用户名: 密码: 验证码:
高性能陶瓷材料的离心成型法制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝陶瓷具有强度高、耐高温、耐腐蚀、耐磨损及良好的介电性能等特性,在电子、冶金、机械、交通、能源、航空航天和生物领域得到广泛的应用。如何改进Al2O3粉体及其复合陶瓷的制备工艺,以改善材料的微观结构,提高其性能和可靠性,成为目前陶瓷研究领域的重点。离心成型作为胶态成型的一种,具有坯体密度高,均匀性好,成型缺陷少的优点,因而是制备高性能陶瓷及其复合材料的先进方法之一。本文系统研究了采用离心成型法制备Al2O3陶瓷、Al2O3-ZrO2陶瓷基复合材料、以及Al2O3/Ni梯度材料的工艺过程以及这些材料的微观组织和力学性能。
     采用硫酸铝铵热分解法制备了颗粒尺寸为60~100nm的高纯α-Al2O3纳米粉体,并用离心成型方法制备了高性能Al2O3陶瓷材料。研究表明,分散剂添加量、pH值、固相含量对浆料性能有显著的影响;采用流动性好、固相含量高、稳定性好的浆料以及合适的离心成型工艺,制备出密度高,均匀性好的陶瓷坯体,并通过后续的真空烧结获得了显微组织均匀细小,力学性能优异的Al2O3陶瓷材料。实验结果表明:当分散剂聚羧酸胺的添加量为1wt%,浆料pH为11,固相含量为38vol%时浆料具有良好的流动性和稳定性,获得的坯体相对密度达到52.36%;试样在空气中1200℃温度下经120min预烧,然后在1550℃经150min真空烧结后,得到呈半透明状的氧化铝陶瓷,其烧结密度、强度、硬度、断裂韧性分别为3.98g/cm、712 MPa、19.4GPa、3.92MPa·m1/2。1500℃和1550℃下真空烧结的样品平均晶粒尺寸均小于5μm。
     采用离心成型方法制备了Al2O3-5vol%ZrO2复合材料,并对其坯体密度、Al2O3和ZrO2分布、烧结密度,以及显微组织和力学性能进行了系统的实验研究。实验结果表明,通过采用合适的分散剂含量和固相含量,可以获得流动性和稳定性良好的浆料,避免离心成型过程中发生Al2O3和ZrO2因比重不同产生的相分离。压坯密度随固相含量的增加而有所增大,并且不同固相含量试样的底部区域压坯密度稍高于其它部位;除固相含量30%试样底部区域外,所有试样的烧结密度沿坯体高度无明显变化,氧化铝、氧化锆分布沿高度方向几乎不发生变化;经1450℃烧结得到了显微组织细小均匀、Al2O3晶粒小于2μm、性能优良的Al2O3/5vol%ZrO2复合材料,其抗弯强度为710 MPa,显著高于干式成型法制备的复合材料的强度(620 MPa).Al2O3-5vol%ZrO2(?)内离心成型和干压成型试样性能对比发现,压坏密度提高了5%,烧结温度降了50℃,抗弯强度得到显著提高。
     采用离心成型方法制备了组分呈连续梯度分布的Al2O3/Ni功能梯度材料。通过调制复合粉末浆料的特性,可调控离心成型过程中Al2O3和Ni因比重和颗粒尺寸不同产生的相分离程度,从而获得所需的Al2O3和Ni的梯度分布。在实验的基础上优化了浆料中粘结剂和固相的含量以及浆料的球磨时间。对梯度复合材料试样的气孔率,三点抗折强度、硬度等性能及其影响因素进行了研究。实验结果表明:粘结剂(聚乙二醇)含量为2wt%、固相含量为63vol%、球磨时间为36小时的条件下制备的浆料,适合用于离心成型方法制备Al2O3/Ni梯度材料。采用离心成型制备出气孔率为0.4%,显微组织和硬度均呈连续梯度分布、力学性能优良的Al2O3/Ni梯度材料。通过调整固相含量和粘结剂含量,可调控Al2O3/Ni梯度材料的成分梯度,对组织结构进行设计和控制。
     采用改进Stober法制备出符合胶晶模板要求的单分散SiO2微球,并发现在反应过程中始终保持高氨水浓度更有利于单分散SiO2微球的生成。当浓度高于0.5 vol%时,SiO2微球悬浮液可在玻璃基板上形成有序度较高的二维胶晶模板。离心沉降法可快速制备出大尺寸蛋白结构SiO2光子晶体。SiO2光子晶体为面心立方结构,结构内的主要缺陷为溶剂挥发所形成的裂纹以及堆垛层错。向三维有序SiO2胶晶模板的孔隙内填充Sb2S3,而后通过HF溶液腐蚀掉SiO2胶晶模板,进而制备出反蛋白结构Sb2S3光子晶体。
Alumina ceramics possess the attractive properties of high strength and excellent heat resistance, corrosion resistance, abrasion resistance and dielectric properties. They are used widely in the industrial areas of electronics, metallurgy, machinery, transportation, energy, aerospace and biotechnology. Attentions of researchers have been specially paid to the improvement of Al2O3 powders and fabrication technologies of alumina based composites, aiming at refining microstructure and improving properties and reliabilities of alumina ceramics. Centrifugal slip casting, as a colloidal compaction method of ceramics, has the advantages of high green density, good green homogeneity, and low compaction defects. It is thus one of the advanced processing methods of high performance ceramics and composites. In the present work, the centrifugal slip casting fabrication of Al2O3 ceramics, Al2O3-ZrO2 ceramic matrix composites, and Al2O3/Ni functionally gradient materials (FGM) have been systematically investigated.
     High purityα-Al2O3 nanopowders with particle sizes ranging from 60~100nm were prepared from the high temperature decomposition of aluminum ammonium sulfate. Centrifugal compaction of theα-Al2O3 nanopowders was investigated to fabricate high performance alumina ceramics. It was found that the amount of dispersant, pH value, and solid content have a remarkable effect on the properties of alumina ceramic slurry. Using a slurry of good fluidity, comparatively high solid content and good stability, alumina greenbodies of high density and good homogeneity has been produced. Alumina ceramics of fine microstructure and good mechanical properties has been obtained from the greenbodies using vacuum sintering. The alumina slurry made with a polycarboxylic dispersant addition of lwt%, a pH value adjusted to 11, and a solid content of 38 vol% has good fluidity and stability, and the density of the greenbody obtained by centrifugal slip casting is 52.36%. Translucent alumina ceramics were fabricated by a pre-heat-treatment at 1200℃for 120 min, flowed by vacuum sintering at 1550℃for 150 min, with a average grain size less than 5μm. The density, three point bending strength, hardness and fracture toughness of the alumina ceramic are 3.98g/cm3,712MPa,19.4GPa and 3.92MPa·m1/2, respectively.
     The Al2O3-5vol%ZrO2 ceramic matrix composites were fabricated by the centrifugal slip casting method, and the compact density, distribution of Al2O3 and ZrO2, relative density of the sintered composites, microstructure and mechanical properties of the composites were studies in detail. The results show that slurry with good fluidity and stability can be obtained by using suitable amount of dispersant and adopting optimum solid content, which can avoid the phase separation due to the density difference between Al2O3 and ZrO2 during the centrifugal compaction process. For the sintered samples made with 40 vol% and 45 vol% solid content slurries, the microstructure is homogenous through out the sample, and there is nearly no obvious difference in Al2O3 and ZrO2 distribution and sample density along the centrifugal direction. After sintering at 1450℃, the composite sample is homogenous in both microstructure and density, with a mean particle size less than 2μm. For the Al2O3-5vol%ZrO2 composites, compared with the conventional dry compaction method, the centrifugal slip casting process is advantageous in 5% higher green density,50℃lower in sintering temperature, and remarkable higher bending strength (710 MPa compared to 620 MPa).
     The Al2O3/Ni functionally gradient composites with continuous gradient distribution of phases were fabricated by the centrifugal slip casting method. Though adjusting the characteristic of the slurry, it is possible to control the degree of phase separation due to the density difference between Al2O3 and Ni during the centrifugal slip casting profess, so that the required gradient distribution of Al2O3 and Ni in the functionally gradient composites can be achieved. On the basis of experiment, the amount of binder and solid content in the slurry and ball milling time were optimized. The influencing factors on porosity, three point bending strength and hardness were investigated. It is show that the slurry made with 2 wt% PEG binder,63 vol% solid contents, and a milling period of 36 hours is suitable for the fabrication of the Al2O3/Ni functionally gradient composites by centrifugal slip casting. An Al2O3/Ni functionally gradient composite with excellent mechanical properties, low porosy (0.4%), and a continuous gradient distribution of microstructure and hardness was produced. The composition gradient of the Al2O3/Ni FGM can be tailored by adjusting the solid content and amount of dispersant, and thus its microstructure can be designed and controlled.
     Monodispersed SiO2 microspheres were prepared by a modified Stober method. Retaining high concentration of ammonium hydroxide was beneficial to the preparation of monodispersed SiO2 microspheres. Highly ordered two dimensional colloidal crystal can be readily obtained by dropping single droplet of SiO2 microsphere suspension with concentration higher than 0.5 vol%. Large size highly ordering three dimensional SiO2 photonic crystal can be easily prepared by centrifugal settling method. The 3D SiO2 photonic crystal had FCC structure, and the main defects were stacking faults and cracks induced by solvent evaporation. Filling the pore of SiO2 photonic crystal with Sb2S3 and then removing SiO2 by hydrogen fluoride etching, the inverse opal structure Sb2S3 photonic crystal was obtained.
引文
[1]徐僖.高分子材料科学研究动向及发展展望[J],功能材料,2001,32(z1):24-28.
    [2]Kingery W D, Bowers H K Uhlmann D R. Introduction to ceramics [M],2nd Ed. New York, John Wiley and Sons,1976,765-815.
    [3]郭景坤.陶瓷的结构与性能[M],北京:科学出版社,1998:77-89.
    [4]Hampshire S, Park H K, Thompson D P, et al. Alpha-Sialon ceramics [J], Nature., 1978,274:880-882.
    [5]Alain Peigney. Composite Materials:Tougher ceramics with nanotubes [J], Nature Materials,2003,2:15-16.
    [6]Chen L W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth [J], Nature,2000,404:168-171.
    [7]曹茂盛.纳米材料导论[M],哈尔滨:哈尔工业大学出版社,2002,114.
    [8]Bruin H J D. Interfacial noble-metal corrosion in metal to ceramic reaction welding [J], Nature,1978,272:712-713.
    [9]郑子樵,梁叔全.梯度功能材料的研究与展望[J],功能材料,1992,10(1):1-5,16.
    [10]黄旭涛,严密.功能梯度材料:回顾与展望[J],材料科学与工程,1997,15(4):35-38.
    [11]Watanable R, Kawasaki A. Recent development of FGM for Special Application to plane [J], Composite materials.,1992,89(4):197.
    [12]RaBbach S, Lehnert W. Investigations of deformation of FGM[J], Computational Mater. Sci.,2000,19:298-303.
    [13]丁安平,饶拴民.纳米氧化铝的用途和制备方法初探[J],有色冶炼,2001,(3):6-10.
    [14]李友风,周继承.氧化铝纳米材料的制备与应[J],硬质合金,2003,20(12):242-245.
    [15]马驰骋,周学玺,朱屯.不同纯度微细氧化铝粉联合生产的绿色新工艺[J],化工冶金,1999,20(4):420-422.
    [16]Lee Y C, Wen S B, Liang W L, et al. Nano (X-Al2O3 powder preparation by calcining an emulsion precursor [J], J. Am. Ceram. Soc.,2007,90(6):1723-1727.
    [17]Shingu P H, Huang B, Nsihitani S R. et al. Nano-meter order cystalline structures Al-Fe alloys produced by mechanical alloyings[C]. Proc. Met. Alloys, Suppl. Trans. Jpn. Inst. Met.,1988,29:3.
    [18]Ding J, Tsuzuki T, McCormick P C. Ultrafine alumina particles prepared by mechanochemical/thermal processing [J], J. Am. Ceram. Soc.,1990,73(11): 2077-2085.
    [19]Borsella E, Bottis S. Laser-driven synthesis of nanocrystalline alumina powder from gas-phase precursors [J], Appl. phys. lett.,1993,63 (10):1345-1347.
    [20]Borsella E, Bottis S, Alexanderescu R, et al. Nanocomposite ceramic powder production by laser-Induced gas-phase reactions [J], Mater. Sci. Eng. A,1993,168 (2): 177-181.
    [21]George A M. Preparation of ultrafine spheroidized alumina powder by arc-evaporation [J], Indian J. Technol.,1991,29(12):607-608.
    [22]Kim K H, Ho C H, Sun T C, et al. Ultrafine aluminum-oxide powder prepared by chemical vapor-deposition of trimethylaluminum [J], J. Mater. Eng. A,1991,13(3): 199-205.
    [23]Chang W, Skandan G, Danforth S.C. et al. Nanostructured ceramics synthesized by chemical vapor condensation [J], Nanostruct. Mater,1995,6:321-324.
    [24]李云贵.Al203化学气相沉积工艺研究[J],核动力工程,1997,18:477-480.
    [25]日本粉体工业技术协会.超微粒子应用技术[M].东京:日刊工业新闻社,1996.
    [26]杜仕国.超微粉制备技术及其进展[J],功能材料,1997,28(3):238-241.
    [27]Nagano M, Ichinose H, Mizoguchi Y, et al. Preparation of thin films and ultrafine powders of (La, Sr)2NiO4 by a spray-ICP technique [J], Mater. Lett.,1994,21: 387-390.
    [28]彭天右,杜平武,胡斌,等.共沸蒸馏法制备超细氧化铝及其表征[J],无机材料学报,2000,15(9):1097-1101.
    [29]Frazee J, Wayne, Harris Thomas M. Processing of alumina low-density xerogels by ambient press drying [J], J. Non. Cryst. Solids,2001,285(1-3):84-89.
    [30]Chera L, Palcevskis E, Berzins M. Dispersion of nanosized ceramic powders in aqueous suspensions [J], J. phys. Conference Series,2007,93(1)012010-1-5.
    [31]Torrecillas R, Schehl M, Diaz L A. Creep behaviour of alumina-mullite-zirconia nanocomposites obtained by a colloidal processing route [J], J. Eur. Ceram. Soc,2007, 27(16):4613-4621.
    [32]Lin C P, Wen S B, Lee T T. Preparation of nanometer-sized a-alumina powders by calcining an emulsion of beohmite and oleic acid [J], J. Am. Ceram. Soc.2002,85(1): 129-133.
    [33]Kim S M, Lee Y J, Jun K W, et al. Synthesis of thermo-stable high surface area alumina powder from sol-gel derived boehmite [J], Mater. Chem. Phys.,2007,104(1): 56-61.
    [34]Kaya C, He J Y, Gu X, et al. Nanostructured ceramic powders by hydrothermal synthesis and their applications [J], Microporous Mesoporous Mater,2002 (54):37-49.
    [35]Yen F S, Chang P L, Yu P C, et al. Characterization on microstructure homogeneity of thetas-Al2O3 powder systems during phase transformation [J], Key Eng. Mater.,2007, 351:81-87.
    [36]Kiyoshi O, Toru N, Yoshikazu K, et al. Effect of crystallitesize of boehmite on sinterability of alumina ceramics [J], Ceram. Inter.,2003,29:533-537.
    [37]M.V.斯温.陶瓷的结构与性能[M],北京:科学出版社,1998,454-465.
    [38]WykoffR W G. Crystal structures [M]. Interscience Publishers,1963.
    [39]Kisi E H, Howard C J. Crystal structures of zirconia phase and their interrelation[C], Zirconia Engineering Ceramics, Transtech Publitions Ltd, Switzerland, Germany, UK, USA,1998:1-36.
    [40]Baher H. Alloy phase diagram[M], ASM International, OH, USA,1992
    [41]Kountourous P, Petzow G. Defect chemistry phase stability and properties of zirconia polycrystals[C], Science and Technology of Zirconia, Technomic Publishing, USA, 1993:30-48.
    [42]Claussen N. Microstructure design of zirconia-toughened ceramic[C], Science and Technology of Zirconia, Advances in Ceramics,Columbus, Ohio,1984,12:325-351.
    [43]Garvie R C. The occurrence of metastable tetragonal ziconia as a crystallite size effect [J], J. Phys. Chem.,1965,69:1238-1243.
    [44]Garvie R C. Stability of the tetragonal structure in zirconia microcrystals [J], J. Phys. Chem.,1978,82(2):218-224.
    [45]Baily J E, Bills P M, Lewis D. Phase stability in hafnium oxide powders [J], Trans. J. Br. Ceram.,1975,74(7):247-252.
    [46]Curbs C E. Development of zirconia resistant to thermal shock [J], J. Am. Ceram. Soc., 1947,30, (6):80-96.
    [47]Whitemore O J, Marshall D W. Fused stabilized zirconia and refractories [J], J. Am. Ceram. Soc.,1952,35(4):85-89.
    [48]Weber C B, Garrett H J, Mauer F A. Observation on the stabilization of zirconia [J], J. Am. Ceram. Soc.,1956,39(6):197-207.
    [49]Duwea P, Odell F, Brown F. Stabilisation of zirconia with calcia and magnesia [J], J. Am. Ceram. Soc.,1952,35(5):107-113.
    [50]赵世柯,黄校先,施鹰,等.改善氧化锆陶瓷材料抗热震性的探讨[J],陶瓷学报,2000,21(1):41-45.
    [51]Garvie R C, Hannink R H, Pascoe R T. Ceramic steel [J], Nature,1975,258:703-704.
    [52]Kobayashi K, Kuwajima H, Masski T, Phase change and mechanical properties of ZrO2-Y2O3 slide electrolyte after ageing [J], Solid State Ionics.,1981,3(4):489-493.
    [53]Tsukuma K. High-temperature strength and fracture toughness of Y2O3-partially-stabilized ZrO2/Al2O3 composites [J], J. Am. Ceram. Soc.,1985,68(2):56-58.
    [54]Tsukuma K. Properties of ZrO2(Y)-Al2O3 and ZrO2(Y)-Al2O3-(Ti or Si)C composites [J], J. Am. Ceram. Soc.,1989,72(2):236-242.
    [55]Lee D Y, Kim D J, Kim B Y. Influence of alumina particle size on tracture toughness of (Y, Nb)-TZP/Al2O3 composites [J], J. Eur. Ceram.Soc,2002,22:2173-2179.
    [56]Kihara M. Effect of Al2O3 addition on mechanical properties and microstructures of Y-TZP [J], J. Ceram. Jpn., Int. Ed.,1988,96:646-653.
    [57]Shi J L, Li B S, Yen T S. Mechanical properties of Al2O3 particle Y-TZP matrix composite and its toughening mechanism [J], J. Mater. Sci.,1993,28:4019-4022.
    [58]Upadhyaya D D, Dalvi P Y, Dey G K. Processing and properties of Y-TZP/Al2O3 composites [J], J. Mater. Sci.,1993,28:6103-6106.
    [59]Rajendran S, Swain M V, Dossell H J. Mechanical properties and microstructures of co-precipitation derived tetragoud Y2O3-ZrO2-Al2O3 composites [J], J. Mater. Sci., 1988,23:1805-1812.
    [60]苏雪药,吕明,陈楷Yb2O3,Al2O3,TiO2对Yb-TZP材料性能的影响[J],华南理工大学学报,2001,29(3):67-70.
    [61]张玉峰,郭景坤Y-TZP/Al2O3复相陶瓷的液相烧结及显微结构[J],无机材料学报,1998,13(8):599-602.
    [62]徐明霞,段仁官.Al2O3添加量对Y-TZP陶瓷烧结及力学性能的影响[J],硅酸盐通报,1997,16(4):40-42.
    [63]龚江宏.陶瓷材料断裂力学[M],清华大学出版社,2001.
    [64]Kuczynski G C. Self-diffusion in sitering of metallic particles [J], Trans. Am.Inst. Min. Met. Eng.,1949,185:169-178.
    [65]Kingery W D, Herg M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion [J], J. Appl. Phys.,1955,26:1205-1212.
    [66]Coble R L. Sintering crystalline solid:I intermediate and final stage diffusion model[J], J. Appl. Phys.,1961,32:787-792.
    [67]Lee Byong T, Lee K H, Hiraga K. Stress-induced phase transformation of ZrO2 in ZrO2 (3mol%Y2O3)-25%Al2O3 composite studied by transmission electron microscopy [J], Scripta. Mater,1998,38(7):1101-1107.
    [68]Lee D Y. Strength and fracture toughness of isostatically hot-pressed (Y,Nb)-TZP/ Al2O3 composites[J],J. Mater. Sci. Lett.,2000,19:1233-1235.
    [69]Yao Ymbang, Sen Wangling, Liang Linjian, et al. Pressureless sintered 3Y- TZP/ 20%Al2O3 composite ceramic[J], J. Cent. South. Univ. Technol.,2000,7(1):12-14.
    [70]孟国文,陈大明,韩栋,等.纳米级ZrO2(Y2O3)/Al2O3粉末的制备及其烧结性能[J],现代技术陶瓷,1995,1:7-9.
    [71]Rhodes W H. Agglomerate and particle size effects on sintering yttria-stabilized zirconia [J], J. Am. Ceram. Soc.,1981,64(1):19-22.
    [72]吴人洁.复合材料[M],天津大学出版社,2002.
    [73]Gallas M R, Rasa A R, Costa T H, et al. High pressure compaction of nanosize ceramic powders[J]. J. Mater. Res.,1997,12(3):764.
    [74]高镰,李蔚,王志宏,等.超高压成型制备Y-TZP纳米陶瓷[J],无机材料学报,2000,15(6):1005-1008.
    [75]Bhaduri S, Bhaduri S B, Zhou E. Auto ignition synthesis and consolidation of Al2O3-ZrO2 composites powders [J], J. Mater. Res.,1998,13(1):156.
    [76]李云凯,纪康俊,钟家湘,等.纳米Al2O3-ZrO2(3Y)复相陶瓷的微波烧结[J],硅酸盐学报,1998,26(6):740-744.
    [77]吴苏,鹿安理.氧化物陶瓷的微波烧结[J],航空材料学报,1995,15(2):40-44.
    [78]李蔚,高镰,洪金生,等.快速烧结制备纳米Y-TZP材料[J],无机材料学报,2000,15(2):269-274.
    [79]卢金山,高濂,归林华,等.Al2O3/Ni包裹粉体的制备、烧结行为及其显微结构研究[J],无机材料学报,2001,16(2):277-282.
    [80]Lange F F. Transformation toughening, part 4:Fabrication toughness and strength of Al2O3-ZrO2 composites[J], J. Mater. Sci.,1982,17:247.
    [81]Wang X L, Zhang H, Guo L C. Effect of ionic strength on the stability of binary ceramic suspensions [J], J. Am. Ceram. Soc.,2007,90(11):3435-3440.
    [85]侯耀永,蔺玉胜,屈转航,等.ZrO2增韧Al2O3/SiC纳米复合陶瓷的力学性能及微结构[J],现代技术陶瓷,1997,3:3-8.
    [86]吴文芳,吴危杭,葛启录,等.Y-TZP强化超细材料的组织性能研究[J],兵器材料与科学,1994,17(2):23-26.
    [87]张巨先,高陇桥.纳米粉添加剂对Al203陶瓷烧结性能及微结构的影响[M],真空电子技术,2000,6:36-39.
    [88]新野正之,平井敏雄,渡边龙二.倾斜机能材料-宇宙机用超耐热材料た目指寸[J],日本复合材料学会志,1987,13(6):257.
    [89]黄旭涛,严密.功能梯度材料:回顾与展望[J],材料科学与工程,1997,15(4):35-38.
    [90]徐智谋..新型功能梯度材料研究现状及发展方向[J],材料导报,2000,14(4):13-15.
    [91]腾立东,王福明,李文超.梯度功能材料数值模拟进展[J],稀有金属,1999,23(4):298-303.
    [92]徐自立,魏伯康.浅析梯度功能材料几种物性值的推定[J],武汉科技学院学报,2002,13(1):1-4.
    [93]Lee Y D. Erdogan F. Interface cracking of FGM coatings under steady-state heal flow [J], Engineering Fracture Machanics,1998,59 (3):361-380.
    [94]许杨健,李现敏,文献民.不同变形状态下变物性梯度功能材料板瞬态热应力[J],工程力学,2006,23(3):49-56.
    [95]许杨健,涂代惠.不同力学边界下梯度功能材料板稳态热应力[J],宇航工艺材料,2004,(5):38-44.
    [96]曹志远,程红梅.非均质材料板的微结构优化设计[J],应用力学,2005,22(3):373-376.
    [97]章娴君,郑慧雯,张庆熙,等.MOCVD法制备金属、陶瓷功能梯度材料的研究[J],西南师范大学学报,2005,30(4):682-686.
    [98]晏鲜梅,熊帷皓,杨勇,等.Ti(CN)基金属陶瓷功能梯度材料的制备[J],功能材 料,2006,37(2):238-240.
    [99]宋建丽,葛志军,邓琦林,等.送粉激光堆焊梯度功能材料[J],焊接学报,2006,27(2):27-30.
    [100]李明,宋月清,崔舜,等.熔铸—扩散法制备黄铜—钨铜功能梯度材料的研究[J],稀有金属,2005,29(5):768-772.
    [101]宁成云,王迎军,陈晓峰,等.梯度结构羟基磷灰石生物活性涂层的性能[J],材料研究学报,2006,20(1):69-72.
    [102]Sang O, Klein C, Liao D, et al. Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu-Mo composite coatings[J], Surf. Coat. Technol., 2005,200(5):682-686.
    [103]Li J Q, Sun W A, Ao W Q, et al. Al2O3-FeCrAl composites and functionally graded materials fabricated by reactive hot pressing [J], Composites Part A.,2006,97:1-6.
    [104]Michael L P, Hugh A B. Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials[J], Acta Mater.,2005,54:1457-1465.
    [105]邓刚,宋延沛,王文刻.WC颗粒增强铁基梯度功能复合耐磨材料研究[J],热加工工艺,2005,5(14):14-16.
    [106]高廷凯.各向异性功能梯度材料平面断裂力学分析[J],中北大学学报,2006,27(1):78-81.
    [107]程站起,仲政.功能梯度板条断裂分析[J],力学季刊,2005,26(4):544-548.
    [108]黄小林,沈惠申.热环境下功能梯度材料板的自由振动和动力响应[J],工程力学,2005,22(3):224-227.
    [109]Ravichandran K S. Thermal residual stresses in a FGM [J], Mater Sci Eng A,1995, 201(1-2):269-276.
    [110]Pekshev P Y, Tcherniakov S V, Arzhakin N A, et al. Plasma-sprayed multilayer protective coatings for gas turbine units [J], Surf Coat Technol,1994,64(1):5-9.
    [111]Shabana Y M, Bruck H A, Pines M L, et al. Modeling the evolution of stress due to differential shrinkage in powder-processed functionally graded metal-ceramic composites during pressureless sintering [J], Inter. J. Solid. Struct.,2006,43 (25- 26):7852-7868.
    [112]陈东,杨光义,王国元,等.功能梯度材料的进展[J],青岛建筑工程学院,2001,22(4):1.
    [113]Dilish H. A first look at the optical properties of ormosils [J], Non-Cryst Solids,1988, 100:378.
    [114]Kazuhlsa F, Hiroynkl F, Masanobu Y, et al. Solar excited laser using FGM concept for space energy network[J], Mater. Sci. Forum,2003, (423-425):807-812.
    [115]Yeshihim O, Kazutoshi T, Masanobu K, et al. Design of functionally graded wood-based board for floor heating system with higher energy efficiency [J], Mater. Sci. Forum.,2003, (423-425):819-824.
    [116]Uemura S. The activities of FGM on new application [J], Mater. Sci. Forum.,2003, (423-425):1-10.
    [117]郑慧雯,茹克也木·沙吾提,章娴君.功能梯度材料的研究进展[J],西南师范大学学报(自然科学版),2002,27(5):88-793.
    [118]Jia H S, Liu X, Li T, et al. Nickel and zirconia toughened alumina prepared by hydrothermal processing [J], J. Mater Sci.,2007,42(12):4707-4711.
    [119]施江澜.复杂形状陶瓷件的凝胶注模成型[J],中国陶瓷,2003,10(4):6-8.
    [120]Vandeperre L J, Dewilde A M, Luylen J J. Gelatin gelcasting of ceramic components [J], Mater Proc Techn,2003,135(2-3):312.
    [121]Mongomery J K, Drzao P L, Both A S, et al. A thermalreversible gelcasting technique for ceraminates [J], Scrit Mater,2003,48(6):785.
    [122]Guo Done, Cai Kai. Application of gelcasting to the fabrication of piezoelectric ceramic parts [J], J Eur Ceram Soc,2003,23:1131.
    [123]Husman W, Graule T Gaucklerl L J. Centrifugal slip casting of zirconia[J], J. Eur. Ceram Soc.,1994,13:33-35.
    [124]Fennelly J, Reed J S. Mechanics of pressure casting [J], J. Am. Ceram. Soc.,1972, 55(5):264-268
    [125]Moreno R, Salomoni A, Stamenkovic I. Influence of slip rheology on pressure casting of alumina [J], J. Eur. Ceram. Soc.,1997,17:327-331.
    [126]Janney M A, Knoxville, Tenn. Method for moulding ceramic Powders[P], US patent 4894194,1990,1:16.
    [127]Janney M A, Omateta O O. Method for moulding ceramic powders using a water-based gelcasting [P], US Patent 5028362,1991,9:8.
    [128]Omateta O O, Janney M A. Gelcasting-A new ceramic forming process[J], Am. Ceram. Soc. Bull.,1991,70(10):1641-1649.
    [129]Lange F F, Valamakanni B V. Method for preparation of dense ceramic products[P], US Patent 5188780,1993,2:23.
    [130]Bergstrom L. Method for forming ceramic by temperature induced flocculation [P], US Patent 5340532,1994,8:23.
    [131]Gauckler L J, Graule T J, Baader F H. Process for fabrication ceramic green bodies by double layer compression[P], Swiss Patent:01096,1993,6,1
    [132]Xiao J, Wan Y, Zhou F, et al. Preparation of ultrafine α-Al2O3 powder by homogenous precipitation [J], Chin. J. Nonferrous Metal.,2007,17(5):783-788.
    [133]Young A C, Omatete O O, Janney M A. Gelcasting of alumina[J], J. Am. Ceram. Soc., 1991,74(3):612-618.
    [134]Zhou L J, Huang Y, Xie Z P, et al. Preparation of Si3N4 ceramics with high strength and high reliability via a processing [J], J. Eur. Ceram. Soc.,2002,22:1347-1355.
    [135]孙静,高镰,郭景坤.纳米Y-TZP凝胶注模成型的研究[J],无机材料学报,1998,13(5):733-738.
    [136]Lange F F. Powder processing science and technologyfor increased reliability[J], J.Am. Ceram.Soc.,72(1):3-15
    [137]孙静,高镰,郭景坤.纳米Y-TZP凝胶注模成型的研究[J],无机材料学报,1998,13(5):733-738.
    [138]王瑞刚,吴厚政,陈玉如,等.陶瓷浆料稳定分散进展[J],陶瓷学报,1999,20(1):35-40.
    [139]Chraska T, Klementova M, Hostomsky J. Formation of nanocomposite alumina- zirconia-silica ceramics [J], Acta Technica CSAV,2007,52 (4):331-341.
    [140]Li X D, Wang L, Iwasa M, et al. Effect of characteristics on centrifugal slip casting of alumina powders [J], J. Ceram. Soc. Jpn.,2003,111(8):594-599.
    [141]Li X D, Nagashima N. Consolidation induced microstructual inhomogeneities in Al2O3-ZrO2 composites prepared ba centrifugal slip casting [J], J. Ceram. Soc. of Jpn,2003,111(12):890-896.
    [142]W.Huisman T, Graule L, Gauckler J. Alumina of high reliability by centrifugal casting [J], J Eur. Ceram. Soc.,15(1995):811-821.
    [143]Shunzo T, Yasuo Y, Hidenori K, et al. Cutting performance of high alumina ceramic tools formed by a high speed centrifugal compaction process [J], J. Mater. Pro. Technol.,1996 (62):431-434.
    [144]Bhattacharyya M, Kumar A N, Kapuria S. Synthesis and characterization of Al/SiC and Ni/Al2O3 functionally graded materials [J], Mater. Sci. Eng.2008,487 (1-2):524-535.
    [145]Watanabe Y, Yamanaka N, Fukui Y. Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method [J], Composites part A.,1998:595-601.
    [146]Kim K H, Cho S J, Yoon K J. Centrifugal casting of alumina tube for membrane application [J], J. Membr. Sci.,2002,199:69-74.
    [147]Steenkamp G C, Neomagus H W, Krieg H M, et al. Centrifugal casting of ceramic membrane tubes and the coating with chitosan [J], Sep. Purif. Technol.,2001,25: 407-413.
    [148]Mertins F H B, Kruidhof H, Bouwmeester H J M, et al. Centrifugal casting of tubular perovskite membranes [J], J. Am. Ceram. Soc.,1988,11:3003-3007.
    [149]Sui X D, Huang X R. The characterization and water purification behavior of gradient ceramic membranes [J], Sep. Purif. Technol.,2003,32:73-79.
    [150]Nijmeijer A, Huiskes C, Verweij H. Centrifugal casting of tubular membrane supports [J], Am. Ceram. Soci. Bull.,1998,4:95-98.
    [151]Helen M C. Layered ceramics:Processing and mechanical behavior [J], Annu. Rev. Mater. Sci.,1997,27:249-282.
    [152]Drewry E N, Moon R J, Bowman K J, et al. Fracture behavior of centrifugally cast multilayer alumina/alumina composites [J], Scripta. Mater.,1999,41(7):749-754.
    [153]施江澜.高密、高强99A1203陶瓷离心成型用浆料的调制[J],材料科学与工程,1999,17(4):93-95.
    [154]施江澜,施卫,朱军.高密、高强A1203陶瓷离心成型研究[J],陶瓷研究,1999,14(3):1-4.
    [155]于景媛,李强,唐骥飞,等.离心法制备氧化铝—氧化锆泡沫陶瓷过滤器[J],铸造,2007,56(5):477-480.
    [156]戚建强,黄勇.等离心法制备气孔梯度氧化铝陶瓷[J],硅酸盐学报,2007,35(4):399-402.
    [157]Koike J, Tashima S, Wakiya S, et al. Mechanical properties and microstructure of centrifugally compacted alumina and hot-isostatically-pressed alumina [J], Mater. Sci. Eng., A,1996,220:26-34.
    [158]Huisman W, Graule T, Gauckler L J. Alumina of high reliability by centrifugal casting [J], J. Eur. Ceram. Soc.,1995,15:811-821.
    [159]Huisman W, Graule T, Gauckler L J. Centrifugal casting of zirconia (TZP) [J], J. Eur. Ceram. Soc.,1994,13 (1):33-39.
    [160]Beylier E, Pober R L, Cima M J. Centrifugal casting of ceramic components [J], J. Am. Ceram. Soc.,1990,12:529-536.
    [161]Cho S J, Kim K H, Kim D J, et al. Abnormal grain growth at the interface of centrifugally cast alumina bilayer during sintering [J], J Am. Ceram. Soc.,2000,83(7):1773-1776.
    [162]Hench L L. A forecast for the future [J], J Am. Ceram. Soc.,1998,81(7):1705-1708.
    [163]Lghodaro O L, Okoli O I. Fracture toughness enhancement for alumina systems:A review [J], Int. J. Appl. Ceram Technol.,2008,5 (3):313-323.
    [164]Kim H S, Seo M Y, Kim I J. Microstructural evolution of Al2O3-ZrO2 (Y2O3) composites and its correlation with toughness [C],9th International Conference on Multiscale and Functionally Graded Materials, Oahu, HI, OCT15-18,2006. Multiscale and Functionally Graded Materials.,2008:931-937.
    [165]Saremi M, Afrasiabi A, Kobayashi A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation [J], Surf. Coat. Technol.,2008:202 (14):3233-3238.
    [166]Ambrozic M, Kosmac T. Applied and residual stresses in brittle cylindrical multilayered composites [J], J. Appl Phys.,2008:103 (7):3515-3521.
    [167]Sarraf H, Herbig R, Maryska M. Fine-grained Al2O3-ZrO2 composites by optimization of the processing parameters [J], Scripta. Mater.,2008:59 (2):155-158.
    [168]Xu H M, Yan H G, Chen Z H. Mechanical and electrical properties of Al2O3/ Ce0.8Y0.2O1.9 composite electrolytes [J], Mater. Sci. Eng., B. Solid State Mater. Adv. Technol.,2007,145:85-90.
    [169]Okada K, Yoshizawa Y, Sakuma T, Grain-size distribution in Al2O3-ZrO2 generated by high-temperature annealing [J], J. Am. Ceram. Soc.,1991,74 (11):2820-2823.
    [170]Ikeda J, Mabuchi M, Nakanishi T, et al. Phase stability and fracture toughness of zirconia toughened alumina for join replacement [C],20th International Symposium on Ceramics in Medicine, OCT 24-26,2007, Nantes, France, BIioceramics.,2008,20 (1) (2):361-363,767-770.
    [171]Hara Y, Onda T, Hayakawa M. Mechanical properties of a graded alumina-zirconia composite prepared by centrifugal slip casting [C],9th International Conference on Multiscale and Functionally Graded Materials, OCT 15-18,2006, Oahu, HI. Multiscale and Functionally Graded Materials 2008:592-597.
    [172]Li X D, Wang L, Iwasa M, et al. Effect of powder characteristics on centrifugal slip casting of alumina powders [J], J. Ceram. Soc. Jpn.,2003,111 (7):594-599.
    [173]Suzuki T S, Sakka Y, Hiraga K. Colloidal processing for fine particles of Al2O3-15vol% ZrO2 system [J], J. Jpn. Soc. Powder. Metall.,1997,44,356-361.
    [174]Revay J M, Higdon J J L. Numerical simulation of polydisperse sedimentation: Equal-sized spheres [J], J. Fluid Mech.,1992,243:15-32.
    [175]Plucknett K P, Caceres C H, Wilkinson D S. Tape casting of fine alumina/zirconia powders for composite fabrication [J], J. Am. Ceram. Soc.,1994,77(8):2137-2144.
    [176]Suzuki T S, Sakka Y, Nakanoand K, et al. Effect of ultrasonication on the micro-structure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing [J], J. Am. Ceram. Soc.,2001,84(9):2132-2134.
    [177]Isobe T, Daimon K, Ito K, et al. Preparation and properties of Al2O3/Ni composite from NiAl2O4 spinel by in situ reaction sintering method [J], Ceram. Int.,2007,33(7): 1211-1215.
    [178]Park B G, Crosky A G, Hellier A K. Material characterization and mechanical properties of Al2O3-Al metal matrix composites [J], J. Mater. Sci.,2001,36(18): 2417-2426.
    [179]Pan W, Gong J H, Ge C C, et al. Synthesis and properties of Al2O3 nanocomposite ceramics toughened by nano metallic particles [J], High-Perform Ceram.,2005,(1-2): 280-283,1099-1102.
    [180]Luo F, Xue H, Zhu D M, et al. Mechanical and dielectric properties of Ni/Al2O3 composites [J], Trans. Inst. Met. Soc. China.,2007,17:1140-1143.
    [181]Mekky W, Nicholson P S. Bridging-stress evaluation in a Ni/Al2O3 system via the digital image-correlation technique [J], J. Am. Ceram. Soc.,2006,89 (3):1095-1098.
    [182]Zuo K H, Jiang D L, Lin Q L. Fabrication and interfacial structure of Al2O3/Ni laminar ceramics [J] Ceram. Int.,2006,32 (6):613-616.
    [183]Michalski J, Wejrzanowski I, Gierlotka S, et al. The preparation and structural characterization of Al2O3/Ni-P composites with an interpenetrating network [J], J. Eur. Ceram. Soc.,2007,27 (2-3):831-836.
    [184]Isobe T, Daimon K, Ito K, et al. Preparation and properties of Al2O3/Ni composite from NiAl2O4 spinel by in situ reaction sintering method [J], Ceram. Int.,2007,33 (7):1211-1215.
    [185]Qin X Y, Cao R, Zhang J. Mechanical and magnetic properties of gamma-Ni-xFe/Al2O3 composites [J], Compos. Sci. Technol.,2007,67 (7-8):1530-1540.
    [186]Kolbe G. Das komplexchemische Verhalten der Kieselsaure[D],1956.
    [187]Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range [J], J. Colloid. Interf. Sci.,1968,26(1):62-69.
    [188]Kralchevsky P A, Nagayama K. Capillary forces between colloidal particles[J], Langmuir,1994,10(1):23-36.
    [189]Denkov N D, Velev O D, Kralchevsky P A, et al. Two-dimensional crystallization[J], Nature,1993,361:26.
    [190]Judith E G, Wijnhoven J, Willem V L. Preparation of photonic crystals made of air spheres in titania[J], Science,1998,281:802-804.
    [191]Kang D, Clark N A. Fast growth of silica colloidal crystals[J], J. Korean Phys. Soc., 2002,41:817-819.
    [192]Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites[J], Chem. Mater.,1999,11(3):795-805.
    [193]Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization[J], Nature,1997,389:447-448.
    [194]Velev O D, Jede T A, Lobo R F, et al. Microstructured porous silica obtained via colloidal crystal templates[J], Chem. Mater.,1998,10(11):3597-3602.
    [195]Yu J S, Yoon S B, Chai G S. Ordered uniform porous carbon by carbonization of sugars[J], Carbon,2001,39(9):1442-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700