用户名: 密码: 验证码:
氯碱化工产业共生网络规划与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产业共生是产业生态学的一个重要研究领域,它能够实现企业之间的物质、能量、水、废弃物和副产品的交换使用,能够减少CO2的排放,缓解全球变暖的趋势,实现化石燃料和能源的可持续利用,是实现经济与环境的“Win-Win”的有效途径。氯碱化工产业是传统的“三高一低”产业,本文通过科学规划氯碱化工产业共生网络并对其运行情况进行评价,帮助企业走可持续的发展道路。本文取得了如下创新性研究成果:
     1)研究了氯碱化工产业共生网络模式,包括主导型、平等型、混合型和虚拟型四种,并分析各种模式的主要特点、优缺点、适用性,以及在资源节约、副产品利用和废弃物处理等方面差异性。通过对产业共生网络模式的分析证实了产业共生具有较好的经济、环境和社会效益。由于氯碱化工企业B规模比较小,所在地区没有资源优势,缺少足够的资金进行上游或下游业务的拓展,适合于以氯碱化工企业为核心的主导型产业共生网络的规划与建设。此外,还具体分析了氯碱化工企业B目前的氯元素流的流动过程,发现元素利用率较低的环节,为规划设计与改进措施和延伸产品链提供了定量依据。
     2)提出了氯碱化工的副产品液氯的深加工和废弃物电石渣的综合利用方案。液氯下游产品众多,如何选择合适的产品需要有一个合理科学的筛选和评价过程。本文提出了一个多产品方案筛选-评价模型,首先从市场原则、环境与产业政策和企业实际需求三个方面进行筛选,然后从经济、社会和环境三个方面建立评价指标体系,选取市场前景、预期投资利润率、产业政策支持度、区域协同度、工艺技术难度、清洁技术水平、耗氯量、耗碱量8个指标,采用投影法对筛选出的产品方案进行评价。然后分析废弃物电石渣制水泥项目的技术、经济和社会效益,以及项目存在的风险。最后,从生产单元、回收单元和环境单元三个方面构建了元素流环境影响模型,该模型能够分析产业共生方案的元素流自然资源利用率和废弃物排放量,结果表明产业共生网络提高了自然资源利用率并减少了废弃物的排放。
     3)氯碱化工生态工业园是以产业共生网络为基础建立的,本文从经济指标、物质减量与循环、污染控制、生态环境指标和园区管理指标五个方面构建生态工业综合评价的指标体系;采用层次分析法确定了各个指标的权重,并利用模糊综合评价法计算生态工业综合评价的评价值,并分析生态工业园存在的优势和不足。
Industrial symbiosis is an important research field of Industrial ecology, which can facilitate the exchange use of the material, energy, water, waste and by-products between different corporations, the reduction of CO2 emissions, the relief of global warming, and sustainable use of fossil fuels to obtain an effective way of achieving win-win s ituation be tween e conomy a nd the environment. C hlor-alkali che mical industry is the traditional "three high and one low" industry. A scientific plan for the industrial symbiosis network of chlor-alkali chemical industry is studied in this paper, in addition of the evaluation on the operation situation.
     1) A model of industrial symbiosis network in the chlor-alkali chemical industry was studied, including the leading type, equality-based, hybrid and virtual. The main features of various models were analyzed, in addition of the differences in resource conservation, us e of b y-product a nd w aste di sposal. T he be nefits of i ndustrial symbiosis on economic, environmental and social effects were confirmed in term of the analysis on the model of industrial symbiosis network. The chlor-alkali chemical industry B is relatively small-scale, without resource advantages and sufficient funds for the expansion of upstream or downstream business, which led to the leading type of industrial symbiosis networks with the chlor-alkali chemical industry as the core role. The analysis on the current flow of chlorine in chlor-alkali chemical industry B showed lower utilization part in the process, which provided a quantitative basis for design improvements and extension of the product chain.
     2) A comprehensive utilization scheme of by-product of chlorine alkali chemical, liquid chlorine and the waste of chlorine alkali chemical, carbide slag was obtained. How to choose the rational products from a number of downstream products of liquid chlorine should rely on a reasonable scientific screening and evaluation process. This paper presents a m ulti-product Screening-Evaluating Model, first selected from the market principle, environment and industrial policies and actual needs of enterprises, and t hen e valuation i ndex system es tablished f rom t he econom ic, social and environmental di mensions, w ith t he m arket pr ospects, e xpected pr ofit r ate of investment, industrial policy support, degree of regional coordination, the difficulty of process t echnology, c lean t echnology, t he consumption of c hlorine, a lkali consumption as the indicators, by the project method, followed by the analysis on the technical, economic, social benefits and the risks of the waste, carbide slag, made into cement. Finally, a model of the environment influenced by the chemical element flow was set up from the production unit, recovery unit and the environmental unit that can analyze the elements of the program flow of industrial symbiosis of natural resource utilization and waste emissions, and the results showed that the industrial symbiosis network can improve the natural resource utilization and reducing waste emissions.
     3) Chlor-Alkali Chemical Industrial Ecological Industrial Park is established on the basis of the symbiotic network. A comprehensive evaluation indicator system was established from the economic indicators, material reduction and recycling, pollution control, eco-environmental indicators and indicators of park management with the weight of e ach i ndicator de termined b y AHP, a nd e co-industrial va lue of comprehensive evaluation calculated by fuzzy comprehensive evaluation method to analyze the advantages and deficiencies of the eco-industry park.
引文
[1]梁诚.氯碱企业精细化工的发展思路.四川化工与腐蚀控制,2002,5(1):40-44.
    [2]张爱华.我国氯碱工业的现状和发展.氯碱工业,2004,(2):122-126.
    [3]杨li,胡山鹰,梁日忠等,中国鲁北生态工业模式,过程工程学报, 2004, 4(5):467-474
    [4] Cote Raymond P.,Thinking Like an Ecosystem,Journal of Industrial Ecology,1998,2(2):8~10.
    [5] Ernesrt L owe,Moran S .,Holmes,A f ield book f or t he de velopment of Eco-industrial pa rks.Report f or t he U .S.Environmental P rotection A gency,Oakland(CA):Indigo Development International,1995,67~72.
    [6]罗宏,孟伟,冉圣宏,生态工业园区—理论与实证,北京:化学工业出版社,2004,87~116.
    [7] Chertow MR, Industrial symbiosis: Literature and taxonomy, Annual Review of Energy and the Environment, 2000, 25:313-337.
    [8] Inês Costa, Paulo Ferr?o, A case study of industrial symbiosis development using a middle-out approach, Journal of Cleaner Production, 2010, 18(10-11):984-992.
    [9] Zengwei Y uan, Lei S hi, Improving e nterprise c ompetitive advantage w ith industrial symbiosis: case study of a smeltery in China, 2009, 17(14):1295-1302
    [10] Shizuka H ashimoto, Tsuyoshi F ujita, Yong G eng, E miri N agasawa, R ealizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki, 2010, 54(10):704-710.
    [11] Laura Sokka, Suvi Pakarinen, Matti Melanen, Industrial symbiosis contributing to more s ustainable e nergy use– an e xample f rom t he f orest i ndustry i n Kymenlaakso, F inland, Journal of C leaner P roduction, In P ress, A vailable online 9 September 2009.
    [12] Magnus Karlsson, A nna Wolf, U sing an opt imization m odel t o e valuate t he economic be nefits of i ndustrial s ymbiosis i n t he f orest i ndustry, 2008, 16(14):1536-1544.
    [13] Inês Costa, Guillaume Massard, Abhishek Agarwal, Waste management policies for industrial symbiosis development: case studies in European countries, Journal of Cleaner Production, 2010, 18(8):815-822.
    [14]李茜,刘宁,吴小庆,陆根法,生态工业园工业共生网络的构建,环境保护科学,2009,35(5):70-72.
    [15]尹艳冰,赵涛,吴文东,面向生态工业园的产业共生成长影响因素分析,科技进步与对策,2009,26(6):64-67
    [16]张晓婷,矿区最优工业共生模式及实现途径研究,中国矿业, 2009,18(8):24-27
    [17]朱玉强,齐振宏,方丽丽,工业共生理论的研究述评,工业技术经济,2007,26(12):91-94
    [18]吴志军,生态工业园工业共生网络治理研究,当代财经, 2006(9):84-88
    [19]毛玉如,孙启宏,乔琦,沈鹏,焦化企业工业共生模式实证研究,2006, 26(2):6-10
    [20]王兆华,尹建华,生态工业园中工业共生网络运作模式研究,2005 (2):80-85
    [21]秦颖,武春友,武春光,生态工业共生网络运作中存在的问题及其柔性化研究,软科学, 2004, 18(2):38-41
    [22]李昆,彭纪生,基于生态位测度的关键种企业作用前提研究,中国人口·资源与环境, 2009, 19(4):129-133
    [23]苏发东,田正义,白银地区以氯碱为基础发展循环经济的规划,氯碱工业, 2009, 45(1):1-4
    [24]安志明,唐红建,发挥资源优势坚持循环经济以高新技术打造西部大型氯碱基地,氯碱工业, 2008,44(11):1-5
    [25]周军,新疆天业发展循环经济模式的探讨,氯碱工业,2007(2):3-5
    [26]梁诚,国内氯碱行业实施循环经济的模式,氯碱工业,2007(3):1-6
    [27]于成学,武春友,王文璋,基于循环经济的中国鲁北生态工业模式选择,中国软科学,2007(6):135-140
    [28]刘德玉,王志,鲁北:打造园区循环经济模式,化工管理,2008,9:13-14
    [29]王志刚,鲁北化工集团工业生态园发展循环经济概述,中国环境管理干部学院学报,2005,15(1):25-26
    [30]安徽省科技咨询中心,淮北矿业(集团)有限责任公司100万t/a PVC及其配套工程环境影响报告书简写本,2006
    [31]周贤国,刘向阳,煤盐联合发展氯碱循环经济,氯碱工业,2007(7):6-8
    [32]任连保,周贤国,马欢,侯欲晓,氯碱企业构建循环经济发展模式的探讨,氯碱工业,2006(7):7-10
    [33] Urban G.L,Hauser J.R.Design and Marketing of New Product,2nd Edition. Prentice-Hall Inc,Englewood Cliffs. 1993
    [34] Shih-Wen Hsiao. Fuzzy l ogic ba sed de cision m odel f or pr oduct de sign International Journal of Industrial Ergonomics. 1998,(21):103-116
    [35] Shantanu B hattacharya , V . Krishnan , Vijay M ahajan . Operationalizing technology improvements in product development decision-making.European Journal of Operational Research. 2003,(149) :102–130
    [36] Irene J.Petrick, Ann E.Echols. Technology roadmapping in review:A tool for making s ustainable n ew pr oduct de velopment de cisions . Technological Forecasting&Social Chang.2004,(71):81–100
    [37] Gulcin B uyukozkan.A f uzzy-logic-based de cision-making approach f or ne w product development.Int.J.Production Economics.2004,(90):27–45
    [38] Gulcin B uyukozka. A new a pproach b ased o n s oft c omputing t o a ccelerate theselection of new product ideas. Computers in Industry. 2004 ,(54):151–167
    [39] S. Ottosson. D ynamic p roduct development—DPD. T echnovation. 2004,(24): 200-207
    [40] James A.W, M ulebeke, Li Zheng. A nalytical ne twork pr ocess f or s oftware selection in product development: A case study. J. Eng. Technol. Manage. 2006, (23): 337–352
    [41] Jianxin Jiao, Timothy W. Simpson. Product family design and pl atform-based product development: a state-of-the-art review.
    [42] Huang Haihong, Liu Guangfu. Research on Decision-making Method for Green Design based on Green Utility Similarity :196-201
    [43] Mahdi Zarghami, Ferenc Szidarovszk. A fuzzy-stochastic OWA model for robust multi-criteria decision making. Fuzzy Optim Decis Making. 2008,(7): 1–15
    [44] A.I. O lcer. A h ybrid a pproach f or m ulti-objective c ombinatorial opt imization problems i n s hip de sign and s hipping. C omputers&Operations R esearch. 2008,(35): 2760–2775
    [45] M. Zerafat Angiz L,,A.Emrouznejad. Selecting the most preferable alternatives in a group decision making problem using DEA. Expert Systems with Applications. 2009,(36):9599–9602
    [46]荆冰彬,齐二石.商品化产品方案决策过程研究.天津大学学报.2001,34(6):783-788
    [47]张辉,晏敬东.新产品方案的二阶模糊综合评价.工业工程与管理.2002,(5):43-46
    [48]叶文,华戴勇,王讳.基于模糊判断的产品方案综合决策方法研究.南京航空航天大学学报.2002,34(2):134-138
    [49]张素敏,邓蜀平.层次分析法在甲醇下游产品方案优选中的应用.化工进展.2008,27(2):298-302
    [50]刘煜,郑恒.基于熵的新产品开发决策方法.科技进步与对策. 2007,24(2):155-157
    [51]朱永梅,芦新春,王明强.基于稳健优化设计的产品方案评价体系研究.江苏科技大学学报.2007,21(3)::68-72
    [52]彭海军,孙启国.基于信息熵的机械产品质量多属性决策.机械设计与制造.2007,(4):139-140
    [53]谢家平.绿色产品设计方案优选的目标规划模型.科技进步与对策.2004,21(12):24-26
    [54]钟诗胜,王体春,丁刚.基于多指标灰区间数关联决策模型的产品方案设计.控制与决策.2008,23(12):1378-1382
    [55]胡山,宋辉.产品方案评价指标体系中定量指标的性能评价方法.天津工程师范学院学报.2008,18(4):25-28
    [56] Rene Kleijn, Ruben Huele, Ester van der Voet. Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden. Ecological Economics, 2000, (32): 241-254.
    [57] Marco Raugei, Sergio Ulgiat etal. A novel approach to the problem of geographic allocation of environmental impact in Life Cycle Assessment and Material Flow Analysis . Ecological Indicators, 2009, (9): 1257-1264.
    [58] Kurian J oseph, N. Nithya. Material flows in the life c ycle of leather. Cleaner Production, 2009, (17): 676-682.
    [59] Hansen E, Lassen C. Experience with the Use of Substance Flow Analysis in Denmark . Journal of Industrial Ecology, 2003, 6: 201?219.
    [60] Annica Lindqvist, F redrik von M almborg. What can we l earn from l ocal substance f low an alyses? T he r eview of c admium f lows i n Swedish municipalities. Cleaner Production, 2004, (12): 909-918.
    [61]郭颖,胡山鹰,陈定江.元素流分析在生态工业规划中的应用.过程工程学报,2008,8(2):322-326.
    [62] Tanji Y, Hori K, Miyanagi K, Unno H. Analysis of chlorine flow in poly (vinyl chloride)production processes and optimization of chlorine use (in Japanese) . Environmental Science, 2000(13): 556–61.
    [63] Kawamura M , K akudate K , S uzuki T. C hlorine f low a nalysis i n J apan ( in Japanese). Shigen-to-Sozai 2000(16): 1-6.
    [64] Chen Weiqiang, S hi Lei, Q ian Yi. Substance f low a nalysis of a luminium i n mainland China for 2001, 2004 and 2007: Exploring its initial sources, eventual sinks and the pathways linking them . Resources, Conservation and Recycling, 2009, 39 (12): 1-14.
    [65] Johnson J, Julie J, Marlen B, et al. Contemporary Anthropogenic Silver Cycle: A Multilevel Analysis . Environmental Science & Technology, 2005, 39 (12): 4655 4665.
    [66] Susanne Kytzia, Mireille Faist, Peter Baccini. Economically extended—MFA: a material f low approach f or a be tter und erstanding of food pr oduction c hain. Cleaner Production, 2004, (12): 877-889.
    [67] Andreas Uihlein, Witold-Roger Poganietz, Liselotte Schebek. Carbon flows and carbon us e i n t he G erman anthroposphere: A n i nventory . Resources, Conservation and Recycling, 2006, (46): 410-429.
    [68] J. Davis, R. Geyer, J. Ley etal. Time-dependent material flow analysis of iron and steel in the UK Part. Scrap generation and recycling . Resources, Conservation and Recycling, 2007, (51): 118-140.
    [69] Guo Xueyi, Zhong Juya, Song Yu, Tian Qinghua. Substance flow analysis of zinc in China . Resources, Conservation and Recycling, 2009, (54): 171-177.
    [70]刘征,胡山鹰,陈定江.我国磷资源产业物质流分析.现代化工,2005,25(6):1-6.
    [71]刘毅,陈吉宁.滇池流域磷循环系统的物质流分析.环境科学,2006,27(8):1549-1553.
    [72]王晓燕,阎恩松,欧洋.基于物质流分析的密云水库上游流域磷循环特征.环境科学学报,2009,29(7):1549-1560.
    [73]陈伟强,熊慧,石磊.铝循环过程的物质流分析——框架、数据与待解的问题.科技,2009,28(7):50-53.
    [74]刘毅,陈吉宁.中国磷循环系统的物质流分析.中国环境科学,2006,26(2):238-242.
    [75]郭学益,宋瑜,王勇.我国铜资源物质流分析研究.自然科学学报,2008,23(4):665-673.
    [76]刘新贵,任婷婷.新疆循环经济发展水平评价.经济研究导刊, 2009, (2):127-129.
    [77]胡淑恒,张思梅,陈广州,徐敏.皖北地区循环经济发展水平综合评价.安徽农业科学, 2010, 38 (1) : 416-418.
    [78] Hu Shuheng, Zhang Simei, Chen Guangzhou, Xu Min.Comprehensive Evaluation on Development Level of Circular Economy in North of Anhui Province. Asian Agricultural Research, 2009, 1(7):45-48.
    [79]刘生孝,黄梅,张淑英,侯江波,祝东平.天然气循环经济评价模型设计.天然气工业, 2010, 30 (3):113-115.
    [80]王文玲.天津市循环经济发展评价指标体系构建与评价.科技管理研究, 2009, (11):131-134.
    [81]李晓鸿.陕西电子信息产业循环经济发展评价指标体系与评价方法研究.科技管理研究, 2010, (3):64-68.
    [82]于波涛.林业产业循环经济的评价指标体系.学术交流, 2007, (5):131-134.
    [83]曾绍伦,杨素琼.燃煤电厂循环经济评价指标体系研究. 2009, (11):115-119.
    [84]李小鹏,赵涛,袁兰静.基于循环经济的生态工业园区综合评价研究.北京理工大学学报(社会科学版), 2009, 11(4):54-57.
    [85]李彩红.化工行业循环经济的指标体系及效果评价.工业技术经济, 2007, 26(4):91-93.
    [86]许乃中,曾维华,薛鹏丽,东方,周国梅.工业园区循环经济绩效评价方法研究.中国人口·资源与环境, 2010, 20(3):44-49.
    [87]陈勇,童作锋,蒲勇健.钢铁企业循环经济发展水平评价指标体系的构建及应用.中国软科学, 2009, (12):102-110.
    [88]刘笑萍,谢家平,任思新.房地产业循环经济评价指标体系研究.城市问题, 2010, (3):67-71.
    [89] Xie F ang, Tang Deshan, Li Yingde. E valuation on D evelopment E ffect of Circular E conomy i n Coal E nterprise B ased on Grey R elational G rade[C]. Proceedings of 2009 IEEE International C onference on G rey S ystems a nd Intelligent S ervices, Nanjing, C hina: IEEE X plore, 2009, N ovember 10-12:260-264.
    [90] Hongzhe S un. F uzzy E valuation on C ircular E conomy Development o f C oal Mining Based on Improved A lgorithm[C]. 200 9 International C onference on E-Learning, E-Business, Enterprise Information Systems, and E-Government, Las Vegas, USA: IEEE computer society, 2009, July 13-16:192-194.
    [91] Zhao Yan, Shang Jin-cheng, Chen Chong, Wu He-nan. Simulation and evaluation on the eco -industrial system of C hangchun e conomic and t echnological development z one, C hina. E nvironmental M onitoring a nd A ssessment, 2008, 139(1-3):339-349.
    [92] Lin Tao, Lin Jianyi, Cui Shenghui, Scott Cameron. Using a network framework to quantitatively s elect e cological i ndicators. Ecological Indicators, 2009, 9(6):1114-1120.
    [93]张文红,陈森发混合指标层次模糊决策法及其在农村循环经济建设中的应用,东南大学学报,2004(3):410~413
    [94]牛桂敏,循环经济评价体系的构建,城市环境与城市生态,2005(2):4~7
    [95]李健,邱立成,面向循环经济的企业绩效评价指标体系研究,中国人口·资源与环境,2004,14(4):121~125.
    [96]黄鹃,陈森发,孙燕等,生态城市智能综合评价决策支持系统研究与实现,信息与控制,2003,32(4):376~380.
    [97]李王锋,张天柱,资源型城市循环经济评价指标体系研究,科学学与科学技术管理,2005(8):82~85.
    [98]马江,成都市循环经济评价指标体系基础研究,西南民族大学学报(人文社科版),2006(4):155~158
    [99]赵涛,徐凤君,循环经济概论,天津,天津大学出版社,2008:119-125
    [100]魏秀鸿,白银市发展循环经济的实践与探索,中国经贸导刊,2006(24):31-32
    [101]中华人民共和国国家发展和改革委员会.氯碱(烧碱、聚氯乙烯)行业准入条件.北京,中华人民共和国国家发展和改革委员会, 2007-11-2.
    [102]环境保护部, HJ 475-2009,中华人民共和国国家环境保护标准,清洁生产标准氯碱工业(烧碱),北京:中国环境科学出版社,2009-08-10.
    [103]环境保护部, HJ 476-2009,中华人民共和国国家环境保护标准,清洁生产标准氯碱工业(聚氯乙烯),北京:中国环境科学出版社,2009-08-10.
    [104]李敏.生态工业园中生态产业链网分析及其稳定性评价研究:[硕士学位论文],天津:天津大学,2007.
    [105]王应明.一种多指标决策与评价的方法——投影法.统计研究,1998,(4):66-69.
    [106]邱根胜.一种多目标决策与评价的新方法.数学的实践与认识.2004,34(11):47-50.
    [107]张慧颖,王桂华.多指标评价方法的改进.大学数学,2009,25(4):199-202.
    [108]李玉芳,伍小明.国内外环氧氯丙烷生产消费现状及市场前景.中国氯碱, 2005, (1):1-6.
    [109]崔小明.环氧氯丙烷的国内外供需现状及发展前景.中国氯碱, 2009, (4):1-5.
    [110]汪培庄,模糊集合论及其应用,上海:上海科学技术出版社,1983
    [111]货仲雄,模糊数学及其应用,天津:天津科学技术出版社,1983
    [112]杜纲,管理数学基础,天津:天津大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700