用户名: 密码: 验证码:
利用水镁石水热法制备定形氢氧化镁晶体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水镁石是迄今为止发现的含镁量最高的一种矿物,在世界上分布不广,产出比较稀少,我国具有丰富的水镁石资源。作为一种工业矿物,水镁石在耐火材料、环境保护、建材、陶瓷和核工业等领域得到了广泛应用。但是,由于技术比较落后,目前我国的水镁石的开发利用还处于原矿的出口及生产耐火材料等低附加值产品的初级阶段,这对水镁石资源造成了极大的浪费并限制了水镁石的高效利用。为了避免这种浪费,应将其用于高附加值、具有高技术含量的功能材料的生产与加工上。
     用水镁石制备环境友好型的氢氧化镁无机阻燃剂受到了广泛的关注,近年来,随着人们环保意识的日益增强,氢氧化镁作为环境友好型的无机阻燃剂,由于其阻燃、抑烟、无毒、热稳定性高等特点,在聚合物、电缆、建筑和装饰材料等领域得到了广泛的应用。氢氧化镁的晶形和粒度对其性能有十分显著的影响,具有优良阻燃性能的氢氧化镁应为纤维状和片状,纯度大于97%,厚度大于80nm,颗粒的平均尺寸为0.5-1μm,(101)极性面的微观应变小于3.0×10-3。但是,以水镁石为原料采用物理法所制得产品的纯度不高、晶形难以控制,严重影响了其阻燃性能。目前,优质氢氧化镁主要是以金属镁和镁盐为原料,采用化学法制备所得,成本较高。因此,利用水镁石资源制备高纯、超细的氢氧化镁对提高我国优势镁资源的市场竞争力具有十分重要的意义。
     本文以水镁石为原料,通过水热合成和水热处理法制备出了超细、高纯、颗粒均一、分散均匀的具有不同形貌的氢氧化镁颗粒,利用X-射线衍射仪(XRD)和扫描电子显微镜(SEM)对所制得氢氧化镁颗粒的晶相、形貌和颗粒尺寸进行了表征,结合实验结果,对水热条件下晶粒的形成机理进行了研究。本文取得了以下研究成果:
     (1)通过现场调研和大量的资料分析,研究了辽宁省水镁石矿床形成的地质条件、不同形态水镁石的形成及其矿物学性质,为水镁石的开发利用提供了地质依据。同时,结合辽宁省水镁石资源特点,提出制备定形氢氧化镁晶体的技术方法。
     (2)采用水热合成法和水热处理法分别制备出了高纯、分散均匀、厚度为80-100nm、直径为200-400nm的六方片状和直径为100-500nm、长度为1-20μm纤维状氢氧化镁。所得产物的特征峰值与氢氧化镁的标准峰值完全一致,没有杂峰出现,(101)晶面的微形变小于3.0×10-3,这表明,所得产物为高端无机阻燃剂。
     (3)系统研究了搅拌速度、填充度、前驱物浓度、反应温度、反应时间、pH值、氢氧化钾、硫酸根离子、溶剂和表面活性剂等对氢氧化镁晶形的影响。通过计算(001)晶面和(101)晶面的衍射强度比值I001/I101,对比了不同晶面的优先生长方向。
     (4)研究了晶体的晶形和结晶度与过滤性能的关系,发现六方片状晶体与纤维状晶体相比,具有较好的过滤性能,通过控制晶体的晶形和结晶度可以显著改善其过滤性能。
     (5)根据大量的实验数据,结合现代物理学、溶液化学和结晶学知识,以“负离子配位多面体模型”为基础,发现晶体的形貌和尺寸由其内部结构和外在生长条件共同决定,晶体生长过程是生长基元在其界面叠加的过程。生长基元在晶体晶面的叠加过程受晶面结构和外在生长条件的共同影响。
     Mg(OH)64为氢氧化镁晶体的生长基元,根据键价理论模型计算表明,氢氧化镁的理想生长形态为正六边形。Mg(OH)64生长基元在不同晶面的叠加过程受晶面上Mg-O-Mg键桥和位于“三配位”位置OH基团数目的影响。
     外在生长条件通过影响生长基元的形成和生长基元在晶面的叠加过程来影响晶体的形成。
     通过理论分析得到了和实验结果相一致的结论。通过本文的工作,可以看出,生长基元模型把晶体生长过程中晶体的结构、外在生长条件和晶体的生长形态紧密的联系起来,具有很强的生命力。
     本文研究为水镁石制备定形氢氧化镁晶体提供了理论基础和技术方法。
Brucite is a high-grade mineral, only few countries have brucite mineral resources, which have been found in China. Brucite has been widely in refractory, environmental protection, building materials, ceramics and nuclear industry, as an industrial mineral. Brucite is mainly used to be exported as a raw material and prepare refractory in China, due to undeveloped technology, which is a great waste and limit high efficiency utilization of brucite. Brucite should be used to prepare high value-added and high technological functional materials to avoid waste.
     More and more attention has been paid to prepare magnesium hydroxide by brucite. In recent years, Magnesium hydroxide has been widely used in polymers, electric cables, building and decoration materials, as an economic and environment-friendly inorganic flame retardant, due to flame retardency, smoke-repressive property, low or zero evolution of toxic or hazardous byproducts and high decomposition temperature. The morphology and particles size of crystals play an important role in flame retardency of Mg(OH)2.It was reported that preferred flame retardant features Mg(OH)2 purity>97%, particles thickness>80nm, average particle size at 0.5-1μm, the microstain of (101) polar plane is small. However, products prepared with brucite as raw materials by physical method have bad flame retardency, due to low purity and irregular morphology. Good magnesium hydroxide was mainly prepared by chemical methods, with magnesium and magnesium salts as raw materials, which is high cost. So, preparation of magnesium hydroxide by brucite can remarkably improve competitiveness of magnesium resource of China.
     Superfine high pure, different morphological Mg(OH)2 particles with uniform particle size and good dispersion were prepared by hydrothermal synthesis and treatment with brucite as raw materials in this paper. The crystal phase, morphology and particles size of the Mg(OH)2 particles as prepared were characterized with X-ray(XRD) and scanning electron microscopy(SEM). Mechanistic interpretation of crystal growth was postulated based on experiment result. Conclusions can be drawn as follow:
     (1)Geological conditions of brucite deposit in Liaoning Province, formation of different morphological brucite and mineralogical characterization were researched through field investigation and data analysis, which provide geological proof for utilization of brucite. Technological methods of preparing form stable magnesium hydroxide were presented based on characterization of brucite resources in Liaoning Province.
     (2)The high pure Mg(OH)2 crystals of good dispersion were prepared by hydrothermal synthesis and hydrothermal treatment, which exhibited hexagonal lamellar morphology with thickness of 80-100nm and diameter of 200-400nm and fibrous morphology of diameter of 100-500nm and lengths of 1-20μm. All the diffractive peaks of each sample were in agreement with the standard data, no peaks arising from impurities were observed, the microstain of (101)polar plane<3.0×10-3, which indicated the obtained Mg(OH)2 particles were preferred inorganic flame retardant.
     (3)The influence of speed of stirring, degree of filling, precursor concentration, time, temperature, pH values, KOH, SO42-, solvent and surfactant on Mg(OH)2 particles were systemically researched. The preferential orientations of different crystal facet were estimated by calculating I001/I101.
     (4)The relationship of filtration efficiencies and crystal morphology and crystallinity was discussed. The results indicated that hexagonal lamellar morphological crystals had better filtration efficiencies than whiskers, which indicated controlling crystal morphology and crystallinity of Mg(OH)2 could satisfy filtration efficiency.
     (5)Based on the experimental data, started from knowledge of modern physics, solution chemistry and crystallography, according to the theoretical model of anionic coordination polyhedron growth units, the growth mechanism of Mg(OH)2 crystals under hydrothermal conditions were investigated. It concluded that the final morphology of a crystal was dependent on the intrinsic crystal structure and external growth conditions, growth units connected to crystal facet determined the process of crystal growth, which was affected by crystal structures and external growth conditions.
     Mg(OH)64- is the basic growth unit of Mg(OH)2 crystals. The intrinsic crystal structure make Mg(OH)2 be in favor of formation of hexagonal lamellar crystals, according to bond valence model. The process of Mg(OH)64- growth units connected to crystal facet is determinated by the number of Mg-O-Mg and OH groups at the three-centered bringing position.
     The formation of growth units and process of growth units connected to facet are affected with external growth conditions, which play an important role on crystal growth.
     Theoretical analysis is in agreement with experimental result. The work of this paper shows that growth unit connects the crystal structure, external growth conditions and growth morphology together for a better understanding of intrinsic relationships between them. Therefore, growth unit model is correct and thus is powerful.
     This study provides theoretic basis and technological method for preparation of form stable magnesium hydroxide crystals by brucite.
引文
[1]全跃.镁质材料生产与应用[M],北京:冶金工业出版社,2008,43-47.
    [2]王新江.水镁石超细粉制备工艺及应用研究[J],中国非金属矿导论,2003,33(3):29-45.
    [3]陈开俊.水镁石应用现状研究[J],矿产保护与利用,1996,33-35.
    [4]董发勤,万朴.水镁石矿床的成因类型与工业类型[J],国外非金属矿与宝石,1990,1:39-44.
    [5]郑水林,袁继阻.非金属矿加工技术与应用手册[M],北京:冶金工业出版社,2005,648-653.
    [6]陈复.水处理技术及药剂大全[M],北京:中国石化出版社,2000,137-141.
    [7]杜皓明,欧志阳.绿色水处理中和剂氢氧化镁应用的研究进展[J],广东化工,2007,34(8):45-47.
    [8]Higgins M J, Sobeck D C, Owens S J, et al. Case study:Application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system permance using alternatives to sodium based chemicals[J], Water Environment Research,2004,76(4):353-359.
    [9]Teringo, John. Magnesium hydroxide reducts sludge/improves filtering[J], Pollution Engineering,1997,19(4):78-83.
    [10]Seung Jun Kyung, Kim Hyum Su, Kim Joo Yong.Method for treating acidic wastewater for effctively treating metals included in the acidic wastewater while minizing generation of sludge[J],Chem Abstr,2008,148(6):127-155.
    [11]何昌洪,张密林,刘俊国.氢氧化镁在环保领域的应用[J],化学工程师,2003,6:49-64.
    [12]Carter, Olice C, Jr, et al.Removal of toxic metals from an industrial wastewater using flocculants[J],Advances in Filtration and Separation Technology,1991,4:190-199.
    [13]Scherzberg H, Kaps S, Schultheis B.Binding of heavy metals from salt-containing waters by magnesium hydroxide[J],Freiberg,2000,8(59):170-190.
    [14]郭如新.氢氧化镁在工业废水处理中的应用[J],工业水处理,2000,20(2):1-4.
    [15]姜述芹,于秀娟,周保学.含铬废水的氢氧化镁净化研究[J],哈尔滨工业大学学报, 2004,36(8):1080-1083.
    [16]姜述芹,周保学,于秀娟,等.含镍废水的氢氧化镁净化研究[J],哈尔滨工业大学学报,2003,35(10):1212-1215.
    [17]陈向锋,刘晓慧.氢氧化镁在烟气脱硫中的应用[J],青海湖与化工,2006,35(3):34-36.
    [18]Saton S, Nakamasa M, Okira Y. Characteristics of desulfurization by magnesite[J], Kagaku Kogaku Ronbushu,2004,30 (5):661-667.
    [19]Yoshida A. Purification technology of sediment and water quality by magnesium related inorganic material[J],Journal of the Society of Inorganic Materials,2005, 12:548-553.
    [20]Beeghly, Joel H, Smith, et al. Dewatering and agglomeration study of magnesium enhanced lime generated FGD gypsum[A],Proceedings of the Air & Waste Management Association[C],1997,8-13.
    [21]Matsui, Hideo, Limura, et al. Treatment of incinerat or flue gases with magnesium hydroxide:Japan, P 06246130A[p],1994.9.26.
    [22]Berman Y, Tanklevsky A, Oren Y, et al. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams:Part Ⅱ [J], Chemical Engineering Science,2000,55(5):1023-1028.
    [23]Hayakawa, Yumi, Yamashita, et al. Removal of sulfur oxides from boiler flue gases. Japan P 2000051649 A2[p],2000.2.22.
    [24]宋彦梅,衣守志.氢氧化镁的生产及应用技术进展[J],海湖盐与化工,2006,35(2):15-20.
    [25]范荣桂,范彬,贾智萍.水镁石在环境领域中的应用与研究[J],辽宁城乡环境科技,2005,25(4):22-25.
    [26]郭如新.轻烧氧化镁和氢氧化镁在环保领域中的应用[J],化工环保,1997,17(4):206-209.
    [27]郑荣光,徐永花.氢氧化镁处理含铬废水的研究[J],华东地质学院学报,1999,22,32(1):26-27.
    [28]郑荣光,王芳.氢氧化镁处理含铅废水的研究[J],无机盐工业,2000,32(1):26-27.
    [29]邵磊,陈建峰,母伟.水镁石脱除酸性废水中重金属的研究[J],非金属矿,2002,25(4):52-54.
    [30]Oleg S, Pokrovsky. Kinetics of brucite dissolution at 25℃ in the prescence of organic and inorganic ligands and divalent metals[J],Geochimica et Cosmochimica Acta,2005, 9(4):905-918.
    [31]Shao L, Zhou Y. Buffer behavior of brucite in removing copper from acidic solution[J], Minerals Engineering,2005,18:639-641.
    [32]赵波,尹琳,李真,等.丝光沸石岩/水镁石在臭氧化染料废水体系中的增效作用机理研究[J],岩石矿物学杂志,2005,24(6):573-577.
    [33]Bertil Lind, Zsofia Ban. Nultrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite[J],Bioresource Technology,2000,73:169-174.
    [34]赵建海,宋兴福,陆强,等.氢氧化镁在环境污染治理中的应用研究进展[J],环境污染治理技术与设备,2002,3(5):66-69.
    [35]曹霞,陈秀萍.浅谈氢氧化镁法脱硫技术[J],有色冶金设计与研究,2000,21(1):47-51.
    [36]毛健全,熊天渝.白云石湿法烟气脱硫技术[J],贵州化工,2002,27(5):19-22.
    [37]陈韩斌,王国波.浅谈加镁石灰湿法脱硫在我国冶金行业的应用前景[J],冶金环境保护,2003,4:21-23.
    [38]卢永定,杨友生,张银年.水镁石制取氢氧化镁阻燃剂的实验研究[J],阻燃材料与技术,2008,3:1-4.
    [39]张现军,王标兵,吴湘锋.氢氧化镁阻燃剂的应用进展[J],中国粉体技术,2008,5:16-18.
    [40]周炳记,杨延钊.氢氧化镁阻燃剂的研究现状与发展趋势[J],山东教育学院学报,2006,116(4):100-102.
    [41]刘立华,张建扬,张连瑞,等.氢氧化镁阻燃剂的应用现状及前景展望[J],化工科技市场,2006,29(3):29-31.
    [42]梅石.水镁石作为阻燃剂的应用近况[J],阻燃材料与技术,2002,1:11.
    [43]张治华.水镁石复合阻燃剂的制备及其应用实验[J],塑料助剂,2003,5:19-20.
    [44]邓国初,卢永定,杨友生.水镁石纳米纤维/EVA复合材料的力学性能与阻燃性能研究[J],中国塑料,2003,17(7):20-23.
    [45]刘开平,周敬恩.水镁石纤维/水泥基复合材料的试验研究[J],混凝土与水泥制品,2003,3:32-35.
    [46]张海鸿,刘开平,陈延新.水镁石纤维对土聚水泥系能影响的研究[J],建筑材料与应用,2008,34(1):176-177.
    [47]徐徽,蔡勇,石西昌,等.水镁石制取高纯氧化镁的研究[J],湖南师范大学自然科学学报,2006,29(1):52-55.
    [48]董发勤,万朴,潘兆橹,等.纤维水镁石(FB)应用矿物学研究[M],成都:四川科学技术出版社,1997,20-100.
    [49]刘淑鹏,袁继祖,唐靖炎,等.纤维水镁石的研究进展与应用前景[J],矿业快报,4:14-17.
    [50]Li Y D, Sui M, Ding Y, et al. Preparation of Mg(OH)2 nanorods[J],Advanced Materials, 2000,12(11):818-821.
    [51]Yan L, Zhuang J, Sun X M, et al. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration[J],Materials Chemistry and Physics 2002,76(2):119-122.
    [52]Fan W L, Sun S X, Song X Y, et al. Controlled synthesis of single-crystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process[J],Journal of Solid State Chemistry, 2004,177:2329-2338.
    [53]Fan W L, Sun S X, Sun L P, et al. Solvothermal synthesis of Mg(OH)2 nanotubes using Mg10(OH)18Cl25H2O nanowires as precursors[J]. Journal of Materials Chemistry,2003, 13(12):3062-3065.
    [54]McKelvy M J, Sharma R,Chizmeshya A V G, et al.Magnesium hydroxide dehydroxylation:in situ nanoscale observations of lamellar nucleationand growth[J], Chemistry of Materials 2001,13(3):921-926.
    [55]许东阳,许丽,盖国胜,等.天然水镁石的综合利用与深加工[J],阻燃材料与技术,2003,1:1-5.
    [56]T. Dudev, J.A. Cowan, C. Lim. Competitive binding in magnesium coordination chemistry:water versus ligands of biological interest[J],Journal of American Chemical Society,1999,121 (33):7665-7673.
    [57]刘立华,张建扬,张连瑞,等.氢氧化镁阻燃剂的应用现状及前景展望[J],2006,29(3):29-31.
    [58]Yan C L, Zou L J, Xu J S, et al. Chemical strategy for tuning the surface microstructures of particles[J], Powder Technology,2008,183(1):2-9.
    [59]Xu J S, Xue D F. Five branching growth patterns in the cubic crystal system:a direct observation of cuprous oxide microcrystals[J],Acta Materialia,2007,5(7):2397-2406.
    [60]施尔畏,陈之战,元如林,等.水热结晶学[M],北京:科学出版社,2004:1-252.
    [61]吴会军,向兰,朱冬生.高纯微细氢氧化镁的水热法制备[J],华南理工大学学报(自然科学版),2003,31(6):88-90.
    [62]Yi Ding, Guangtao Zhang, Hao Wu, et al. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders:Control over Size, Shape and Structure via Hydrothermal Syntheis[J],Chemistry of Materials,2001,13:435-440.
    [63]C.Henrist, J.-P.Mathieu, C.Vogels, et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J],Journal of Crystal Growth, 2003,249:321-330.
    [64]表征则.低比表面积氢氧化镁的制造方法[P],日本专利:平2.164713,1990.05.21.
    [65]西上和男.氢氧化镁的制造方法[P],日本专利:昭57.100918,1982.06.23.
    [66]宫田茂男,黑田正孝,风田彰,等.碱式氯化镁或碱式硝酸镁[P],日本专利:平2.204321,1990.8.4.
    [67]宫田茂男,黑田正孝,冈田彰,等.具有新结构的氢氧化镁的合成[P],日本专利:平2.199019,1990.8.7.
    [68]宫田茂男,穴吹仁,广濑澈.高活性高分散氢氧化镁及其制备方法[P],日本专利:平2.111625,1990.4.4.
    [69]Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J],Powder Tecknology,2006,165:100-104.
    [70]Xue D F, Yan X X, Wang L. Production of specific Mg(OH)2 granules by modifying crystallization conditions[J], Powder Technology,2009,191:98-106.
    [71]Jimmy C. Yu, Xu A W, Zhang L Z, et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplate[J], Journal of Physical Chemistry.B,2004, 108(1):64-70.
    [72]Li X, Ma G B, Liu Y Y. Synthesis and Characterization of Magnesium hydroxide using a bubbling setup[J], Industrial & Engineering Chemistyr Resarch,2009,48(2):763-768.
    [73]Zhuo L H, Ge J C, Cao L H, et al. Solvothermal synthesis of CoO,Co3O4, Ni(OH)2 and Mg(OH)2[J],Crystal Growth and Design,2009,9(1):1-6.
    [74]Yan H, Zhang X H, Wu J M, et al. The use of CTAB to improve the crystallinity and dispersibility of ultrafine magnesium hydroxide by hydrothermal route[J],Powder Technology,2008,188(2):128-132.
    [75]任鹏飞,陈建铭,宋云华,等.水热合成制备超细氢氧化镁阻燃剂[J],化工进展,2005,24(2):186-189.
    [76]陈志航,向兰,张英才,等.双注-水热法制备高分散氢氧化镁纳米片[J],无机化学学报,2006,(22)6:1062-1066.
    [77]向兰,金永成,金涌.氢氧化钠溶液中氢氧化镁的水热改性[J],过程工程学报,2003,3(2):116-120.
    [78]李铮,戈桦.氢氧化镁的水热改性研究及表征[J],无机盐工业,2006,38(12):23-25.
    [79]张林进,张月琴,叶旭初.氢氧化镁的水热改性研究[J],盐业与化工,2009,38(2):24-27.
    [80]蔺力,陈建铭,宋云华.矿化剂对水热法改性氢氧化镁晶体的影响[J],无机化学学报,2008,24(4):665-669.
    [81]姜玉芝,韩跃新,印万忠,等.利用菱镁矿制备氢氧化镁[J],东北大学学报(自然科学版),2006,27(6):694-697.
    [82]吴士军,刘进荣.纳米级氢氧化镁的研究进展[J],内蒙古石油化工,2005,1:1-4.
    [83]Qian H Y, Deng M, Zhang S M, et al. Synthesis of superfine Mg(OH)2 particles by magnesite[J],Materials Science and Engineering A,2007,445:600-603.
    [84]Chenglin Yan, Dongfeng Xue, Longjiang Zou, et al. Preparation of magnesium hydroxide nanoflowers[J],Journal of Crystal Growth,2005,282:448-454.
    [85]Lv X T, Hari-Bala, Li M G, et al. In Situ Synthesis of nanolamellas of hydrophobic magnesium hydroxide[J],Colloids and Surfaces A,2006,9:1-7.
    [86]Xu H, Deng X R. Preparation and properties of superfine Mg(OH)2 Flame retardant[J],Transaction of Nonferrous Metals Society of China,2006,16:488-492.
    [87]Jiang W J, Hua Xiao, Han Q F, et al. Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method[J], Powder Technology,2009,191(3):227-230.
    [88]林慧博,印万忠,南黎,等.纳米氢氧化镁制备技术[J],有色矿冶,2003,19(1):33-36.
    [89]陈伟,刘代俊,徐程浩.边缘磷矿酸浸液制备氢氧化镁影响因素探讨[J],化工矿物与加工,2009,3:5-8.
    [90]杜高翔,王柏昆.利用菱镁矿制备纳米级片状氢氧化镁[J],地学前缘,2008,15(4):142-145.
    [91]胡章文,杨保俊,单承湘.由蛇纹石酸浸滤液制备氢氧化镁工艺条件研究[J],合肥工业大学学报(自然科学版),2003,26(2):232-235.
    [92]易求实.反向沉淀法制备纳米Mg(OH)2阻燃剂的研究[J],化学试剂,2001,23(4):197-199.
    [93]宋锡瑾,宣峰,于杰.纳米氢氧化镁的制备[J],应用基础与工程科学学报,2006, 14(4):523-527.
    [94]戴焰林,洪玲,施利毅.沉淀—共沸蒸馏法制备纳米Mg(OH)2的研究[J],2003,9(5):402-409.
    [95]Wu H Q, Shao M W, Gu J S, et al. Microwave-assisted synthesis of fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature[J], Materials Letters,2004, 58(16):2166-2169.
    [96]吴健松,吴健柏,李财花,等.有机溶剂—微波—水热法制备氢氧化镁晶须[J],化学工程,2006,34(10):55-58.
    [97]Qiu L Z, Xie R C, Ding P, et al. Preparation and characrization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA[J], Composite Structures,2003,62:391-395.
    [98]Hao L Y, Zhu C 1, Mo X, et al. Preparation and Characterization of nanorods by liquid-solid arc discharge technique[J],Inorganic Chemistry Communications,2003, 6:229-232.
    [99]宋云华,陈建铭,刘立华,等.超重力技术制备纳米氢氧化镁阻燃剂的应用研究[J],化工矿物与加工,2004,5:19-23.
    [100]Liang C H, Takeshi Sasaki, Yoshiki Shimizu, et al. Pulsed-laser ablation of Mg in liquids:surfactant-directing nanoparticles assembly for magnesium hydroxide nanostructures[J], Chemical Physics Letters,2004,389:58-63.
    [101]庞卫峰,陆强,汪瑾,等.超细氢氧化镁的制备工艺与方法研究进展[J],2005,6:376-379.
    [102]郭如新.国内外水镁石阻燃剂的研发现状及前景[J],化工科技市场,2004,6:6-9.
    [103]安田直树.氢氧化镁超细粉末、其制备方法及其燃性树脂组合物[P],中国发明专利公报,CN:1356361A.
    [104]郑水淋,杜高翔,李杨,等.水镁石制备超细氢氧化镁的研究[J],矿冶,2004,13(2):43-46.
    [105]宋兴福,王相田,庞卫峰,等.固相法制备高纯超细氢氧化镁的工艺[J],华东理工大学学报(自然科学版),2001,31(5):616-619.
    [106]张秋艳,郭如新.国内从水镁石制取氢氢化镁阻燃剂近况[J].海湖盐与化工,2002,31(6):34-37.
    [107]徐丽,倪文,刘兴德,等.天然水镁石纳米纤维的分散[J],矿产综合利用,2007,2:20-23.
    [108]李定成.水镁石开发现状及其生产金属镁的应用前景[J],建材地质,1995,6:43-48.
    [109]吴湘锋,王标兵,胡国胜.纳米氢氧化镁阻燃剂的研究进展[J],材料导报,2007,21(8):17-19.
    [110]A. Durin-France, L. Ferry, JML Cuesta, et al. Magnesium hydroxide/zinc borate/talc compositions as flame-retardants in EVA copolymer[J],Polymer International,2000, 49(10):1101-1105.
    [111]周仲怀,赵中华,王兴建,等.氢氧化镁研制的若干问题[J],海湖盐与化工,2002,31(5):31-35.
    [112]姬连敏,李丽娟,聂锋,等.国内氢氧化镁阻燃剂的研究现状[J],盐湖研究,2007,15(2):62-71.
    [113]郑瑞伦,王学军,魏克武.宽甸水镁石资源的开发利用[J],非金属矿,1998,4:41-43.
    [114]陈从喜,蔡克勤,章少华.与镁质碳酸盐岩建造有关的非金属矿矿床成矿系列[J],地球科学,2002,23(6):521-525.
    [115]丛玉波.非金属矿成矿规律与开发利用[M],北京:地震出版社,1996,44-48.
    [116]刘劲鸿.水镁石矿床地质特征及对辽吉东部寻找水镁石矿的浅见[J],吉林地质,1985,16(1):61-65.
    [117]刘敬党.辽东-吉南地区早远古代硼镁石型硼矿床地质特征吉矿床成因[J],化工矿产地质,1996,18(3):207-212.
    [118]E. Neyens, J. Baeyens, A review of classic Fenton'speroxidation as an advanced oxidation technique[J],Journal of Hazardous Materials,2003,98(1-3):33-50.
    [119]E.Neyens, J.Baeyens, R.Dewil, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J],Journal of Hazardous Materials,2004,106(2-3):83-92.
    [120]于英华.X光衍射技术基础[M],北京:原子能出版社,1993:260-270.
    [121]Gu H S, Hu Z L, Hu Y M, et al. The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method[J], Colloids and Surfaces A,2008, 315:294-298.
    [122]Yang X H, Wang L L. Synthesis of novel hexagon SnCO2 nanosheets in ethanol/water solution by hydrothermal process[J],Materials Letters,2007,61:3705-3707.
    [123]叶铁林.化工结晶过程原理及应用[M],北京:北京工业大学出版社,2006,58-59.
    [124]P. Bennema. The importance of surface diffusion for crystal growth from solution[J], Journal of Crystal Growth,1969,5:29-43.
    [125]B.Lewis. Crystal Growth[M], New York:Pergamon press,1980,32.
    [126]Sun X T, Xiang L, Zhu W C, et al. Influence of Solvents on the hydrothermal formation of one-dimensional magnesium hydroxide[J],Crystal Research and Technology,2008,43(10):1057-1061.
    [127]李国军.纳米NiO粉体和Al2O3/Ni金属陶瓷的制备研究[D],上海:中国科学院上海硅酸盐研究所,2001.
    [128]刘志强,李小武,彭志宏,等.湿化学法制备超细粉末过程中的团聚机理及消除办法[J],化学通报,1999,7:54-57.
    [129]J. F. Banfield, S. A. Welch, H. Z. Zhang, et al. Aggregation-based crystal growth and microstructure development in nature iron oxyhydroxide biomineralization products[J], Science,1998,289(5480):751-754.
    [130]R. L. Penn, J. F. Banfield. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insight from titania[J], Geochimica et cosmochimica Acta,1999,63(10):1549-1557.
    [131]R.L.Penn, J.F.Banfield.Oritented attachment and growth,twinning, polytypism, and formation of metastable phases:insight from nanocrystallite TiO2[J],American Mineralogist,1998,83(9-10):1077-1082.
    [132]R.L.Penn,J.F.Banfield. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals[J],Science,1998,281 (5379):969-971.
    [133]李秋菊,刘华彦,卢晗锋,等.pH值对氢氧化镁晶体生长的影响[J],材料科学与工程学报,2007,25(4):609-611.
    [134]Yan C L, Xue D F, Zou L J. Fabrication of hexagonal MgO and precursors by a homogeneous precipitation method[J],Materials Research Bulletin,2006,41:2341-2348.
    [135]施尔畏,夏长泰,王步国,等.水热法制备陶瓷粉体中的聚集生长[J],中国科学(E辑),1997,27(2):126-133.
    [136]I.M.Lifshitz, V.V.Slyozov. The kinetics of precipitation from supersaturated solid solution[J],Journal of Physics and Chemistry of Solids,1961,19:35-50.
    [137]Yan X X, Xu D L, Xue D F. SO42- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO42H2O[J],Acta Materialia,2007,55:5747-5757.
    [138]韩丹丹,施利毅.醇水体系一步法制备疏水性纳米Mg(OH)2的研究[J],化工矿物 与加工,2008,6:13-17.
    [139]Chin C J, Sotira Y, Costas T. Agglomeration of magnetic and breakup of magnetic chains in surfactant solutions[J],Colloids and Surfaces,2002,204(1):63-72.
    [140]Manorama S V, Reddy K M, Gopal Reddy C V, et al. Photo- stabilization of dye on anatase titania nanoparticles by polymer capping[J],Journal of Physics and Chemistry of Solids,2002,63:135-143.
    [141]Lee C S, Lee J S, Oh S T. Dispersion control of Fe2O3 nanoparticles using a mixed type of mechanical and ultrasonic milling[J],Materials Letters,2003,57:2643-2646.
    [142]Yang B D, Yoon K H, Chung K W. Dispersion effect of nanoparticles on the conjugated polymer-inorganic nanocomposites[J],Materials Chemistry and Physics, 2004,83:334-339.
    [143]张小珍,周健儿,赵学国,等.聚乙二醇分散Ca0.6Mg0.4Zr(PO4)6纳米粉的制备[J],人工晶体学报,2007,36(6):1359-1362.
    [144]刘付胜聪,肖汉宁李玉平,等.纳米Ti02表面吸附聚乙二醇及其分散稳定性的研究[J],无机材料学报,2005,3(2):310-315.
    [145]张克丛.近代晶体基础(上册)[M],北京:科学出版社,1987,4.
    [146]Donnay J D H, Harker D. A new law of crystal morphology extending the law of bravais[J], American Mineralogist,1937,22(5):446-467.
    [147]李汶军.纳米晶粒水热制备过程中的粒度和形貌控制[D],上海:上海硅酸盐研究所,2001.
    [148]Frank F C. In growth and perfection of crystals[M],New York:John Wiley,1958,411.
    [149]Cabrera N, Vermilyea D A. In growth and perfection of crystals[M],New York:John Wiley,1958:393.
    [150]P.Harman,W.G.Perdok. On the relations between structure and morphology of crystals Ⅰ [J],Acta Crystallographica,1955,8:49-52.
    [151]P.Harman,W.G.Perdok. On the relations between structure and morphology of crystals Ⅱ [J], Acta Crystallographica,1955,8:521-524.
    [152]P.Harman,W.G.Perdok. On the relations between structure and morphology of crystals Ⅲ[J], Acta Crystallographica,1955,8:525-529.
    [153]P.Hartmanm, P.Bennema. The attachment energy as a habit controlling facter. Ⅰ. theoretical conciderations[J],Journal of Crystal Growth,1980,49:145-156.
    [154]P.Hartmanm. The attachment energy as a habit controlling facter. Ⅱ.Application to anthracene, tin tetraiodide and orthorhombic sulphur[J],Journal of Crystal Growth, 1980,49:157-165.
    [155]J.Thart. The structural morphology of olivine. Ⅰ.A qualitative derivation[J],Canadian Mineralogist,1978,16:175-186.
    [156]J.Thart. The structural morphology of olivine. Ⅱ.A qualitative derivation[J].Canadian Mineralogist,1978,16:547-560.
    [157]R.Dekkers,C.F.Woensdregt, P.Wollants. Surface modelling of crystalline non-metallic inclusions[J],Journal of Non-crystalline Solids,2002,282(1):49-60.
    [158]P.Harman. Sur la morphologie des cristaux[J], Bull. Mineral,1978,101:195-201.
    [159]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J],无机材料学报,1999,14(3):321-332.
    [160]张学华,罗豪甦,仲纬卓.负离子配位多面体生长基元模型及其在晶体生长中应用[J],中国科学(E辑),2004,34(3):241-253.
    [161]郑燕青.低受限度体系晶体同质变体生长机理研究[D],上海:上海硅酸盐研究所,2001.
    [162]严志铉.络合物化学[M],北京:人民教育出版社,1960,5.
    [163]B.C.Chakoumakos,C.-K.Loong,A.J.Schultz. Low-temperature structure and dynamics of brucite[J], Journal of Physical Chemistry B,1997,101 (46):9458-9462.
    [164]Xu D L, Xue D F. Chemical bond analysis of the crystal growth of KDP and ADP[J],Journal of crystal growth,2006,286:108-133.
    [165]印永嘉.大学化学手册[M],济南:山东科学技术出版社,1985,28.
    [166]向兰,金永成,金涌.氢氧化镁的结晶习性研究[J],无机化学学报,2003,19(8):837-842.
    [167]C.C.Pye,W.W.Rudolph. An ab initio and raman investigation of magnesium(Ⅱ) hydration[J], Journal of Physical Chemistry A,1998,102(48):9933-9943.
    [168]Hisako Sato, Akihiro Morita, Kanta One, et al.Templating effects on the mineralization of layered inorganic conpounds:(1)density functional calculations of the formation of single-layered magnesium hydroxide as a brucite model[J], Langmuir,2003,19(17):7120-7126.
    [179]J.Livage, M.Henry, C.Sanchez. Sol-gel chemistry of transition metal oxides[J], Progress in solid state chemistry,1988,18:259-341.
    [170]M.Henry, J.P.Jolivert, J.Livert, et al. Aqueous chemistry of metal cations:hydrolysis, condensation and complextion[M], Berlin:Springer-Verlag,1992,180-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700