用户名: 密码: 验证码:
香豆素类离子探针的设计合成及识别性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
检测过渡金属离子和阴离子的水平已引起包括化学家、生物学家、临床生物化学家和环境学家的极大兴趣。荧光分子探针检测法具有便捷、灵敏度高、选择性好、原位检测等优点。香豆素类荧光染料具有优异的光化学光物理性质,诸如良好的光稳定性,高的荧光量子产率和大的Stokes位移等。因此,基于香豆素类染料的荧光分子探针研究备受关注。
     基于Hg2+诱导脱硫反应,设计合成了香豆素类Hg2+荧光分子探针CHgl-3。在Tris-HCl中性缓冲溶液中,CHgl在常见碱金属离子(K+,Na+)、碱土金属离子(Ca2+, Mg2+)、过渡金属及重金属离子(Cd2+, Ag, Fe3+, Pb2+, Hg2+, Cr3+, Co2+, Ni2+, Cu2+, Zn2+)中能够专一性的识别Hg2+,滴加Hg2+后引起荧光增强12.5倍,光谱红移20nm,溶液荧光由无色变为蓝绿色。CHg2-3对Hg2+的识别效果比CHgl差。CHg2-3分子结构中苯胺环上的供电子基p-OMe和吸电子基p-NO2改变了整个分子的电子密度和ICT效应,从而影响脱硫反应及其对Hg2+的识别。
     设计合成了连有硼酸基团的香豆素类Cu2+荧光分子探针CCul。在Tris-HCl中性缓冲溶液中,CCul在常见阳离子中能够专一性的识别Cu2+,滴加Cu2+后引起荧光增强5.7倍,光谱蓝移9nm,其它阳离子和常见阴离子(ClO4-, CO32-, SO42-, F-, Cl-,Br-, I-, H2PO4-,AcO-, SCN-)对CCu1检测Cu2+的干扰较小。CCul与Cu2+的络合比为1:2,结合常数为3.996×109M。CCul对Cu2+的识别过程是不可逆的。
     根据ICT机理设计合成了香豆素类Co2+比率颜色探针CCo1。在Tris-HCl中性缓冲溶液中,CCo1仅对Co2+产生变色响应。滴加Co2+后引起CCol的吸收光谱红移44 nm,溶液颜色由黄绿色变为橙红色。CCol对Co2+产生荧光淬灭响应。CCol与Co2+的络合比为2:1,结合常数为(5.28±0.56)×109M-2。CCo1对Co2+的识别过程是不可逆的。
     依据CN-的强亲核特性设计合成了两个香豆素类CN-荧光分子探针CCNl-2。在DMF中,滴加CN-后引起CCNl-2的吸收光谱分别蓝移95 nm和89 nm,溶液颜色均由黄绿色变为无色。在考察的阴离子(F-, Cl-, Br-, I-, HSO4-, H2PO4-, AcO-, CN-)中,CCN1-2仅对CN-产生颜色响应并引起荧光淬灭,而且竞争阴离子的存在并不影响它们对CN的检测。
Detecting the level of transition metal ions and anions is of great interest to many scientists, including chemists, biologists, clinical biochemists and environmentalists. The advantages of fluorescenct sensors include conveniece, high sensitivity and selectivity, observation in situ, etc. The coumarin dyes have excellent photophysics and photochemistry properties such as high stability against light, high fluorescence quantum yields and big Stokes shift, etc. Therefore, fluorescent sensors based on coumarin have drawn much attention in recent years.
     The fluorescent sensors CHgl-3 for Hg2+ based on coumarin have been designed and synthesized via Hg2+-induced desulfurization reaction. In Tris-HCl neutral buffer, CHgl exhibits Hg2+-only sensitive among metal ions such as alkali (K+, Na+), alkaline earth (Ca2+, Mg2+), and transition metal ions (Cd2+, Ag+, Fe3+, Pb2+, Cr3+, Co2+, Ni2+, Cu2+, Zn2+). Upon the addition of Hg2+, there are a 12.5-fold intensity enhancement in fluorescence, a 20 nm red-shift in emission maximum and an obvious fluorescence change from almost colorless to bluish green. CHg2-3 have poorer recognition effects for Hg2+ than CHg1.p-OMe (electron-donating group) and p-NO2(electron-withdrawing group) on the aniline ring in CHg2-3 vary the electron cloud density around the molecular and ICT, which have interference on desulfuration reaction and the recognition effects.
     A boronic acid-linked fluorescent sensor CCul for Cu2+ based on coumarin has been designed and synthesized. In Tris-HCl neutral buffer, CCul exhibits Cu2+-only sensitive among metal ions. Upon the addition of Cu2+, there are a 5.7-fold intensity enhancement in fluorescence and a 9 nm blue-shift in emission maximum. Other metal ions and anions (C1O4-, CO32-, SO42-, F-, Cl-, Br-, I-, H2PO4-, AcO-, SCN-) have no obvious interference for CCul to detect Cu2+. The binding stoichiometry is 1:2 between CCul and Cu2+, and corresponding binding constant is 3.996×109 M-2. The coordination of CCul with Cu2+ is an irreversible process.
     A ratiometric and colorimetric sensor CCol based on intramolecular charge transfer (ICT) has been designed and synthesized. In Tris-HCl neutral buffer, CCol exhibits Co2+-only color response among metal ions. Upon the addition of Co2+, there are a 44 nm red-shift in absorption maximum and an obvious color change from yellow-green to orange-red. CCol displays fluorescence quenching response toward Co+. The binding stoichiometry is 2:1 between CCo1 and Co2+, and corresponding binding constant is (5.28±0.56)×l09 M-2. The coordination of CCol with Co2+ is an irreversible process.
     The fluorescent sensors CCNl-2 for CN- based on nucleophilic additional reaction have been designed and synthesized. In DMF, Upon the addition of CN-, there are a 95 nm red-shift for CCN1 and 89 nm for CCN2 in absorption maximum and an obvious color change from yellow-green to colorless. CCNl-2 display CN--only color change and fluorescence quenching response among the anions such as F-, Cl-, Br-, I-, HSO4-, H2PO4-, AcO-, CN-. Other anions have no interference for CCNl-2 to detect CN-.
引文
[1]Rurack K. Flipping the light switch'on'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J]. Spectrochimica Acta Part A,2001,57(11):2161-2195.
    [2]Davis F, Collyer S D, Higson S P J. The construction and operation of anion sensors: current status and future perspectives [J]. Topics in Current Chemistry,2005,255: 97-124.
    [3]Kaplan R S. Structure and function of mitochondrial anion transport proteins[J]. Journal of Membrane Biology,2001,179(3):165-183.
    [4]樊江莉.二(2-吡啶甲基)胺为识别基团的Zn2+荧光分子探针的研究[D].博士学位论文,大连理工大学,大连,2005.
    [5]张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002.
    [6]Callan J F, De Silva A P, Magri D C. Luminescent sensors and switches in the early 21st century [J]. Tetrahedron,2005,61(36):8551-8588.
    [7]Gunnlaugsson T, Glynn M, Tocci (nee Hussey) G M et al. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J]. Coordination Chemistry Reviews,2006,250(23-24):3094-3117.
    [8]Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition[J]. Coordination Chemistry Reviews,2000,205(1):3-40.
    [9]Gunnlaugsson T, Ali H D P, Glynn M et al. Fluorescent photoinduced electron transfer (PET)sensors for anions; From design to potential application [J]. Journal of Fluorescence,2005,15(3):287-299.
    [10]Wu Y K, Peng X J, Guo B C et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(Ⅱ) in living cells [J]. Organic & Biomolecular Chemistry,2005,3(8):1387-1392.
    [11]Lu H, Xiong L, Liu H et al. A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging [J]. Organic & Biomolecular Chemistry,2009,7(12):2554-2558.
    [12]Gunnlaugsson T, Davis A P, Glynn M et al. Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors [J]. Chemical Communications,2001,2556-2557.
    [13]Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions[J]. Chemical Reviews,2003,103(11):4419-4476.
    [14]Valeur B. Molecular fluorescence:principles and applications [M]. Weinheim: Wiley-VCH Verlag GmbH,2001,273-350.
    [15]Peng X J, Du J J, Fan J L et al. A selective fluorescent sensor for imaging Cd2+ in living cells[J]. Journal of the American Chemical Society,2007,129(6): 1500-1502.
    [16]Xu Z, Xiao Y, Qian X et al. Rationmetric and selective fluorescent sensor for Cull based on internal charge transfeer(ICT)[J]. Organic Letters,2005,7:889-892.
    [17]Cho E J, Moon J W, Ko S W et al. A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative [J]. Journal of the American Chemical Society,2003,125(41):12376-12377.
    [18]Kim J S, Choi M G, Song K C et al. Ratiometric determination of Hg2+ ions based on simplemolecular motifs of pyrene and dioxaoctanediamide[J]. Organic Letters, 2007,9 (6):1129-1132.
    [19]Machi L, Santacruz H, Sanchez M et al. Bichromophoric naphthalene derivatives of ethylenediaminetetraacetate:Fluorescence from intramolecular excimer, proton and complexation with Zn2+and Cd2-[J]. Supramolecular Chemistry,2006,18 (7):561-569.
    [20]Vazquez S R, Rodriguez M C R, Mosquera M et al. Excited-state intramolecular proton transfer in 2-(3'-hydroxy-2'-pyridy1)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles[J]. Journal of Physical Chemistry A,2007,111 (10):1814-1826.
    [21]Yushchenko D A, Shvadchak V V, Klymchenko A S et al.2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer [J]. New Journal of Chemistry,2006,30 (5):774-781.
    [22]Henary M M, Fahrni C J. Excited State Intramolecular Proton Transfer and Metal Ion Complexation of 2-(2c-Hydroxyphenyl)benzazoles in Aqueous Solution[J]. Journal of Physical Chemistry A,2002,106(21):5210-5220.
    [23]Penedo J C, Mosquera M, Rodriguez-Prieto F. Role of hydrogen-bonded adducts in excited-state proton-transfer processes [J]. Journal of Physical Chemistry A,2000, 104(32):7429-7441.
    [24]Rios M A, Rios M C. Ab initio study of the hydrogen bond and proton transfer in 2-(2'-hydroxypheny1)benzothiazole and 2-(2'-hydroxyphenyl)benzimidazole[J]. Journal of Physical Chemistry A,1998,102(9):1560-1567.
    [25]Shynkar V V, Klymchenko A S, Piemont E et al. Dynamics of intermolecular hydrogen bonds in the excited states of 4'-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor[J]. Journal of Physical Chemistry A,2004,108(40):8151-8159.
    [26]Wang D, Chen S,Chen D. Theoretical study on the trihydroxy-anthraquinone tautomerism in the ground and excited states[J]. Journal of Molecular Structure: Theochem,2003,637(1-3):129-136.
    [27]Nagaoka S, Yamamoto S, Mukai K. Intramolecular proton transfer in the triplet state of 1-(acylamino) anthraquinones[J]. Journal of Photochemistry and Photobiology A-Chemistry,1997,105(1):29-33.
    [28]Luo H, Zhang X, He X et al. Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt(Ⅱ) recognition based on excited-state intramolecular proton transfer [J]. Spectrochimica Acta Part A,2008,70:337-342.
    [29]Tong H, Zhou G, Wang L X, et al. Novel highly selective anion chemosensors based on 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole. Tetrahedron Letters,2003,44(1): 131-134.
    [30]Nolan E M, Racine M E, Lippard S J. Selective Hg(Ⅱ) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins[J]. Inorganic Chemistry,2006,45(6):2742-2749.
    [31]Nolan E M, Jaworski J, Okamoto K I et al. QZ1 and QZ2:Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(Ⅱ)[J]. Journal of the American Chemical Society,2005,127 (48):16812-16823.
    [32]Zhong H, Qian Z H, Xu L et al. Switching the Recognition Preference of Rhodamine B Spirolactam by Replacing One Atom:Design of Rhodamine B Thiohydrazide for Recognition of Hg(Ⅱ) in Aqueous Solution[J]. Organic Letters,2006,8(5): 859-861.
    [33]杜健军.ⅡB族离子荧光探针的研究与细胞成像的应用[D].博士学位论文,大连理工大学,大连,2009.
    [34]Kiyose K, Kojima H, Urano Y et al. Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore[J]. Journal of the American Chemical Society,2006,128 (20):6548-6549.
    [35]Sasaki E, Kojima H, Nishimatsu H et al. Highly Sensitive Near-Infrared Fluorescent Probes for Nitric Oxide and Their Application to Isolated Organs [J]. Journal of the American Chemical Society,2005,127(11):3684-3685.
    [36]Guo X, Qian X, Jia L. A Highly Selective and Sensitive Fluorescent Chemosensor for Hgz in Neutral Buffer Aqueous Solution [J]. Journal of the American Chemical Society,2004,126(8):2272-2273.
    [37]Blackburn C, Bai M, Lecompte K A et al. Lithium responsive fluorophores derived from Monoaza-12-crown-4 and coumarin. The influence of a methoxy side-arm on photophysical properties[J]. Tetrahedron Letters,1994,35(43):7915-7918.
    [38]Golchini K, Mackovic-Basic M, Gharib S A, et al. Synthesis and characterization of a new fluorescent probe for measuring potassium[J]. Am. J. Physiol.,1990, 258(2):438-F443.
    [39]Kastenholz F, Grell E, Bats J W et al. Fluorescence studies and semiempirical calculations on alkali ion indicators[J]. Journal of Fluorescence,1994,4(3): 243-246.
    [40]Doludda M, Kastenholz F, Lewitzki E et al. Time-resolved response of fluorescent alkali ion indicators and detection of short-lived intermediates upon binding to molecular cavities[J]. Journal of Fluorescence,1996,6(3):159-163.
    [41]Crossley R, Goolamali Z, Sammes P G. Synthesis and properties of a potential extracellular fluorescent probe for potassium [J]. Journal of the Chemical Society, Perkin Transactions 2,1994,7:1615-1623.
    [42]Crossley R, Goolamali Z, Gosper J J et al. Synthesis and spectral properties of new fluorescent probes for potassium [J]. J. Chem. Soc., Perkin Trans.2,1994, 3:513-520.
    [43]Leray I, Asfari Z, Vicens J et al. Photophysics of Calix[4] biscrown-based di topic receptors of caesium containing one or two dioxocoumarin fluorophores [J]. Journal of Fluorescence,2004,14(4):451-458.
    [44]Leray I, Asfari Z, Vicens J et al. Synthesis and binding properties of calix[4] biscrown-based fluorescent molecular sensors for caesium or potassium ions [J]. Journal of the Chemical Society, Perkin Transactions 2,2002,1429-1434.
    [45]Valeur B, Leray I. Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes:A review [J]. Inorganica Chimica Acta,2007,360 (3):765-774.
    [46]Ernesto B, Maria T, Alonso, et al. Rodriguez-ubis. unusual behaviour of 7-diethylamino-3-(3,4-ethylen-dioxy benzoyl) coumarin towards group Ⅱa cations: a potential photoactive probe for magnesium [J]. Tetrahedron Letters,1997,38(25): 4459-4462.
    [47]Suzuki Y; Komatsu H; Iked T; et al. Design and synthesis of Mg2+-selective f luoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living cell [J]. Analytical Chemistry,2002,74 (6):1423-1428.
    [48]Maton L; Taziaux D; Soumillion J P; et al. About the use of an amide group as a linker in fluoroionophores:competition between linker and ionophore acting as chelating groups [J]. Journal of Material,2005,15:2928-2937.
    [49]Brunet E, Garcia-Losada P, Rodriguez-Ubis J C et al. Synthesis of new fluorophores derived from monoazacrown ethers and coumarin nucleus [J]. Canadian Journal of Chemistry,2002,80 (2):169-174.
    [50]Komatsu H, Miki T, Citterio D et al. Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging [J]. Journal of the American Chemical Society,2005,127(31):10798-10799.
    [51]Karsli N, Erk Q. Biscoumarin podands and their complexes with Na+,K+ and Pb2+ cations [J]. Dyes and Pigments,1996,32(2):85-92.
    [52]Erk C, GocMEN A, BULUT M. The synthesis of novel crown ethers. Part IV. Coumarin derivatives of [18] crown-6 and cation binding from fluorescence spectra [J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry,1998,31 (4): 319-331.
    [53]Bourson J, Borrel M N, Valeur B. Ion-responsive fluorescent compounds. Part 3. Cation complexation with coumarin 153 linked to monoaza-15-crown-5 [J]. Analytica Chimica Acta,1992,257(2):189-193.
    [54]Li L D, Wei Y, Tong A J. Study on cation recognition properties of 4-methene-6,7-dimethoxycoumarin-monoaza-18-crown-6 [J]. Analytica Chimica Acta,2001,427: 29-37.
    [55]Bourson J, Pouget J, Valeur B. Ion-responsive fluorescent compounds.4. effect of cation binding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers [J]. The Journal of Physical Chemistry,1993,97(17): 4552-4557.
    [56]Habib J L H, Branger C, Soumillion J P et al. Ion-responsive fluorescent compounds V. photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5 [J]. Journal of Photochemistry and Photobiology A:Chemistry,1998,116: 127-133.
    [57]Taziaux D, Soumillion J P, Habib J L H. Photophysical and complexing properties of new fluoroionophores based on coumarin 343 linked to rigidified crown-ethers [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,162:599-607.
    [58]Leray I, Habib J L H, Branger C et al. Ion-responsive fluorescent compounds VI. Coumarin 153 linked to rigid crowns for improvement of selectivity [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,135:163-169.
    [59]Erk C, BULUT M, GocMEN A. The synthesis of novel crown ethers, part Ⅶ [1]. coumarin derivatives of benzocrowns and cation binding from fluorescence spectra [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2000,37(1-4):441-450.
    [60]Ma Y M, Luo W, Quinn P J et al. Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors [J]. Journal of Medicinal Chemistry,2004,47(25):6349-6362.
    [61]Lim N C, Pavlova S V, Bruckner C. Squaramide hydroxamate-based chemidosimeter responding to Iron(III) with a fluorescence intensity increase[J]. Inorganic Chemistry,2009.48 (3):1173-1182.
    [62]Lin W, Yuan L, Feng J, et al. A fluorescence-enhanced chemodosimeter for Fe3+ based on hydrolysis of bis (coumarinyl) schiff base[J]. European Journal of Organic Chemistry,2008,2689-2692.
    [63]Lin W, Yuan L, Long L. A fluorescent Cobalt probe with a large ratiometric fluorescence response via modulation of energy acceptor molar absorptivity on metal ion binding[J]. Advanced functional Materials,2008,18:2366-2372.
    [64]Wang B, Hu Y, Su Z. Synthesis and photophysical behaviors of a blue fluorescent copolymer as chemosensor for protons and Ni2+ ion in aqueous solution[J]. Reactive & Functional Polymers,2008,68:1137-1143.
    [65]Jang Y J, Moon B S, Park M S et al. New cavitand derivatives bearing four coumarin groupsas fluorescent chemosensors for Cu2+ and recognition of dicarboxylates utilizing Cu2+ complex [J]. Tetrahedron Letters,2006,47:2707-2710.
    [66]Sheng R, Wang P, Gao Y et al. Colorimetric test kit for Cu2 detection[J]. Organic Letters,2008,10(21):5015-5018.
    [67]Jung H S, Kwon P S, Lee J W et al. Coumarin-derived Cu2-selective fluorescence sensor:synthesis, mechanisms, and applications in living cells[J]. Journal of the American Chemical Society,2009,131:2008-2012.
    [68]Kim M H, Jang H H, Yi S et al. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2- ions[J]. Chemical Communications,2009,4838-4840.
    [69]Li N, Xiang Y, Tong A. Highly sensitive and selective "turn-on" fluorescent chemodosimeter for Cu2+ in water via Cu'-promoted hydrolysis of lactone moiety in coumarin[J]. Chemical Communications,2010,46:3363-3365.
    [70]He G, Zhao X, Zhang X et al. A turn-on PET fluorescence sensor for imaging Cu2+ in living cells[J]. New Journal of Chemistry,2010,34:1055-1058.
    [71]Lin W, Yuan L, Cao X et al. A coumarin-based chromogenic sensor for transition-metal ions showing ion-dependentbathochromic shift[J]. European Journal of Organic Chemistry,2008,4981-4987.
    [72]Lim N C, Yao L L, Freake H C et al. Synthesis of a fluorescent chemosensor suitable for the imaging of zinc(Ⅱ) in live cells [J]. Bioorganic & Medicinal Chemistry Letters,2003,13:2251-2254.
    [73]Lim N C, Bruckner C. DPA-substituted coumarins as chemosensors for zinc(Ⅱ): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin [J]. Chemical Communications,2004,1094-1095.
    [74]Kulatilleke C P, Silva S A, Eliav Y. A coumarin based fluorescent photoinduced electron transfer cation sensor [J]. Polyhedron,2006,25(13):2593-2596.
    [75]Dakanali M, Roussakis E, Kay A R et al. Synthesis and photophysical properties of a fluorescent TREN-type ligand incorporating the coumarin chromophore and its zinc complex [J]. Tetrahedron Letters,2005,46(24):4193-4196.
    [76]Chatterjee M, Chatterjee S, Roy M B et al. Photophysical properties of tris-methoxycoumarin derivative of a cryptand [J]. Journal of Luminescence,2002,99: 175-183.
    [77]Zhang L, Dong S, Zhu L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically[J]. Chemical Communications,2007,1891-1893.
    [78]Mizukami S, Okada S, Kimura S et al. Design and synthesis of coumarin-based Zn2+ probes for ratiometric fluorescence imaging[J]. Inorganic Chemistry,2009,48(16): 7630-7638.
    [79]Wu J, Liu W, Zhuang X et al. Fluorescence turn on of coumarin derivatives by metal cations:a new signaling mechanism based on C=N isomerization[J]. Organic Letters, 2007,9(1):33-36.
    [80]Wang J B, Qian X H, Cui J N. Detecting Hg Ions with an ICT fluorescent sensor molecule:remarkable emission spectra shift and unique selectivity [J]. The Journal of Organic Chemistry,2006,71 (11):4308-4311.
    [81]Sheng R, Wang P, Liu W et al. A new colorimetric chemosensor for Hg based on coumarin azine derivative[J]. Sensors and Actuators B,2008,128:507-511.
    [82]Lee D, Kim G, Kim H. A fluorescent coumarinylalkyne probe for the selective detection of mercury (Ⅱ) ion in water [J]. Tetrahedron Letters,2009,50:4766-4768.
    [83]Ma Q, Zhang X, Zhao X et al. A highly selective fluorescent probe for Hg based on a rhodamine-coumarin conjugate[J]. Analytica Chimica Acta,2010,663:85-90.
    [84]Voutsadaki S, Tsikalas G K, Klontzas E et al. A "turn-on" coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media[J]. Chemical Communications,2010,46:3292-3294
    [85]Valeur B, Pouget J, Bouson J et al.. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding [J]. The Journal of Physical Chemistry,1992,96:6545-6549.
    [86]Chen C T, Huang W P. A highly selective fluorescent chemo-sensor for lead ions [J]. Journal of the American Chemical Society,2002,124:6246-6247.
    [87]Lee K, Kim H, Kim G et al. Fluorescent chemodosimeter for selective detection of cyanide in water[J]. Organic Letters,2008,10(1):49-51.
    [88]Kim G, Kim H. Coumarinyl aldehyde as a Michael acceptor type of colorimetric and fluorescent probe for cyanide in water[J]. Tetrahedron Letters,2010,51:2914-2916.
    [89]Kim G, Kim H. Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide[J]. Tetrahedron Letters,2010,51:185-187.
    [90]Lee J, Jeong A R, Shin I et al. Fluorescence turn-on sensor for cyanide based on a Cobalt(II)-coumarinylsalen complex[J]. Organic Letters,2010,12 (4):764-767.
    [91]Li J, Lin H, Cai Z et al. A novel coumarin-based switching-on fluorescent and colorimetric sensor for F-[J]. Journal of Luminescence,2009,129:501-505.
    [92]Shao J. A novel colorimetric and fluorescence anion sensor with a urea group as binding site and a coumarin group as signal unit[J]. Dyes and Pigments,2010,87(3): 272-276.
    [93]Chen K, Guo Y, Lu Z et al. Novel coumarin-based fluorescent probe for selective detection of bisulfite anion in water[J]. Chinese Journal of Chemistry,2010,28: 55-60.
    [94]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ions[J]. Chemical Reviews,2008,108:3443-3480.
    [95]Santra M, Ryu D, Chatterjee A et al. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species[J]. Chemical Communications,2009,2115-2117.
    [96]Yu Y, Lin L, Yang K et al.p-Dimethylaminobenzaldehyde thiosemicarbazone:a simple novel selective and sensitive fluorescent sensor for mercury(II) in aqueous solution[J]. Talanta,2006,69:103-106.
    [97]Young S. Selective fluorescent Hg(II) detection in aqueous solutions with a dye intermediate[J]. Spectrochimica Acta Part A,2007,68:705-709.
    [98]Tang B, Cui L J, Xu K H et al. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications[J]. ChemBioChem, 2008,9:1159-1164.
    [99]Chen Q, Chen C. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown[J]. Tetrahedron Letters,2005,46:165-168.
    [100]Nolan E M, Lippard S J. MS4, a seminaphthofluorecein-based chemosensor for the rariometric detection of Hg(Ⅱ)[J]. Journal of Materials Chemistry,2005,15: 2778-2783.
    [101]Zhao Y, Lin Z, He C et al. A "turn-on" fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation[J]. Inorganic Chemistry,2006,45:10013-10015.
    [102]Zeng D X, Chen Y. A selective, fluorescent probe for Hg2+ detection in aqueous solution [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,186: 121-124.
    [103]He G, Zhao Y, He C et al. "Turn-on" fluorescent sensor for Hg2+ via displacement approach[J]. Inorganic Chemistry,2008,47(12):5169-5176.
    [104]Zhan X, Qian Z, Zheng H et al. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II) [J]. Chemical Communication,2008,1859-1861.
    [105]Choi M G, Ryu D H, Jeon H L et al. Chemodosimetric Hg2+-selective signaling by mercuration of dichlorofluorescein derivatives[J]. Organic Letters,2008,10 (17): 3717-3720.
    [106]Shiraishi Y, Sumiya S, Kohno Y et al. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(Ⅱ)[J]. The Journal of Organic Chemistry,2008,73:8571-8574.
    [107]Tian M, Ihmels H. Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe[J]. Chemical Communication,2009, 3175-3177.
    [108]Ho M, Chen K, Lee G et al. Mercury(Ⅱ) Recognition and fluorescence imaging in vitro through a 3D-complexation structure[J]. Inorganic Chemistry,2009,48(21): 10304-10311.
    [109]Vaswani K G, Keranen M D. Detection of aqueous mercuric ion with a structurally simple 8-hydroxyquinolinederived ON-OFF fluorosensor[J]. Inorganic Chemistry, 2009,48 (13):5797-5800.
    [110]Ha-Thi M, Penhoat M, Michelet V et al. Highly selective and sensitive Hg2+ fluorescent sensors based on a phosphane sulfide derivative[J]. Organic & Biomolecular Chemistry,2009,7:1665-1673.
    [111]Wanichacheva N, Siriprumpoonthum M, Kamkaew A et al.Dual optical detection of a novel selective mercury sensor based on 7-nitrobenzo-2-oxa-1,3-diazolyl subunits[J]. Tetrahedron Letters,2009,50:1783-1786.
    [112]Wang J, Qian X. A series of polyamide receptor based PET flurescent sensor molecules:positively cooperative Hg2+ ion binding with high sensitivity[J]. Organic Letters,2006,8(17):3721-3724.
    [113]Wang J, Qian X. Two regioisomeric and exclusively selective Hg(Ⅱ) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor[J]. Chemical Communication,2006,109-111.
    [114]Meng X M, Zhu M Z, Guo Q X. A novel highly selective fluorescent chemosensor for Hg(II) in fully aquous media[J]. Chinese Chemical Letters,2007,18:1209-1212.
    [115]Nolan E M, Lippard S J et al. Turn-on and ratiometric mercury sensing in water with a red-emitting probe[J]. Journal of the American Chemical Society,2007, 129:5910-5918.
    [116]Wu D, Huang W, Lin Z et al. Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments [J]. Inorganic Chemistry,2008,47:7190-7201.
    [117]Shi W, Ma H. Rhodaming B thiolactone:a simple chemosensor for in aqueous media [J]. Chemical Communications,2008,1856-1858.
    [118]Chen X, Nam S, Jou M J et al. Hg2+ selective fluorescent and colorimetric aensor: its crystal structure and application to bioimaging[J]. Organic Letters,2008,10 (22):5235-5238.
    [119]Jana A, Kim J S, Jung H S et al. A cryptand based chemodosimetric probe for naked-eye detection of mercury(Ⅱ) ion in aqueous medium and its application in live cell imaging [J]. Chemical Communications,2009,4417-4419.
    [120]Li H, Li Y, Dang Y et al. An easily prepared hypersensitive water-soluble fluorescent probe for mercury(Ⅱ) ions[J]. Chemical Communications,2009,4453-4455.
    [121]Bhalla V, Tejpal R, Kumar M et al. Terphenyl based'turn on'fluorescent sensor for mercury[J]. Tetrahedron Letters,2009,50:2649-2652.
    [122]Huang W, Song C, He C et al. Recognition preference of rhodamine-thiospirolactams for mercury (Ⅱ) in aqueous solution[J]. Inorganic Chemistry,2009,48(12):5061-5072.
    [123]Suresh M, Mishra S, Mishra S K et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism[J]. Organic Chemistry,2009,11(13):2740-2743.
    [124]Huang W, Zhu X, Wu D et al. Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media[J]. Dalton Transactions,2009,10457-10465.
    [125]Huang J, Xu Y, Qian X. A Rhodamine-Based Hg2+ sensor with high selectivity and sensitivity in aqueous solution:A NS2-containing receptor[J]. The Journal of Organic Chemistry,2009,74:2167-2170.
    [126]Lin W, Cao X, Ding Y et al. A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamide-alkyne scaffold[J]. Chemical Communications,2010,46:3529-3531.
    [127]Yang Y, Yook K, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg ions in aqueous media[J]. Journal of the American Chemical Society,2005,127:16760-16761.
    [128]Ko S, Yang Y, Tae J et al. In vivo monitoring of mercury ions using rhodamine-based molecular probe[J]. Journal of the American Chemical Society,2006,128:14150-14155.
    [129]Yang Y, Ko S, Shin I et al. Fluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivatives[J]. Organic & Biomolecular Chemistry,2009,7:4590-4593.
    [130]Wu J, Hwang I, Kim K S et al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution:fluorescent OFF-ON[J]. Organic Chemistry,2007,9(5):907-910.
    [131]Wu D, Huang W, Duan C et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media[J]. Inorganic Chemistry,2007,46:1538-1540.
    [132]Song K C, Kim J S, Park et al. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline[J]. Journal of Organic Chemistry,2006,8(16):3413-3416.
    [133]Liu W, Xu L, Zhang H et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells[J]. Organic & Biomolecular Chemistry,2009,7:660-664.
    [134]Zhang G, Zhang D, Yin S et al.1,3-Dithiole-2-thione derivatives featuring an anthracene unit:new selective chemodosimeters for Hg(Ⅱ) ion[J]. Chemical Communications,2005,2161-2163.
    [135]Berthelot T, Talbot J, Lain G et al. Synthesis of N(?)-(7-diethylaminocoumarin-3-carboxyl)- and N(?)-(7-methoxycoumarin-3-carboxyl)-L-fmoc lysine as tools for protease cleavage detection by fluorescence[J]. Journal of Peptide Science, 2005,11(3):153-160.
    [136]Demas J. N, Crosby G. A. The measurements of photoluminescence quantum yields[J]. The Journal of Physical Chemistry,1971,75:991-1024.
    [137]Wade C R, Gabbai F P. Colorimetric turn-on sensing of fluoride ions in H2O/CHCl3 mixtures by pyridinium boranes[J]. Dalton Transactions,2009,9169-9175.
    [138]Zhang L, Dong S, Zhu L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically[J]. Chemical Communications,2007,1891-2189.
    [139]Jiang W, Wang W. A selective and sensitive "turn-on" fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization-lactonization reaction[J]. Chemical Communications,2009,3913-3915.
    [140]Yu F, Zhang W, Li P et al. Cu2+-selective naked-eye and fluorescent probe:its crystal structure and application in bioimaging[J]. Analyst,2009,134:1826-1833.
    [141]Zhao Y, Zhang X, Han Z et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living ells[J]. Analytical Chemistry,2009,81(16):7022-7030.
    [142]Ciesienski K L, Hyman L M, Derisavifard S et al. Toward the detection of cellular copper (Ⅱ) by a light-activated fluorescence increase[J]. Inorganic Chemistry, 2010,9:6808-6810.
    [143]Fabbrizzi L, Licchelli M, Pallavicini P et al. An anthracene-based fluorescent sensor for transition metal ions[J]. Angewandte chemie international edition in english,1994,33(19):1975-1977.
    [144]Torrado A, Walkup G K, Imperiali B. Exploiting polypeptide motifs for the design of selective Cu (Ⅱ) ion chemosensors [J]. Journal of the American Chemical Society, 1998,120:609-610.
    [145]Zheng Y, Huo Q, Kele P et al. A new fluorescent chemosensor for Copper ions based on tripeptide Glycyl-Histidyl-Lysine (GHK) [J]. Organic Letters,2001,3(21): 3277-3280.
    [146]Li Y, Yang C M. A rationally designed novel receptor for probing cooperative interaction between metal ions and bivalent tryptophan side chain in solution[J]. Chemical Communications,2003,2884-2885.
    [147]Shao N, Zhang Y, Cheung S et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative[J]. Analytical Chemistry, 2005,77:7294-7303.
    [148]Choi J K, Kim S H, Yoon Y et al. A PCT-based, pyrene-armed calix[4]crown fluoroionophore[J]. The Journal of Organic Chemistry,2006,71:8011-8015.
    [149]Kim S H, Kim J S, Park S M et al. Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam[J]. Organic Letters,2006,8(3):371-374.
    [150]Weng Y, Yue F, Zhong Y et al. A copper(Ⅱ) ion-selective on-off-Type fluoroionophore based on zinc porphyrin-dipyridylamino[J]. Inorganic Chemistry, 2007,46:7749-7755.
    [151]Xie J, Menand M, Maisonneuve S et al. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II) [J]. The Journal of Organic Chemistry,2007,72:5980-5985.
    [152]Khatua S, Choi S H, Lee J et al. Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement [J]. Inorganic Chemistry,2009,48:1799-1801.
    [153]Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction, an example in the fluorescence sensing of Cu (Ⅱ) [J]. Journal of the American Chemical Society, 2004,126:14682-14683.
    [154]Royzen M, Dai Z, Canary J W. Ratiometric displacement approach to Cu(Ⅱ) sensing by fluorescence [J]. Journal of the American Chemical Society,2005,127:1612-1613.
    [155]Martinez R, Zapata F, Caballero A et al.2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit:highly selective colorimetric and fluorescent signaling of Cu2+ cation[J]. Organic Letters,2006,8(15):3235-3238.
    [156]Zeng L, Miller E W, Pralle A et al. A selective turn-on fluorescent sensor for imaging Copper in living cells [J]. Journal of the American Chemical Society,2006, 128:10-11.
    [157]Wen Z, Yang R, He H et al. A highly selective charge transfer fluoroionophore for Cu2+ [J]. Chemical Communications,2006,106-108.
    [158]Li G, Xu Z, Chen C et al. A highly efficient and selective turn-on fluorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim [J]. Chemical Communications,2008,1774-1776.
    [159]Yu M X, Shi M, Li F Y et al. Highly sensitive and fast responsible fluorescence turn-on chemodosimeter for Cu2+ and its application in living Cell Imaging[J]. Chemistry-A European Journal,2008,14:6892-6900.
    [160]Shao N, Jin J Y, Wang H et al. Tunable photochromism of spirobenzopyran via selective metal ion coordination:an efficient visual and ratioing fluorescent probe for divalent Copper ion[J]. Analytical Chemistry,2008,80:3466-3475.
    [161]Kim M, Jang H H, Yi S et al. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2 ions[J]. Chemical Communications,2009,4838-4840.
    [162]Lin W, Yuan L, Tan W et al. Construction of fluorescent probes via protection/ deprotection of functional groups:a ratiometric fluorescent probe for Cu2+[J]. Chemistry -A European Journal,2009,15(4):1030-1035.
    [163]Hyman L M, Stephenson C J, Dickens M G et al. Toward the development of prochelators as fluorescent probes of copper-mediated oxidative stress [J]. Dalton transaction,2010,39:568-576.
    [164]Yang W, Yan J, Fang H et al. The first fluorescent sensor for D-glucarate based on the cooperative action of boronic acid and guanidinium groups[J]. Chemical Communications,2003,792-793.
    [165]Zhao J, Fyles T M, James T D. Chiral binol bisboronic acid as fluorescence sensor for sugar acids[J]. Angewandte Chemie International Edition,2004,43(26):3461-3464.
    [166]Swamy K M K, Ko S, Kwon S K et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions [J]. Chemical Communications,2008,5915-5917.
    [167]Ma Q, Cao Q, Zhao Y et al. Two sensitive fluorescence methods for the determination of cobaltous in food and hair samples[J]. Food Chemistry,2000,71:123-127.
    [168]Basoglu A, Parlayan S, Ocak M. Seletive recognition of Cobalt(Ⅱ) ion by a new cryptand compound with N2O2S2 donor atom possessing 2-hydroxy-l-naphthylidene schiff base moiety[J]. Journal of Fluorescence,2009,19:655-662.
    [169]Zeng Z, Jewsburya R A. The synthesis and applications of a new chromogenic and fluorescence reagent for cobalt(II)[J]. Analyst,1998,123:2845-2850.
    [170]Yusof N A, Ahmad M. Development of a flow-through optosensor for determination of Co(II)[J]. Spectrochimica Acta Part A,2008,69:413-418.
    [171]Yao Y, Tian D, Li H. Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2 sensing[J]. Applied Materials & Interfaces,2010,2 (3):684-690.
    [172]Xu Z, Chen X, Kim H N et al. Sensors for the optical detection of cyanide ion[J]. Chemical Society Reviews,2010,39:127-137.
    [173]Gimeno N, Li X, Durrant J. R et al. Cyanide Sensing with Organic Dyes:Studies in Solution and on Nanostructured A1203 Surfaces [J]. Chemistry-A European Journal, 2008,14 (10):3006-3012.
    [174]Li Z, Lou X, Yu H et al. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide[J]. Macromolecules,2008, 41(20):7433-7439.
    [175]Lou X, Qin X, Li Z. Colorimetric cyanide detection using an azobenzene acid in aqueous solutions [J]. Analyst,2009,134:2071-2075.
    [176]Lee K, Lee J T, Hong J et al. Visual Detection of Cyanide through Intramolecular Hydrogen Bond[J]. Chemistry Letters,2007,36(6):816-817.
    [177]Kwon S K, Kou S, Kim H N et al. Sensing cyanide ion via fluorescent change and its application to the microfluidic system[J]. Tetrahedron Letters,2008,49(26): 4102-4105.
    [178]Niu H, Jiang X, He J et al.Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water[J]. Tetrahedron Letters, 2009,50:6668-6671.
    [179]Niu H, Su D, Jiang X et al. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment[J]. Organic & Biomolecular Chemistry, 2008,6:3038-3040.
    [180]Yang Y Tae J. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water[J]. Organic Letters,2006,25:5721-5723.
    [181]Chung Y, Lee H, Ahn K H. N-Acyl triazenes as tunable and selective chemodosimeters toward cyanide ion[J].The Journal of Organic Chemistry.2006,71:9470-9474.
    [182]Saha S, Ghosh A, Mahato P et al. Specific recognition and sensing of CN-in sodium cyanide solution[J]. Organic Letters,2009,12(15):3406-3409.
    [183]Hong S, Yoo J, Kim S et al.β-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion[J]. Chemical Communications,2009,189-191.
    [184]Kumar S, Kumar S. 1-(4-Nitrophenyl)-benzimidazolium-based ratiometric chromogenic probes for cyanide ion[J]. Tetrahedron Letters,2009,50:4463-4466.
    [185]Sun Y, Wang G, Guo W. Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives[J]. Tetrahedron,2009,65:3480-3485.
    [186]Yu H, Zhao Q, Jiang Z et al. A ratiometric fluorescent probe for cyanide: convennient synthesis and the proposed mechanism[J]. Sensors and Actuators B,2010,148:110-116.
    [187]Sun Y, Liu Y, Guo W. Fluorescent and chromogenic probes bearing salicylaldehyde hydrazone functionality for cyanide detection in aqueous solution[J]. Sensors and Actuators B,2009,143:171-176.
    [188]Sun Y, Liu Y,, Chen M et al. A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group[J]. Talanta,2009,80:996-1000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700