黄河水利出版社.
    [4]曹敦侣.长江干堤渗流破坏的防治[J].人民长江. 1994(01).
    [5] Mansur, C.I., G. Postol,J.R. Salley. Performance of Relief Well Systems Along Mississippi River Levees[J]. Journal of Geotechnical & Geoenvironmental Engineering. 2000, 126(8), 727-738.
    [6]毛佩郁,段祥宝,毛昶熙.黄河下游堤防现状与渗流防冲调研[J].人民黄河. 1998(05), 34-37.
    [7]王理芬,曹敦履.荆江大堤堤基管涌破坏[J].长江科学院院报. 1991(02), 44-51.
    [8]毛昶熙,段祥宝,蔡金傍, et al.堤基渗流无害管涌试验研究[J].水利学报. 2004(11), 46-53+61.
    [9]陈仲颐,周景星,王洪瑾.土力学[J]. 1994.
    [10]刘杰.土石坝渗流控制理论基础及工程经验教训[J]. 2005.
    [11]周晓杰,介玉新,李广信.基于渗流和管流耦合的管涌数值模拟[J].岩土力学. 2009(10), 3154-3158.
    [12]毛昶熙.堤内压土方案的渗控设计方法[J].水利学报. 1997(06).
    [13]中华人民共和国水利部,堤防工程设计规范. 1998.
    [14]张挺,曹洪.双层地基堤防压渗厚度计算方法探讨[J].广东水利水电. 2002(02), 33-34+37.
    [15] Belytschko, T.,T. Black. Elastic Crack Growth in Finite Elements with Minimal Remeshing[J]. International Journal for Numerical Methods in Engineering. 1999, 45(5), 601-620.
    [16] K, T. Simple Tests to Determine Hydrostati Uplift[J]. Engineering News Record. 1936, 116(6), 872-875.
    [17] A., M. Model Experiments to Study the Influence of Seepage on the Stability of a Sheeted Excavation Sand[J]. Geotechnique. 1963, 6(3), 19.
    [18]牛富俊,刘玉海,倪万魁.软土基坑变形失稳形态模拟试验研究[J].工程地质学报. 2001(01), 93-99.
    [19]孙玉永.受承压水作用的软土基坑突涌破坏机理及判定方法[D].同济大学.
    [20]马石城,印长俊,邹银生.抗承压水基坑底板的厚度分析与计算[J].工程力学. 2004(02), 204-208.
    [21]梁勇然.条形基坑的突涌分析[J].岩土工程学报. 1996(01).
    [22]谭松林.考虑土体强度的建筑基坑突涌问题分析[J].地球科学. 2002(02), 209-211+216.
    [23]胡展飞,张刚,周健.软土基坑突水基底变形研究[J].地下空间与工程学报. 2005(04), 638-641.
    [24]毕湘利.承压水作用下地铁深基坑开挖施工设计技术研究[D].上海:同济大学.博士学位
    [25]葛孝椿.用覆盖层土的浮重与渗透力计算基坑下承压水降深[J].水利水电科技进展. 2004(04), 12-13+32-70.
    [26]潘泓,曹洪,谭泽新, et al.基坑抗突涌计算方法的对比分析及应用探讨[J].岩石力学与工程学报. 2006(S2), 3529-3534.
    [27]丁春林,王东方.基于塑性破坏的承压水基坑突涌计算模型研究[J].工程力学. 2007(11), 126-131.
    [28]郑刚,杨建民.抗突涌稳定验算公式分析[J].土木工程学报. 2011(02), 123-127.
    [29]张云,梁勇然.基于bp神经网络的基坑突涌分析[J].工程勘察. 2001(02), 22-25.
    [30] Duarte, C.A.,J.T. Oden. H-P Clouds—an H-P Meshless Method[J]. Numerical Methods for Partial Differential Equations. 1996, 12(6), 673-705.
    [31] Melenk, J.M.,I. Babuska The Partition of Unity Finite Element Method: Basic Theory and Applications[J]. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4), 289-314.
    [32] Mo?s, N., J. Dolbow,T. Belytschko. A Finite Element Method for Crack Growth without Remeshing[J]. International Journal for Numerical Methods in Engineering. 1999, 46(1), 131-150.
    [33] Sukumar, N.,D.J. Srolovitz,T.J. Baker, et al. Brittle Fracture inPolycrystalline Microstructures with the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2003, 56(14), 2015-2037.
    [34] Sukumar, N.,N. Mo?s,B. Moran, et al. Extended Finite Element Method for Three-Dimensional Crack Modelling[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. 2000, 48(11), 1549-1570.
    [35] Stolarska, M.,D.L. Chopp,N. Mo?s, et al. Modelling Crack Growth by Level Sets in the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2001, 51(8), 943-960.
    [36] Daux, C.,N. Mo?s,J. Dolbow, et al. Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. 2000, 48(12), 1741-1760.
    [37] Dolbow, J., N. Mo?s,T. Belytschko. Modeling Fracture in Mindlin-Reissner Plates with the Extended Finite Element Method[J]. International Journal of Solids and Structures. 2000, 37(48-50), 7161-7183.
    [38] Dolbow, J.E.,M. Gosz. On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials[J]. International Journal of Solids and Structures. 2002, 39(9), 2557-2574.
    [39] Réthoré, J., A. Gravouil,A. Combescure. An Energy-Conserving Scheme for Dynamic Crack Growth Using the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2005, 63(5), 631-659.
    [40] Menouillard, T.,J. Réthoré,A. Combescure, et al. Efficient Explicit Time Stepping for the Extended Finite Element Method (X-Fem)[J]. International Journal for Numerical Methods in Engineering. 2006, 68(9), 911-939.
    [41] BELYTSCHKO, T.,H. CHEN. Singular Enrichment Finite Element Method for Elastodynamic Crack Propagation[J]. International Journal of Computational Methods (IJCM). 2004, 1(1), 1-15.
    [42] Prabel, B.,A. Combescure,A. Gravouil, et al. Level Set X-Fem Non-Matching Meshes: Application to Dynamic Crack Propagation in Elastic–Plastic Media[J]. International Journal for NumericalMethods in Engineering. 2007, 69(8), 1553-1569.
    [43] Song, J.-H., P.M.A. Areias,T. Belytschko. A Method for Dynamic Crack and Shear Band Propagation with Phantom Nodes[J]. International Journal for Numerical Methods in Engineering. 2006, 67(6), 868-893.
    [44] Zi, G.,H. Chen,J. Xu, et al. The Extended Finite Element Method for Dynamic Fractures[J]. Shock and Vibration. 2005, 12(1), 9-23.
    [45] Ahmed, A.Extended Finite Element Method(Xfem)-Modeling Arbitrary Discontinuities and Failure Analysis[D].Pavia:Universitàdegli studi di Pavia.Ph.D
    [46] Chessa, J.,T. Belytschko. An Enriched Finite Element Method and Level Sets for Axisymmetric Two-Phase Flow with Surface Tension[J]. International Journal for Numerical Methods in Engineering. 2003, 58(13), 2041-2064.
    [47] Gerstenberger, A.,W.A. Wall. An Extended Finite Element Method/Lagrange Multiplier Based Approach for Fluid–Structure Interaction[J]. Computer Methods in Applied Mechanics and Engineering. 2008, 197(19-20), 16.
    [48] Chessa, J., H. Wang,T. Belytschko. On the Construction of Blending Elements for Local Partition of Unity Enriched Finite Elements[J]. International Journal for Numerical Methods in Engineering. 2003, 57(7), 1015-1038.
    [49] Mohammadi, S., Extended Finite Element Method for Fracture Analysis of Structures[M]. Tehran,Iran: Blackwell,2007.
    [50]李录贤,王铁军.扩展有限元法(Xfem)及其应用[J].力学进展. 2005(01), 5-20.
    [51]杜效鹄,段云岭,王光纶.混凝土断裂的连续-非连续方法[J].固体力学学报. 2005(04), 405-413.
    [52]杜效鹄,段云岭,王光纶.用连续-非连续方法分析混凝土梁的破坏过程[J].岩石力学与工程学报. 2005(23), 4335-4340.
    [53]米红林,方如华.金瓷修复体双材料界面断裂强度有限元分析[J].同济大学学报(自然科学版). 2005(01), 99-103.
    [54]余天堂.含裂纹体的数值模拟[J].岩石力学与工程学报. 2005(24), 4434-4439.
    [55]余天堂.摩擦接触裂纹问题的扩展有限元法[J].工程力学. 2010(04), 84-89.
    [56]余天堂.模拟三维裂纹问题的扩展有限元法[J].岩土力学. 2010(10), 3280-3285+3294.
    [57]李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(Ⅰ:基础理论)[J].计算力学学报. 2006(02), 207-213.
    [58]方修君,金峰.基于abaqus平台的扩展有限元法[J].工程力学. 2007(07), 6-10.
    [59]方修君,金峰.裂隙水流与混凝土开裂相互作用的耦合模型[J].水利学报. 2007(12), 1466-1474.
    [60]方修君,金峰,王进廷.基于扩展有限元法的koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科学版)网络.预览. 2008(12), 2065-2069.
    [61]方修君,金峰,寇立夯, et al.一种曲折裂纹尖端单元位移场的构造方法[J].计算力学学报. 2010(01), 95-101.
    [62]喻葭临,张其光,于玉贞, et al.扩展有限元中非连续区域的一种积分方案[J].清华大学学报(自然科学版)网络.预览. 2009(03), 352-355.
    [63]乔华,陈伟球.基于arlequin方法和xfem的结构多尺度模拟[J].工程力学. 2010(S1), 29-33.
    [64]周小平,杨海清,董捷.压应力状态下多裂纹扩展过程数值模拟[J].岩土工程学报. 2010(02), 192-197.
    [65]周健,张刚.管涌现象研究的进展与展望[J].地下空间. 2004(04), 536-542+567.
    [66] Bligh, W.G. Dams,Barrages and Weirs on Porous Foudation[J]. Engineerign News. 1910, 64(6), 708-710.
    [67] E.W.Lane. Securtiy from Underseepage Masonary Dams on Earth Foundations[J]. Transaction of the America Society Civil Engineers. 1935, 100(1919), 1235-1272.
    [68] Sellmeijer, J.B.On the Mechanism of Piping under Impervious Structures[D].Delt,Netherlands:Delt University of Technology.Ph.D
    [69] Koenders, M.A.,J.B. Sellmeijer. Mathematical Model for Piping[J]. Journal of Geotechnical Engineering. 1992, 118(6), 943-946.
    [70] Sellmeijer, J.B.,M.A. Koenders. A Mathematical Model for Piping[J]. Applied Mathematical Modelling. 15(11-12), 646-651.
    [71] Ojha, C.S.P., V.P. Singh,D.D. Adrian. Determination of Critical Head in Soil Piping[J]. Journal of Hydraulic Engineering. 2003, 129(7), 511-518.
    [72]陆培炎.评定渗流管涌公式[J].岩土力学. 2001(04), 389-394.
    [73] Ojha, C.S.P., V.P. Singh,D.D. Adrian. Influence of Porosity on Piping Models of Levee Failure[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2001, 127(12), 1071-1074.
    [74] C.S.P.OJHA, V.P. SINGH,D.D. ADRIAN. Assessment of the Role of Slit as a Safty Value in Failure of Levees[J]. International Journal of Sediment Research. 2008, 23, 361-375.
    [75]郑文隆,沈茂松.土坝管涌之研究[J].中国土木水利工程学刊(台湾). 1995, 7(3), 283-295.
    [76]曹敦侣,曹罡,邹火元, et al.水工建筑物渗流管涌的monte-Carlo模拟[J].人民长江. 1997(06).
    [77] Wilhelm, T.,K. Wilmanski. On the Onset of Flow Instabilities in Granular Media Due to Porosity Inhomogeneities[J]. International Journal of Multiphase Flow. 2002, 28(12), 1929-1944.
    [78]毛昶熙,段祥宝,蔡金傍, et al.堤基渗流管涌发展的理论分析[J].水利学报. 2004(12), 46-50.
    [79]毛昶熙,段祥宝,蔡金傍, et al.北江大堤典型堤段管涌试验研究与分析[J].水利学报. 2005(07), 818-824.
    [80]陈建生,李兴文,赵维炳.堤防管涌产生集中渗漏通道机理与探测方法研究[J].水利学报. 2000(09), 48-54.
    [81]沙金煊.预测堤防背侧管涌的一种方法[J].水利水运工程学报. 2003(04), 57-59.
    [82] Bonelli, S.,O. Brivois. The Scaling Law in the Hole Erosion Test with a Constant Pressure Drop[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(13), 1573-1595.
    [83] Bonelli, S.,O. Brivois,R. Borghi, et al. On the Modelling of Piping Erosion[J]. Comptes Rendus Mécanique. 334(8-9), 555-559.
    [84] Foster, M., R. Fell,M. Spannalgel. The Satistics of Embankment Dam Failures and Accidents[J]. Canadian Geotechnical Journal. 2000, 37(5), 1000-1024.
    [85] Foster, M., R. Fell,M. Spannalgel. A Method for Assesing the Relative Likelihood of Embankment Dams by Piping[J]. Canadian Geotechnical Journal. 2000, 37(5), 1025-1061.
    [86] Fell, R.,C.F. Wan,J. Cyganiewicz, et al. Time for Development of Internal Erosion and Piping in Embankment Dams[J]. Journal of Geotechnical & Geoenvironmental Engineering. 2003, 129(4), 307-316.
    [87]毛昶熙.管涌与滤层的研究:管涌部分[J].岩土力学. 2005(02), 209-215.
    [88]张家发,吴昌瑜,朱国胜.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟[J].水利学报. 2002(09), 108-111+116.
    [89]毛昶熙,段祥宝,吴良骥.砂砾土各级颗粒的管涌临界坡降研究[J].岩土力学. 2009(12), 3705-3709.
    [90]毛昶熙,段祥宝,蔡金傍, et al.悬挂式防渗墙控制管涌发展的试验研究[J].水利学报. 2005(01), 42-50.
    [91]唐益群,施伟华,张先林.关于流土和管涌的试验研究和理论分析[J].上海地质. 2003(01), 25-31.
    [92]李广信,周晓杰.堤基管涌发生发展过程的试验模拟[J].水利水电科技进展. 2005(06), 21-24.
    [93]刘杰,谢定松,崔亦昊.江河大堤双层地基渗透破坏机理模型试验研究[J].水利学报. 2008(11), 1211-1220.
    [94] Tomlinson, S.S.,Y.P. Vaid. Seepage Forces and Confining Pressure Effects on Piping Erosion[J]. Canadian Geotechnical Journal. 2000, 37(1), 1-13.
    [95] YinJianhua. Fe Modelling of Seepage in Embankmentsoils with Piping Zone[J].岩石力学与工程学报. 1998(06), 679-686.
    [96]朱伟,山村和也.堤防地基渗透破坏机制及其治理[J].水利水运科学研究. 1999(04), 338-347.
    [97]张家发,朱国胜,曹敦侣.堤基渗透变形扩展过程和悬挂式防渗墙控制作用的数值模拟研究[J].长江科学院院报. 2004(06), 47-50.
    [98]张家发,吴昌瑜,李胜常, et al.堤防加固工程中防渗墙的防渗效果及应用条件研究[J].长江科学院院报. 2001(05), 56-60.
    [99] Wilhelm, T.Piping in Saturated Granular Media[D].Innsbruck, Austria:University of Innsbruck.Ph.D
    [100]李守德,张晓海,刘志祥.基坑开挖工程管涌发生过程的模拟[J].工程勘察. 2003(02), 14-17+21.
    [101] Shamy, U.E., P.E.,F. Aydin. Multiscale Modeling of Flood-Induced Piping in River Levees[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING. 2008, 134(9), 1385-1396.
    [102]介玉新,董唯杰,傅旭东, et al.管涌发展的时间过程模拟[J].岩土工程学报. 2011(02), 215-219.
    [103]刘杰,崔亦昊,谢定松.关于堤基渗流无害管涌试验研究的讨论[J].水利学报. 2005(11).
    [104]毛昶熙,段祥宝,蔡金傍.对于堤基渗流无害管涌试验研究讨论文的答复[J].水利学报. 2006(04), 508-510.
    [105]毛昶熙,段祥宝,蔡金傍, et al.洪峰过程非稳定渗流管涌试验研究与理论分析[J].水利学报. 2005(09), 1105-1114+1120.
    [106]钱宁,万兆惠,泥沙运动力学[M].北京:科学出版社,2003.
    [107]安徽省水利科学研究所,多层地基和减压沟井的渗流计算理论[M].北京:水利出版社,1979.
    [108]吴宁,张琪,曲占庆.固体颗粒在液体中沉降速度的计算方法评述[J].石油钻采工艺. 2000(02), 51-53+56-83.
    [109]李明忠,王卫阳,赵国景.垂直井筒井液携砂流动规律研究及其在油井生产中的应用[J].实验力学. 2002(03), 385-392.
    [110]李明忠,王卫阳,何岩峰, et al.垂直井筒携砂规律研究[J].石油大学学报(自然科学版). 2000(02), 33-35+43-9+8.
    [111] L.G., G., Fluidization-Dynamics[M]. London: Butterworth-Heinemann,2001.
    [112] Cheng, N.-S. Application of Ergun Equation to Computation of Critical Shear Velocity Subject to Seepage[J]. Journal of Irrigation and Drainage Engineering. 2003, 129(4), 278-285.
    [113]陈雨孙,单井水力学[M].北京:中国建筑工业出版社,1977.
    [114]毛昶熙,渗流计算分析与控制[M].北京:中国水利水电出版社,2003.
    [115]王瑁成,邵敏,有限元法基本原理和数值方法[M].北京:清华大学出版社,1996.
    [116] Inc.Tecplot, Tecplot 360 Getting Started Guide for Version 2006[M]. Bellevue Washington: Tecplot Inc,2006.
    [117] Inc.Tecplot, Tecplot 360 User's Manula for Version 2006[M]. Bellevue Washingtom: Tecplot Inc,2006.
    [118] Inc.Tecplot, Tecplot 360 Data Format Guide for Version 2006[M]. Bellevue Washington: Tecplot Inc.,2006.
    [119]张楚汉,金峰,岩石和混凝土-接触-断裂分析[M].北京:清华大学出版社,2008.
    [120]王自强,陈少华,高等断裂力学[M].北京:科学出版社,2009.
    [121] Chessa, J., P. Smolinski,T. Belytschko. The Extended Finite Element Method (Xfem) for Solidification Problems[J]. International Journal for Numerical Methods in Engineering. 2002, 53(8), 1959-1977.
    [122] Sukumar, N.,J.H. Prévost. Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part I: Computer Implementation[J]. International Journal of Solids and Structures. 2003, 40(26), 7513-7537.
    [123]王俊杰.基于断裂力学的土石坝心墙水力劈裂研究[D].南京:河海大学.博士学位
    [124] Song, S.H.,G.H. Paulino. Dynamic Stress Intensity Factors for Homogeneous and Smoothly Heterogeneous Materials Using the Interaction Integral Method[J]. International Journal of Solids and Structures. 2006, 43(16), 4830-4866.
    [125] Liang, J.,R. Huang,J.H. Prévost, et al. Evolving Crack Patterns in Thin Films with the Extended Finite Element Method[J]. International Journal of Solids and Structures. 2003, 40(10), 2343-2354.
    [126] Geuzaine, C.,J.-F. Remacle. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities[J]. International Journal for Numerical Methods in Engineering. 2009, 79(11), 1309-1331.
    [127]张振国,丁金粟.粘性土体断裂韧度kic研究[J].岩土力学. 1993, 14(03), 47-52.
    [128] L?hner, R.,E. O?ate. An Advancing Front Point Generation Technique[J]. Communications in Numerical Methods in Engineering. 1998, 14(12), 1097-1108.
    [129] O?ate, E.,R. Rossi,S.R. Idelsohn, et al. Melting and Spread of Polymers in Fire with the Particle Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2010, 81(8), 1046-1072.
    [130] Idelsohn, S.R.,E. O?ate,N. Calvo, et al. The Meshless Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2003, 58(6), 893-912.
    [131] O?ate, E. The Particle Finite Element Method. An Overview[J]. International Journal of Computational Methods (IJCM). 2004, 1(2), 267-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700