用户名: 密码: 验证码:
石墨烯基纳米复合材料的制备及功能化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是sp2杂化的碳原子构成的二维单原子片层,可以看作是碳族材料的基本组成单元。石墨烯的二维结构和长程π电子共轭赋予了其独特的热、机械以及电性质,因此石墨烯在理论研究与实际应用两方面都具有重要价值。本文针对生物传感器中存在的电子传递速率慢、酶活性难以保持等问题,通过引入石墨烯和金纳米粒子构成复合材料,来促进酶和电极间的电子传递并使酶保持催化活性,从而提高传感器的性能。同时,为制备具有特殊功能性的石墨烯基复合材料,本文以氧化石墨烯和金属盐前驱体为原料,通过溶剂热法制备了石墨烯-Fe3O4和石墨烯-TiO2复合材料,并考察了其应用性能。
     本文第二章通过化学法制备水溶性石墨烯。首先用常规的Hummers方法以及超声作用得到氧化石墨烯,在用水合肼还原氧化石墨烯之前,引入一步磺化过程,使最终得到的石墨烯表面带上磺酸基团(-SO3-),并利用此磺酸基团之间的静电排斥作用,使石墨烯在水中达到稳定分散。
     本文第三章利用制得的水溶性石墨烯,分别构筑新型的基于石墨烯的过氧化氢传感器和葡萄糖传感器。(1)将石墨烯和过氧化氢酶HRP分散于壳聚糖溶液,滴涂于玻碳电极表面形成一层均匀的生物膜,通过电镀在电极表面生长金纳米粒子。循环伏安显示此电极可以实现HRP的直接电化学,并且可以电催化H2O2的还原。此过氧化氢生物传感器响应时间小于3s,检测线性范围从5×10-6M到5.13×10-3M,检测限约为1.7×10-6M。(2)将石墨烯、预先制备好的金纳米粒子、葡萄糖氧化酶共同分散于Nafion溶液,并将此混合分散液滴涂于玻碳电极表面构筑葡萄糖生物传感器。在溶液中存在对苯二酚的情况下,此电极对葡萄糖的加入会产生一个快速响应的台阶电流,显示了典型的对葡萄糖的催化氧化反应。传感器的线性范围从15×10-6M到5.8×10-3M,检测限约为5×10-6 M。
     本文第四章以氧化石墨烯和金属盐前驱体为原料,通过溶剂热法一步制备石墨烯/金属氧化物的复合材料。(1)以氧化石墨烯和氯化铁为原料,通过溶剂热法制备了石墨烯/四氧化三铁复合材料(G-Fe3O4)。在反应釜内部的高温高压环境中,含氧基团被分解,氧化石墨烯被还原成石墨烯,同时,吸附于氧化石墨烯表面的铁离子也发生反应原位生成Fe3O4粒子。Fe3O4的大小和在石墨烯表面的分布密度可以通过原料中Fe3+的浓度来调节。所得的G-Fe3O4在室温下的饱和磁化强度可达45.5 emu g-1。G-Fe3O4可用于药物的负载和靶向投放,G-Fe3O4对阿霉素的饱和负载率达到了65%。以G-Fe3O4作为电极修饰材料构筑的过氧化氢生物传感器,也具有良好的性能。(2)以氧化石墨烯和钛酸正丁酯为原料,通过溶剂热法制备了石墨烯/二氧化钛复合材料(G-TiO2)。结果显示锐钛矿相的TiO2粒子在石墨烯表面分布均匀且粒径平均。与纯的TiO2相比,G-TiO2在紫外-可见吸收谱中的吸收边缘明显向可见光区域移动。G-TiO2的结构依赖于溶剂热反应的时间,适当延长反应时间可以有利于石墨烯与TiO2之间形成化学键,得到结合更好、分散更为均一的复合材料。石墨烯的引入可以有效阻止TiO2电子空穴对的复合,这可以用G-TiO2的荧光淬灭来证明。G-TiO2对亚甲基蓝的光催化降解活性还与原料中氧化石墨烯的含量有关,最佳制备条件下得到的G-TiO2,在模拟太阳光的照射下,3小时内可以催化降解超过75%的亚甲基蓝。
     本文还进行了部分类石墨烯材料的研究。在第五章中,利用液相法制备了二维MOS2片,探测到其与块状MoS2完全不同的荧光发射性质。通过引入Ag@SiO2核壳复合材料,利用金属增强荧光的机理可进一步提高二维MoS2的荧光强度。
Graphene is the name given to a two-dimensional sheet of sp2-hybridized carbon, which can be seen as the basic building block of carbon allotropes. The 2D structure and long-rangeπconjugation of graphene bring unique thermal, mechanical and electrical properties. Therefore graphene exhibits significant potentials in both theoretical studies and practical applications. In this work, for solving the crucial problems existing in biosensors, graphene and Au nanoparticles were utilized to promote the electrons transportation and keep the activity of the enzyme to construct novel biosensors with high performance. Besides, graphene-based nanocomposites were successfully synthesized through solvothermal reaction by using graphene oxide and metal salt precursors as starting materials. The applications of the nanocomposites were also studied.
     Water soluble graphene was prepared chemically in chapter 2. First, we synthesized graphene oxide using a Hummers method and followed sonication in water. Before reduction with hydrazine, graphene oxide layers were sulfonated to modify the surface with sulfonate groups. The obtained graphene layers could keep separate in water through the electrostatic repulsion due to the presence of negatively charged -SO3- groups.
     The water soluble graphene was utilized to construct novel hydrogen peroxide biosensors and glucose biosensors respectively in chapter 3. (1) Graphene and horseradish peroxidase (HRP) were co-immobilized into biocompatible polymer chitosan. Then a glassy carbon electrode was modified by the biocomposite, followed by electrodeposition of Au nanoparticles on the surface of the modified electrode to fabricate a hydrogen peroxide biosensor. Cyclic voltammetry demonstrated that the direct electrochemistry of HRP was realized. This biosensor exhibited an excellent performance in terms of electrocatalytic reduction towards H2O2, with a response time of 3 s. The linear range to H2O2 was from 5×10-6 M to 5.13×10-3 M, and the detection limit was 1.7×10-6 M. (2) Graphene, Au nanoparticles and glucose oxidase were co-dispersed into a Nafion solution. Then the dispersion was cast on the surface of a glassy carbon electrode to construct a glucose biosensor. This biosensor responded rapidly upon the addition of glucose and reached the steady state current within 5 s, with the presence of hydroquinone. The linear range is from 15×10-6 M to 5.8×10-3 M, and the detection limit is approximate 5×10-6 M.
     In chapter 4, we studied the preparation of graphene-metal oxide composites through solvothermal reaction in one step by using graphene oxide and metal salts as starting materials. (1) Graphene-Fe3O4 composites (G-Fe3O4) were synthesized with solvothermal reaction by using graphene oxide and FeCl3 as raw materials. The oxygen groups were decomposed under the high temperature and high pressure inside the sealed vessel and graphene oxide was reduced into graphene, while the Fe3+ ions adsorbed on the surface of graphene were reduced and grown to Fe3O4 in situ. The size and density of the Fe3O4 microspheres distributed on the graphene can be easily controlled by altering the starting Fe3+ concentration. The saturation magnetization of the composites at room temperature was about 45.5 emu g-1. Considering the high specific surface area and good biocompatibility of graphene, the obtained G-Fe3O4 composites were very suitable for the immobilization and delivery of drugs. The saturated loading capacity of the composites to doxorubicin could achieve 65%. We also immobilized the G-Fe3O4 on the surface of an electrode to construct a H2O2 biosensor, which also displayed excellent performance. (2) Graphene-TiO2 composites (G-TiO2) were synthesized through solvothermal reaction by using graphene oxide and tetrabutyl titanate as raw materials. TiO2 particles of anatase phase with a narrow size distribution were dispersed on the surface of graphene uniformly. In comparison with pure TiO2, the G-TiO2 showed an obvious red shift of absorption edge in the UV-vis absorption spectra. The structure of the G-TiO2 composites depended on the time of solvothermal reaction. Prolonging the reaction time moderately could promote the chemical bonding of TiO2 on graphene, which was beneficial to obtain more homogeneous products. The fluorescence quenching of the G-TiO2 indicated that graphene could hinder the recombination of electron-hole pairs of TiO2. The photocatalytic activity of the G-TiO2 was also affected by the amount of graphene in the composites. Under the optimal conditions, more than 75% of methylene blue would be degraded in 3 hours by the photocatalysis of the G-TiO2 with the irradiation of a simulated sunlight.
     The investigation of the graphene analogues was also carried out in this work. Ultrathin MoS2 layers with few or even single layer were prepared with a liquid-phase exfoliation. The photoluminescence of the exfoliated MoS2 was detected, which was absent in bulk MoS2. And the intensity of the fluorescence could be further enhanced by using Ag@SiO2 composite as an enhancing substrate based on the metal-enhanced fluorescence mechanism.
引文
[1]Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene [J]. Nature.1985,318:162-163.
    [2]lijima S. Helical microtubules of graphitic carbon [J]. Nature.1991,354:56-58.
    [3]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov, A A. Electric field effect in atomically thin carbon films [J]. Science.2004,306(5696):666-669.
    [4]Landau L D. Zur Theorie der phasenumwandlungen Ⅱ[J]. Phys. Z. Sowjetunion.1937, 11:26-35.
    [5]Peierls R E. Quelques proprietes typiques des corpses solides [J]. Ann. I. H. Poincare. 1935,5:177-222.
    [6]Geim A K, Novoselov K S. The rise of grapheme [J]. Nat. Mater.2007,6:183-191.
    [7]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J]. Nature.2007,448:457-460.
    [8]Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science.2008,321(5887):385-388.
    [9]Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene [J]. Nano Lett.2008,8(3): 902-907.
    [10]Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun.2008,146 (9-10):351-355.
    [11]Xu Z, Chen X, Qu X, Jia J, Dong S. Single-wall carbon nanotube-based voltammetric sensor and biosensor [J]. Biosen. Bioelectron.2004,20(3):579-584.
    [12]Timur S, Anik U, Odaci D, Gorton L. Development of a microbial biosensor based on carbonnanotube (CNT) modified electrodes [J]. Electrochem. Commun.2007,9(7): 1810-1815.
    [13]Zou Y, Xiang C, Sun L, Xu F. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique [J]. Electrochim. Acta.2008,53(12):4089-4095.
    [14]Wang Y, Li Y M, Tang L H, Lu J, Li J H. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun.2009,11(4):889-892.
    [15]Alwarappan S, Erdem A, Liu C, Li C Z. Probing the electrochemical properties of graphene nanosheets for biosensing applications [J]. J. Phys. Chem. C.2009,113(20): 8853-8857.
    [16]Toshiaki Enoki M S, Morinobu Endo. Graphite intercalationcompounds and applications. Oxford University Press.2003.
    [17]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J]. Proc. Natl Acad. Sci. USA.2005,102: 10451-10453.
    [18]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature.2005,438:197-200.
    [19]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. The structure of suspended graphene sheets [J]. Nature.2007,446:60-63.
    [20]Nelson D R, Piran T, Weinberg S. Statistical mechanics of membranes and surfaces (World Scientific, Singapore,2004).
    [21]Wallace P R. The band theory of graphite [J]. Phys. Rev.1947,71(9):622-634.
    [22]Semenoff G W. Condensed-matter simulation of a three-dimensional anomaly [J]. Phys. Rev. Lett.1984,53(26),2449-2452.
    [23]Haldane F D M. Model for a quantum hall effect without Landau levels: Condensed-matter realization of the "Parity Anomaly" [J]. Phys. Rev. Lett.1988, 61(18),2015-2018.
    [24]Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature.2005,438:201-204.
    [25]Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Phys. Rev. Lett.2008,100(1):016602.
    [26]Durkop T, Getty S A, Cobas E, Fuhrer M S. Extraordinary mobility in semiconducting carbon nanotubes [J]. Nano Lett.2004,4(1):35-39.
    [27]Du X, Skachko I, Barker A, Andrei E Y. Approaching ballistic transport in suspended graphene [J]. Nat. Nanotechnol.2008,3:491-495.
    [28]Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene [J]. Chem. Phys. Lett.2000, 326(1,2):181-185.
    [29]Reddy C D, Rajendran S, Liew K M. Equilibrium configuration and continuum elastic properties of finite sized graphene [J]. Nanotechnology.2006,17:864-870.
    [30]Kudin K N, Scuseria G E, Yakobson B I. C2F, BN, and C nanoshell elasticity from ab initio computations [J]. Phys. Rev. B.2001,64(23):235406.
    [31]Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets [J]. Nano Lett.2008,8(7):2045-2049.
    [32]Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking [J]. ACS Nano.2008,2(3):572-578.
    [33]Park S, Dikin D A, Nguyen S T, Ruoff R S. Graphene oxide sheets chemically cross-linked by polyallylamine [J]. J. Phys. Chem. C.2009,113(36):15801-15804.
    [34]Guo P, Song H H, Chen X H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J]. Electrochem. Commun.2009,11(6): 1320-1324.
    [35]Chen H, Muller M B, Gilmore K I, Wallace G G, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv. Mater.2008, 20(18):3557-3561.
    [36]Yu C H, Shi L, Yao Z, Li D Y, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube [J]. Nano Lett.2005,5(9):1842-1846.
    [37]Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett.2000,84(20):4613-4616.
    [38]Nika D L, Pokatilov E P, Askerov A S, Balandin A A. Phonon thermal conduction in graphene:Role of Umklapp and edge roughness scattering [J]. Phys. Rev. B.2009, 79(15):155413.
    [39]Guo Z, Zhang D, Gong X G. Thermal conductivity of graphene nanoribbons [J]. Appl. Phys. Lett.2009,95(16):163103-163105.
    [40]Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits [J]. Appl. Phys. Lett.2008, 92(15):151911.
    [41]Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition [J]. Nano Lett.2010,10(5):1645-1651.
    [42]Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Two-dimensional phonon transport in supported graphene [J]. Science.2010,328(5975):213-216.
    [43]Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nat Nanotechnol.2010,5:574-578.
    [44]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene [J]. Science.2008,320(5881):1308.
    [45]Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption [J]. Phys. Rev. B.2010,81(15):155413.
    [46]Pan D, Zhang J C, Li Z, Wu M H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater.2010,22(6):734-738.
    [47]Shen J, Zhu Y, Chen C, Yang X, Li C. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chem. Commun.2011,47:2580-2582.
    [48]Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S. Control of graphene's properties by reversible hydrogenation:evidence for graphane [J]. Science. 2009,323(5914):610-613.
    [49]Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics [J]. Nat. Photon.2010,4:611-622.
    [50]Gokus T, Nair R R, Bonetti A, Bohmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A. Making graphene luminescent by oxygen plasma treatment [J]. ACS Nano.2009,3(12):3963-3968.
    [51]Luo Z, Vora P M, Mele E J, Johnson A T C, Kikkawa J M. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett.2009,94(11):111909.
    [52]Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater.2010,22(4):505-509.
    [53]Jung I, Pelton M, Piner R, Dikin D A, Stankovich S, Watcharotone S, Hausner M, Ruoff R S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets [J]. Nano Lett.2007 7(12):3569-3575.
    [54]Lambacher A, Fromherz P. Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer [J]. Appl. Phys. A.1996,63:207-216.
    [55]Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X. Graphene thickness determination using reflection and contrast spectroscopy [J]. Nano Lett.2007,7(9):2758-2763.
    [56]Ward L. The optical constants of bulk materials and films. Institute of Physics.1994.
    [57]Blake P, Hill E W, Neto A H C, Novoselov K S, Jiang D, Yang R, Booth T J, Geim A K. Making graphene visible [J]. Appl. Phys. Lett.2007,91(6):063124.
    [58]Xu Y, Bai H, Lu G, Li C, Shi G. Flexible Graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. J. Am. Chem. Soc.2008, 130(18):5856-5857.
    [59]Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T, Ruoff R S. Aqueous suspension and characterization of chemically modified graphene sheets [J]. Chem. Mater.2008,20(21):6592-6594.
    [60]GoImez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Atomic structure of reduced graphene oxide [J]. Nano Lett.2010, 10(4):1144-1148.
    [61]Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C W, Crommie M F, Cohen M L, Louie S G, Zettl A.. Graphene at the edge:stability and dynamics [J]. Science.2009,323(5922):1705-1708.
    [62]Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A. Direct imaging of lattice atoms and topological defects in graphene membranes [J]. Nano Lett. 2008,8(11):3582-3586.
    [63]Kudin K N, Ozbas B, Schniepp H C, Prud' homme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functionalized graphene sheets [J]. Nano Lett.2008,8(1): 36-41.
    [64]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett.2006,97(18):187401.
    [65]Park J S, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus M S. G' band Raman spectra of single, double and triple layer graphene [J]. Carbon.2009,47(5): 1303-1310.
    [66]Calizo I, Balandin A A, Bao W, Miao F, Lau C N. Temperature dependence of the Raman spectra of graphene and graphene multilayers [J]. Nano. Lett.2007,7(9): 2645-2649.
    [67]Vericat C, Vela M E, Salvarezza R C. Self-assembled monolayers of alkanethiols on Au(111):Surface structures, defects and dynamics [J]. Phys. Chem. Chem. Phys.2005, 7:3258-3268.
    [68]Dervishi E, Li Z, Watanabe F, Biswas A, Xu Y, Biris A R, Saini V, Biris A S. Large-scale graphene production by RF-cCVD method [J]. Chem. Commun.2009, 4061-4063.
    [69]Brodie B C. On the atomic weight of graphite [J]. Phil. Trans. R. Soc. Lond.1859,149: 249-259.
    [70]Staudemaier L. Verfahren zur darstellung der graphitsaure [J]. Ber. Dtsch. Chem. Ges. 1898,31(2):1481-1487.
    [71]Hummers W S. Preparation of graphite oxide [J]. J. Am. Chem. Soc.1958,80(6): 1339.
    [72]Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide [J]. Chem. Soc. Rev.2010,39:228-240.
    [73]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol.2008,3:101-105.
    [74]Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Lett.2008,8(6): 1679-1682.
    [75]Dong X, Su C Y, Zhang W, Zhao J, Ling Q, Huang W, Chen P, Li L J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties [J]. Phys. Chem. Chem. Phys.2010,12:2164-2169.
    [76]Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA [J]. Adv. Mater.2009, 21(31):3159-3164.
    [77]Qi X, Pu K Y, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents [J]. Small.2010,6(5):663-669.
    [78]Yang Q, Pan X, Huang F, Li K. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives [J]. J. Phys. Chem. C.2010,114(9):3811-3816.
    [79]Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films [J]. J. Phys. Chem. C.2010,114(18):8227-8234.
    [80]Zhou X, Wu T, Ding K, Hu B, Hou M, Han B. Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer [J]. Chem. Commun.2010, 46:386-388.
    [81]Zhou X, Liu Z. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets [J]. Chem. Commun.2010,46:2611-2613.
    [82]Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:Synthesis and host-guest inclusion for enhanced electrochemical performance [J]. ACS Nano.2010,4(7): 4001-4010.
    [83]Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via L-ascorbic acid [J]. Chem. Commun.2010,46:1112-1114.
    [84]Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X. Environment-friendly method to produce graphene that employs vitamin C and amino acid [J]. Chem. Mater.2010, 22(7):2213-2218.
    [85]Zhu C, Guo S, Fang Y, Dong S. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets [J]. ACS Nano.2010,4(4):2429-2437.
    [86]Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation [J]. Adv. Mater.2008,20(23):4490-4493.
    [87]Li H, Pang S, Feng X, Mullen K, Bubeck C. Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation [J]. Chem. Commun.2010,46: 6243-6245.
    [88]Salas E C, Sun Z, Luttge A, Tour J M. Reduction of graphene oxide via microbial respiration [J]. ACS Nano.2010,4(8):4852-4856.
    [89]Chen Y, Zhang X, Yu P, Ma Y. Stable dispersions of graphene and highly conducting graphene films:A new approach to creating colloids of graphene monolayers [J]. Chem. Commun.2009,4527-4529.
    [90]Liang Y, Wu D, Feng X, Mullen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions [J]. Adv. Mater.2009,21(17):1679-1683.
    [91]Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents [J]. Nano Lett.2009,9(4):1593-1597.
    [92]Chen W, Yan L. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure [J]. Nanoscale.2010,2:559-563.
    [93]Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science.2009,324(5932):1312-1314.
    [94]Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition [J]. Nanotechnology.2008,19(30): 305604.
    [95]Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M. Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films [J]. Chem. Mater.2010,22(11):3457-3461.
    [96]Nandamuri G, Roumimov S, Solanki R. Chemical vapor deposition of graphene films [J]. Nanotechnology.2010,21(14):145604.
    [97]Vang R V, Honkala K, Dhal S, Vestergaard E K, Schadt J, Laegsgaard E, Clausen B S, Norskov J K, Besenbacher F. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking [J]. Nat. Mater.2005,4:160-162.
    [98]Lopez V, Sundaram R S, Gomez-Navarro C, Olea D, Burghard M, Gomez-Herrero J, Zamora F, Kern K. Chemical vapor deposition repair of graphene oxide:A route to highly-conductive graphene monolayers [J]. Adv. Mater.2009,21(46):4683-4686.
    [99]Shivaraman S, Barton R A, Yu X, Alden J, Herman L, Chandrashekhar M V S, Park J, McEuen P L, Parpia J M, Craighead H G, Spencer M G. Free-standing epitaxial graphene [J]. Nano Lett.2009,9(9):3100-3105.
    [100]Aristov V Y, Urbanik G, Kummer K, Vyalikh D Y, Molodtsova O V, Preobrajenski A B, Zakharov A A, Hess C, Hanke T, Buchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan Y A, Knupfer M. Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices [J]. Nano Lett.2010,10(3): 992-995.
    [101]Deng D, Pan X, Zhang H, Fu Q, Tan D, Bao X. Freestanding graphene by thermal splitting of silicon carbide granules [J]. Adv. Mater.2010,22(19):2168-2171.
    [102]Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon.2008, 46(14):1994-1998.
    [103]Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials [J].2010,22(1):103-106.
    [104]Clar E, Ironside C T. Proc. Chem. Soc. London.1958,150.
    [105]Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rader H J, Mullen K. Synthesis of a giant 222 carbon graphite sheet [J]. Chem. Eur. J.2002,8(6):1424-1429.
    [106]Yang X Y, Dou X, Rouhanipour A, Zhi L J, Rader H J, Mullen K. Two-dimensional graphene nanoribbons [J]. J. Am. Chem. Soc.2008,130(13):4216-4217.
    [107]Wu J, Gherghel L, Watson M D, Li J, Wang Z, Simpson C D, Kolb U, Mullen K. From branched polyphenylenes to graphite ribbons [J]. Macromolecules.2003,36(19): 7082-7089.
    [108]Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films [J]. Chem. Eur. J.2009,15(25):6116-6120.
    [109]Guo H L, Wang X F, Qian Q Y, Wang F B, Xia X H. A green approach to the synthesis of graphene nanosheets [J]. ACS Nano.2009,3(9):2653-2659.
    [110]Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite [J]. Adv. Funct. Mater.2008,18(10):1518-1525.
    [111]Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature.2009,458(7240):872-876.
    [112]Cano-Marquez A G, Rodriguez-Macias F J, Campos-Delgado J, Espinosa-Gonzalez C G, Tristan-Lopez F, Ramirez-Gonzalez D, Cullen D A, Smith D J, Terrones M, Vega-Cantu Y I. Ex-MWNTs:Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes [J]. Nano Lett.2009,9(4): 1527-2533.
    [113]Elias A L, Botello-Mendez A R, Meneses-Rodriguez D, Gonzalez V J, Ramirez-Gonzalez D, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrones M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels [J]. Nano Lett.2010,10(2):366-372.
    [114]Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons [J]. Nano Lett.2006,6(12):2748-2754.
    [115]Areshkin D A, Gunlycke D, White C T. Ballistic transport in graphene nanostrips in the presence of disorder:Importance of edge effects [J]. Nano Lett.2007,7(1): 204-210.
    [116]Han M Y, Ozyilmaz B, Zhang Y B, Kim P, Energy band-gap engineering of graphene nanoribbons [J]. Phys. Rev. Lett.2007,98(20):206805.
    [117]Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D, Stettler M A. Analysis of graphene nanoribbons as achannel material for field-effect transistors [J]. Appl. Phys. Lett.2006,88(14):142102.
    [118]Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L. Current saturation in zero bandgap, top-gated graphene field-effect transistors [J]. Nature Nanotechnol. 2008,3:654-659.
    [119]Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene [J]. Science.2006,313(5789):951-954.
    [120]Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K. Gate-induced insulating state in bilayer graphene devices [J]. Nature Mater.2008,7: 151-157.
    [121]Zhou S Y, Gweon G H, Fedorov A V. Substrate induced band gap opening in epitaxial graphene [J]. Nature Mater.2007,6:770-775.
    [122]Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett.2008,8(1):323-327.
    [123]Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y. Organic photovoltaic cells based on an acceptor of soluble graphene [J]. Appl. Phys. Lett.2008,92(22):223303.
    [124]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature.2009,457: 706-710.
    [125]Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graphene-based ultracapacitors [J]. Nano Lett.2008,8(10):3498-3502.
    [126]Subrahmanyam K S, Vivekchand S R C, Govindaraj A, Rao C N R. A study of graphenes prepared by different methods:characterization, properties and solubilization [J]. J. Mater. Chem.2008,18:1517-1523.
    [127]Wang D W, Li F, Wu Z S. Electrochemical interfacial capacitance in multilayer graphene sheets:Dependence on number of stacking layers [J]. Electrochem. Commun. 2009,11(9):1729-1732.
    [128]Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Chaotic dirac billiard in graphene quantum dots [J]. Science.2008, 320(5874):356-358.
    [129]Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater.2010,22(6):734-738.
    [130]Shen J, Zhu Y, Chen C, Yang X, Li C. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chem. Commun.2011,47:2580-2582.
    [131]Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater.2010,22(4):505-509.
    [132]Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction [J]. J. Am. Chem. Soc.2009, 131(23):8262-8270.
    [133]Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction [J], Nano Res.2010,3(6):429-437.
    [134]Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag-graphene-based nanocomposites [J]. Small.2009,5(20):2253-2259.
    [135]Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites [J]. J. Phys. Chem. C. 2008,112(50):19841-19845.
    [136]Jasuja K, Berry V. Implantation and growth of dendritic gold nanostructures on graphene derivatives:Electrical property tailoring and raman enhancement [J]. ACS Nano.2009,3(8):2358-2366.
    [137]Kim Y K, Na H K, Lee Y W, Jang H, Han S W, Min D H. The direct growth of gold rods on graphene thin films [J]. Chem. Commun.2010,46:3185-3187.
    [138]Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I, El-Azhary A A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J]. J. Mater. Chem.2009,19: 3832-3837.
    [139]Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide [J]. J. Am. Chem. Soc.2010,132(21):7279-7281.
    [140]Guo S, Dong S. Graphene nanosheet:Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chem. Soc. Rev.2011,40: 2644-2672.
    [141]Lee J M, Pyun Y B, Yi J, Choung J W, Park W I. ZnO nanorod-graphene hybrid architectures for multifunctional conductors [J]. J. Phys. Chem. C.2009,113(44): 19134-19138.
    [142]Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. J. Mater. Chem.2009,19(18):2710-2714.
    [143]Yang S, Feng X, Wang L. Tang K, Maier J, Mullen K. Graphene-based nanosheets with a sandwich structure [J]. Angew. Chem. Int. Ed.2010,49(28):4795-4799.
    [144]Cai D, Song M, Xu C. Highly conductive carbon-nanotube/graphite-oxide hybrid films [J]. Adv. Mater.2008,20(9):1706-1709.
    [145]Tung V C, Chen L, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano Lett.2009,9(5):1949-1955.
    [146]Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors [J]. J. Phys, Chem. Lett.2010,1(2):467-470.
    [147]Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets [J]. ACS Nano.2010,4(7):3861-3868.
    [148]Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S, Hong S H, Lee W J, Ruoff R S, Kim S O. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films [J]. Adv. Mater.2010,22(11): 1247-1252.
    [149]Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C. Functionalized graphene sheets for polymer nanocomposites [J]. Nat. Nanotechnol.2008,3:327-331.
    [150]Steurer P, Wissert R, Thomann R, Mulhaupt R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide [J]. Macromol. Rapid Commun.2009,30(4-5):316-327.
    [151]Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y, Chen Y S. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites [J]. Adv. Funct. Mater.2009,19(14):2297-2302.
    [152]Salavagione H J, Martinez G, Gomez M A. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties [J]. J. Mater. Chem.2009,19(28):5027-5032.
    [153]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J]. Nature. 2006,442:282-286.
    [154]Lee S H, Dreyer D R, An J, Velamakanni A, Piner R D, Park S, Zhu Y, Kim S O, Bielawski C W, Ruoff R S. Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide [J]. Macromol. Rapid Comm.2010,31(3):281-288.
    [155]Yang Y F, Wang J, Zhang J, Liu J C, Yang X L, Zhao H Y. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles [J]. Langmuir.2009,25(19): 11808-11814.
    [156]Wu J H, Tang Q W, Sun H, Lin J M, Ao H Y, Huang M L, Huang Y F. Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-assembly [J]. Langmuir.2008,24(9):4800-4805.
    [157]Wakabayashi K, Pierre C, Dikin D A, Ruoff R S, Ramanathan T, Brinson L C, Torkelson J M. Polymer-graphite nanocomposites:effective dispersion and major property enhancement via solid-state shear pulverization [J]. Macromolecules.2008, 41(6):1905-1908.
    [158]Vickery J L, Patil A J, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures [J]. Adv. Mater.2009,21(21): 2180-2184.
    [159]Tsouti V, Boutopoulos C, Goustouridis D, Zergioti I, Normand P, Tsoukalas D,. Chatzandroulis S. A chemical sensor microarray realized by laser printing of polymers [J]. Sens. Actu. B:Chemical.2010,150(1):148-153.
    [160]Yun S, Kim J. Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor [J]. Sens. Actu. B:Chemical.2010,150(1):308-313.
    [161]Barreca D, Bekermann D, Comini E, Devi A, Fischer R A, Gasparotto A, Maccato C, Giorgio S, Tondello E. 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases [J]. Sens. Actu. B:Chemical.2010,149(1):1-7.
    [162]Pundir C S, Singh B S, Narang J. Construction of an amperometric triglyceride biosensor using PVA membrane bound enzymes [J]. Clinical Biochem.2010,43(4-5): 467-472.
    [163]Chen J H, Liu D L, Li S C, Yao D H. Development of an amperometric enzyme electrode biosensor for sterigmatocystin detection [J]. Enzyme Microbial Tech.2010, 47(4):119-126.
    [164]Yang M H, Sun S, Bruck H A, Kostov Y, Rasooly A. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB) [J]. Biosens. Bioelectrom.2010,25(12):2573-2578.
    [165]Chung K H, Hwang H S, Lee K Y. Kinetics of Salmonella typhimurium binding with antibody by immunoassays using a surface plasmon resonance biosensor [J]. J. Industr. Eng. Chem.2010,16(1):115-118.
    [166]Kamikawa T L, Mikolajczyk M G, Kennedy M, Zhang P, Wang W, Scott D E, Evangelyn C A. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains [J]. Biosens. Bioelectron.2010,26(4):1346-1352.
    [167]Wang K, Sun Z L, Feng M J, Liu A L, Yang S Y, Chen Y Z, Lin X L. Design of a sandwich-mode amperometric biosensor for detection of PML/RARa fusion gene using locked nucleic acids on gold electrode [J]. Biosens Bioelectro.2011,26(6): 2870-2876.
    [168]Lin L Q, Kang J, Weng S H, Chen J H, Liu A L, Lin X H, Chen Y H. Locked nucleic acids biosensor for detection of BCR/ABL fusion gene using Benzoate Binuclear Copper Complex as hybridization indicator [J]. Sens. Actu. B:Chemical.2011,155(1): 1-7
    [169]He Y Q, Zhang S Q, Zhang X B, Baloda M, Gurung A S, Xu H, Zhang X J, Liu G D. Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor[J]. Biosens. Bioelectron.2011,26(5):2018-2024.
    [170]Lin L Q, Chen J, Lin Q H, Chen W, Chen J H, Yao H, Liu A L, Lin X H, Chen Y Z. Electrochemical biosensor based on nanogold-modified poly-eriochrome black T film for BCR/ABL fusion gene assay by using hairpin LNA probe [J]. Talanta.2010,80(5): 2113-2119.
    [171]Dalmay C, Cheray M, Pothier A, Lalloue F, Jauberteau M O, Blondy P. Ultra sensitive biosensor based on impedance spectroscopy at microwave frequencies for cell scale analysis [J]. Sens. Actu. A:Physical.2010,162(2):189-197.
    [172]Liu L, Liu C Y, Shang L, Li D, Yong D M, Qi L, Dong S J. Viable but nonculturable cells used in biosensor fabrication for long-term storage stability [J]. Talanta.2010, 83(1):31-35.
    [173]Piano M, Serban S, Biddle N, Pittson R, Drago G A, Hart J P. A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola's Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose [J]. Anal. Biochem.2010,396(2):269-274.
    [174]Clark L C. Monitor and control of blood tissue oxygen tension [J]. Trans. Am. Soc. Artiflnter. Organs.1956,2:41-48.
    [175]Clark L C, Lyons C, Ann N Y. Electrode systems for continuous monitoring in cardiovascular surgery [J]. Acad. Sci.1962,102:29-45.
    [176]Sezgintiirk M K, Dinckaya E. β-Galactosidase monitoring by a biosensor based on Clark electrode:Its optimization, characterization and application [J]. Biosens. Bioelectron.2008,23(12):1799-1804.
    [177]Ozoemena K I, Nyokong T. Novel amperometric glucose biosensor based on an ether-linked cobalt(Ⅱ) phthalocyanine-cobalt(Ⅱ) tetraphenylporphyrin pentamer as a redox mediator [J]. Electrochimica Acta.2006,51(24):5131-5136.
    [178]Lee S H, Fang H Y, Chen W C. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture [J]. Sens. Actu. B:Chemical.2006,117(1):236-243.
    [179]Wang W, Wang F, Yao Y, Hu S, Shiu K K. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film[J]. Electrochimica Acta.2010,55(23):7055-7060.
    [180]Yao Y L, Shiu K K. Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating [J]. Electroanalysis.2008,20(14):1542-1548.
    [181]Leger C, Bertrand P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies [J]. Chem. Rev.2008,108(7):2379-2438.
    [182]Armstrong F A, Hill H A O, Walton N J. Direct electrochemistry of redox proteins [J]. Accounts Chem. Res.1988,21(11):407-413.
    [183]Crumbliss A L, Stonehuermer J, Henkens R W. The use of inorganic materials to control or maintain immobilized enzyme activity [J]. New J. Chem.1994,18(3): 327-339.
    [184]Xiao Y, Patolysky F, Kata E, Hainfeld J F, Willner I. "Pludging into Enzyme" nanowiring of redox enzyme by a gold nanoparticle [J]. Science.2003,299(5614): 1877-1881.
    [185]Gu B X, Xu C X, Zhu G P. Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing [J]. J. Phys. Chem. B.2009,113(18):6553-6557.
    [186]Deng C, Chen J, Nie Z, Si S. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode [J]. Biosens. Bioelectron.2010,26(1):213-219.
    [187]Shi L, Liu X, Niu W, Li H, Han S, Chen J, Xu G. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode [J]. Biosens. Bioelectron.2009,24(5):1159-1163.
    [188]Yao Y L, Ding Y, Ye L S, Xia X H. Two-step pyrolysis process to synthesize highly dispersed Pt-Ru/carbon nanotube catalysts for methanol electrooxidation [J]. Carbon. 2006,44(1):61-66.
    [189]Qu F, Yang M, Lu Y, Shen G, Yu R. Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA [J]. Anal. Bioanal. Chem.2006,386(2):228-234.
    [190]Hrapovic S, Majid E, Liu Y, Male K, Luong J H T. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds [J]. Anal.Chem.2006,78(15):5504-5512.
    [191]Zhu C, Guo S, Fang Y, Dong S. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets [J]. ACS Nano.2010,4(4):2429-2437.
    [192]Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nano flake films with sharp edge planes [J]. Adv. Funct. Mater.2008,18(21):3506-3514.
    [193]Zhou K F, Zhu Y H, Yang X L, Luo J, Li C Z, Luan S R. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites [J]. Electrochimica Acta.2010,55(9):3055-3060.
    [194]Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Anal. Chem.2009, 81(6):2378-2382.
    [195]Kang X H, Wang J, Wu H, Aksay A I, Liu J, Lin Y H. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens. Bioelectron.2009,25(4):901-905.
    [196]Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J]. Anal. Chem.2009,81(14),5603-5613.
    [197]Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H. Preparation, structure, and electrochemical properties of reduced graphene sheet films [J]. Adv. Funct. Mater. 2009,19(17):2782-2789.
    [198]Liu H, Gao J, Xue M Q, Zhu N, Zhang M N, Cao T B. Processing of graphene for electrochemical application:noncovalently functionalize graphene sheets with water-soluble electroactive methylene green [J]. Langmuir.2009,25(20): 12006-12010.
    [199]Li J, Guo S J, Zhai Y M, Wang E K. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film [J]. Anal. Chim. Acta.2009, 649(2):196-201.
    [200]Li L, Guo S J, Zhai Y M, Wang E K. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium [J]. Electrochem. Commun.2009,11(5):1085-1088.
    [201]Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene [J]. Nature.1985,318:162-163.
    [202]Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide [J]. Nature.1992,360:444-446.
    [203]Margulis L, Salitra G, Tenne R, Talianker M. Nested fullerene-like structures [J]. Nature.1993,365:113-114.
    [204]Rosentsveig R, Margolin A, Gorodnev A, Biro R P, Rapaport L, Novema Y, Naveh G, Tenne R. Synthesis of fullerene-like MoS2 nanoparticles and their tribological [J]. J. Mater. Chem.2009,19(25):4368-4374.
    [205]Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Boron nitride nanotubes [J]. Science.1995,269(5226):966-967.
    [206]Rothschild A, Sloan J, Tenne R. Growth of WS2 nanotube phases [J]. J. Am. Chem. Soc.2000,122(21):5169-5179.
    [207]Rao C N R, Nath M. Inorganic nanotubes [J]. Dalton Trans.2003,1:1-24.
    [208]Tenne R, Rao C N R. Inorganic nanotubes [J]. Phil. Trans. R. Soc. London A.2004, 362:2099-2125.
    [209]Zhi C Y, Bando Y, Tang C, Huang Q, Golberg D. Boron nitride nanotubes: functionalization and composites [J]. J. Mater. Chem.2008,18(33):3900-3908.
    [210]Rao C N R, Govindaraj A. Synthesis of inorganic nanotubes [J]. Adv. Mater.2009, 21(42):4208-4233.
    [211]Novoselov K S. Two-dimensional atomic crystals [J]. Proc. Natl. Acad. Sci. U.S.A. 2005,102:10451-10453.
    [212]Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides [J]. J. Appl. Phys.2007,101(1):014507.
    [213]Joensen P, Frindt R F, Morrison S R. Single-layer MoS2 [J]. Mater. Res. Bull.1986, 21(4):457-461.
    [214]Yang D, Frindt R F. Li-intercalation and exfoliation of WS2 [J]. J. Phys. Chem. Solids. 1996,57:1113-1116.
    [215]Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene [J]. Angew. Chem. Int. Ed.2010,49(24): 4059-4062.
    [216]Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science.2011,331(6017):568-571.
    [217]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon.2007,45(7):1558-1565.
    [218]Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Adv. Funct. Mater.2009, 19(12):1987-1992.
    [219]Fan Z J, Kai W, Yan J, Wei T, Zhi L J, Feng J, Ren Y M, Song L P, Wei F. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide [J]. ACS Nano.2011,5(1):191-198.
    [220]Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) [J]. J. Mater. Chem.2006,16(2): 155-158.
    [221]Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. J. Chem. Phys.1970,53(3): 1126-1130.
    [222]Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystals of graphite [J]. Phys. Rev. B.1979,20(2):392-401.
    [223]Livneh T, Haslett T L, Moskovits M. Distinguishing disorder-induced bands from allowed Raman bands in graphite [J]. Phys. Rev. B.2002,66(19):195110.
    [224]Cancado L G, Pimenta M A, Neves B R A, Dantas M S S, Jorio A. Influence of the atomic structure on the Raman spectra of graphite edges [J]. Phys. Rev. Lett.2004, 93(24):247401.
    [225]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev. B.2000,61(20):14095.
    [226]Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials [J]. Chem. Eur. J.2010,16(18):5246-5259.
    [227]Cravotto G, Cintas P. Power ultrasound in organic synthesis:moving cavitational chemistry from academia to innovative and large-scale applications [J]. Chem. Soc. Rev.2006,35(2):180-196.
    [228]Mermin N D. Crystalline order in two dimensions [J]. Phys. Rev.1968,176(1): 250-254.
    [229]Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thin films [J]. Rep. Prog. Phys.1984,47:399-459.
    [230]Evans J W, Thiel P A, Bartelt M C. Morphological evolution during epitaxial thin film growth:Formation of 2D islands and 3D mounds [J]. Sur. Sci. Rep.2006,61(1-2): 1-128.
    [231]Wang L, Wang E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode [J]. Electrochem. Commun.2004, 6(2):225-229.
    [232]Jia J B, Wang B Q, Wu A G, Cheng G J, Li Z, Dong S J. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Anal. Chem.2002,74(9):2217-2223.
    [233]Luo X L, Xu J J, Zhang Q, Yang G L, Chen H Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly [J]. Biosens. Bioelectron.2005,21(1):190-196.
    [234]Wang B, Zhang J J, Pan Z Y, Tao X Q, Wang H S. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film [J]. Biosens. Bioelectron.2009,24(5):1141-1145.
    [235]Wang X, Gua H, Yin F, Tu Y. A glucose biosensor based on Prussian blue/chitosan hybrid film [J]. Biosens. Bioelectron.2009,24(5):1527-1530.
    [236]Chu X, Duan D, Shen G, Yu R. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode [J]. Talanta.2007,71(5):2040-2047.
    [237]Lei C X, Wang H, Shen G L, Yu R Q. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose [J]. Electroanalysis.2004,16(9):736-740.
    [238]Ma Y T, Di J W, Yan X, Zhao M L, Lu Z J, Tu Y F. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application [J]. Biosens. Bioelectron. 2009,24(5):1480-1483.
    [239]Horng Y Y, Hsu Y K, Ganguly A, Chen C C, Chen L C, Chen K H. Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection [J]. Electrochem. Commun.2009,11(4):850-853.
    [240]Shirsat M D, Too C O, Wallace G G. Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film [J]. Electroanalysis. 2008,20(2):150-156.
    [241]Yang J, Zhang R Y, Xu Y, He P G, Fang Y Z. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose [J]. Electrochem. Commun. 2008,10(12):1889-1892.
    [242]Choi H N, Han J H, Park J A, Lee J M, Lee W Y. Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-Nafion composite film on platinized glassy carbon electrode [J]. Electroanalysis.2007,19(17): 1757-1763.
    [243]Chen X L, Chen J H, Deng C Y, Xiao C H, Yang Y M, Nie Z, Yao S Z. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode [J]. Talanta.2008,76(4):763-767.
    [244]Jones C P, Jurkschat K, Crossley A, Compton R G, Riehl B L, Banks C E. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations [J]. Langmuir.2007,23(18):9501-9504.
    [245]Banks C E, Crossley A, Salter C, Wilkins S J, Compton R G. Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J]. Angew. Chem. Int. Ed.2006,45(16):2533-2537.
    [246]Yao Y L, Ding Y, Ye L S, Xia X H. Two-step pyrolysis process to synthesize highly dispersed Pt-Ru/carbon nanotube catalysts for methanol electrooxidation [J]. Carbon. 2006,44(1):61-66.
    [247]Xu S Y, Peng B, Han X Z. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres [J]. Biosens. Bioelectron.2007,22(8):1807-1810.
    [248]Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J]. J. Am. Chem. Soc.1996, 118(5):1154-1157.
    [249]Sorlier P, Denuziere A, Viton C, Domard A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan [J]. Biomacromolecules.2001,2(3):765-772.
    [250]Kang X H, Mai Z B, Zou X Y. Cai P X, Mo J Y. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes [J]. Anal. Biochem. 2007,369(1):71-79.
    [251]Ren X L, Meng X W, Chen D, Tang F Q, Jiao J. Using silver nanoparticle to enhance current response of biosensor [J]. Biosens. Bioelectron.2005,21(3):433-437.
    [252]Xiao Y, Ju H X, Chen H Y. Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon [J]. Anal. Biochem.2000,278(1):22-29.
    [253]Tangkuaram T, Ponchio C, Kangkasomboon T, Katikawong P, Veerasai W. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan [J]. Biosens. Bioelectron.2007,22(9-10):2071-2078.
    [254]Xi F N, Liu L J, Wu Q, Lin X F. One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition [J]. Biosens. Bioelectron.2008,24(1):29-34.
    [255]Wang J W, Wang L P, Di J W, Tu Y F. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor [J]. Talanta.2009,77(4):1454-1459.
    [256]Kafi A K M, Wu G S, Chen A C. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays [J]. Biosens. Bioelectron.2008,24(4):566-571.
    [257]Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem.1980, 52(8):1198-1205.
    [258]Xiang C L, Zou Y J, Sun L X, Xu F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite [J]. Sens. Actuators B.2009,136(1):158-162.
    [259]Zhao X J, Mai Z B, Kang X H, Zou X Y. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron.2008,23(7):1032-1038.
    [260]Tan X C, Zhang J L, Tan S W, Zhao D D, Huang Z W, Mi Y, Huang Z Y. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode [J]. Electroanalysis. 2009,21(13):1514-1520.
    [261]Lei C X, Hu S Q, Shen G L, Yu R Q. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide [J]. Talanta.2003,59(5):981-988.
    [262]Elkaoutit M, Naranjo-Rodriguez I, Dominguez M, Hernandez-Artiga M P, Bellida-Milla D, de Cisneros J L H H. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite [J]. Electrochim. Acta.2008,53(24):7131-7137.
    [263]Xu Q, Mao C, Liu N N, Zhu J J, Sheng J. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron.2006,22(5):768-773.
    [264]Stoscheck C M. Quantitation of protein [J]. Meth. Enzymol.1990,182:50-68.
    [265]Li C C, Liu Y L, Li L M, Du Z F, Xu S J, Zhang M, Yin X M, Wang T H. A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose [J]. Talanta.2008,77(1):455-459.
    [266]Yan X B, Chen X J, Tay B K, Khor K A. Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase [J]. Electrochem. Commun.2007,9(6):1269-1275.
    [267]Wu S, Zhao H T, Ju H X, Shi C G, Zhao J W. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose [J]. Electrochem. Commun.2006,8(8):1197-1203.
    [268]Jia W Z, Wang K, Zhu Z J, Song H T, Xia X H. One-Step Immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process [J]. Langmuir.2007,23(23):11896-11900.
    [269]Wu B Y, Hou S H, Yin F, Li J, Zhao Z X, Huang J D, Chen Q. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode [J]. Biosens. Bioelectron. 2007,22(6):838-844.
    [270]Tsai Y C, Li S C, Liao S W. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose [J]. Biosens. Bioelectron.2006,22(4):495-500.
    [271]Salimi A, Compton R G, Hallaj R. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode [J]. Anal. Biochem.2004,333(1):49-56.
    [272]Jiang L, Shen X P, Wu J L, Shen K C. Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites [J]. J. Appl. Polym. Sci.2010,118(1): 275-279.
    [273]Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability [J]. Carbon.2011,49(1):198-205.
    [274]Kalaitzidou K, Fukushima H, Drzal L T. A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold [J]. Compos. Sci. Technol.2007,67(10):2045-2051.
    [275]Kim H, Macosko C W. Morphology and properties of polyester/exfoliated graphite nanocomposites [J]. Macromolecules.2008,41(9):3317-3327.
    [276]Kim H, Macosko C W. Processing-property relationships of polycarbonate/graphene composites [J]. Polymer.2009,50(15):3797-3809.
    [277]Fim F D C, Guterres J M, Basso N R S, Galland G B. Polyethylene/graphite nanocomposites obtained by in situ polymerization [J]. J. Polym. Sci. Part A-Polym. Chem.2010,48(3):692-698.
    [278]Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface [J]. Nano Lett.2009,9(6):2255-2259.
    [279]Wang D H, Choi D W, Li J, Yang Z G, Nie Z M, Kou R, Hu D H, Wang C M, Saraf L V, Zhang J G, Aksay I A, Liu J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano.2009,3(4):907-914.
    [280]Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.2005,44(18): 2782-2785.
    [281]Kim J O, Kabanov A V, Bronich T K. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin [J]. J. Controlled Release.2009, 138(3):197-204.
    [282]Mahmud A, Xiong X B, Lavasanifar A. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery [J]. Eur. J. Pharm.Biopharm.2008,69(3):923-934.
    [283]Cavalieri F, Chiessi E, Villa R, Vigano L, Zaffaroni N, Telling M F, Paradossi G. Novel PVA-based hydrogel microparticles for doxorubicin delivery [J]. Biomacromolecules.2008,9(7):1967-1973.
    [284]Wang S, Tan Y, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite [J]. Biosens. Bioelectron.2008.23(12): 1781-1787.
    [285]Khan R, Kaushik A, Solanki P R, Ansari A A, Pandey M K, Malhotra B D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor [J]. Anal. Chim. Acta. 2008,616(2):207-213.
    [286]Liao J D, Lin S P, Wu Y T. Dual Properties of the deacetylated sites in chitosan for molecular immobilization and biofunctional effects [J]. Biomacromolecules.2005, 6(1):392-399.
    [287]Sagara T, Niwa K, Sone A, Hinnen C, Niki K. Redox reaction mechanism of cytochrome c at modified gold electrodes [J]. Langmuir.1990,6(1):254-262.
    [288]Chen X, Li C, Liu Y, Du Z, Xu S, Li L, Zhang M, Wang T. Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide [J]. Talanta.2008,77(1):37-41.
    [289]Xu Z, Gao N, Chen H, Dong S. Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11 [J]. Langmuir.2005,21(23):10808-10813.
    [290]Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials:preparation, properties, and performance [J]. Chem. Mater.2001, 13(9):2765-2782.
    [291]Chen Y, Crittenden J C, Hackney S, Sutter L, Hand D W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environ. Sci. Technol.2005,39(5): 1201-1208.
    [292]Chen Y, Dionysiou D D. A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate [J]. Appl. Catal., A.2007,317(1): 129-137.
    [293]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites [J]. Adv. Mater.2009,21(21):2233-2239.
    [294]Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.1995,95(1):69-96.
    [295]Subramanian V, Wolf E E, Kamat P V. Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles [J]. Langmuir.2003, 19(2):469-474.
    [296]Ji K H, Jang D M, Cho Y J, Myung Y, Kim H S, Kim Y, Park J. Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures [J]. J. Phys. Chem. C.2009,113(46):19966-19972.
    [297]Kannaiyan D, Kim E, Won N, Kim K W, Jang Y H, Cha M A, Ryu D Y, Kim S, Kim D H. On the synergistic coupling properties of composite CdS/TiO2 nanoparticle arrays confined in nanopatterned hybrid thin films [J]. J. Mater. Chem.2010,20(4): 677-682.
    [298]Liu S, Yang L, Xu S, Luo S, Cai Q. Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite [J]. Electrochem. Commun.2009,11(9): 1748-1751.
    [299]Shanmugam S, Gabashvili A, Jacob D C, Yu J C, Gedanken A. Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities [J]. Chem. Mater.2006,18(9):2275-2282.
    [300]Yang L, Luo S, Liu S, Cai Q. Graphitized carbon nanotubes formed in TiO2 nanotube arrays:A novel functional material with tube-in-tube nanostructure [J]. J. Phys. Chem. C.2008,112(24):8939-8943.
    [301]Yu H, Quan X, Chen S, Zhao H. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability [J]. J. Phys. Chem. C.2007,111(35): 12987-12991.
    [302]Yu Y, Yu J C, Chan C Y, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye [J]. Appl. Catal., B.2005,61(1-2):1-11.
    [303]Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Photoreactive TiO2/carbon nanotube composites:Synthesis and reactivity [J]. Environ. Sci. Technol.2008,42(13): 4952-4957.
    [304]Xia X H, Jia Z J, Yu Y, Liang Y, Wang Z, Ma L L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O [J]. Carbon.2007,45(4):717-721.
    [305]Wang W, Serp P, Kalck P, Faria J L. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method [J]. Appl. Catal., B.2005,56(4):305-312.
    [306]Palacios-Lidon E, Perez-Garcia B, Abellan J, Miguel C, Urbina A, Colchero J. Nanoscale characterization of the morphology and electrostatic properties of poly(3-octylthiophene)/graphite-nanoparticle blends [J]. Adv. Funct. Mater.2006, 16(15):1975-1984.
    [307]Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J. Polymer photovoltaic cells based on solution-processable graphene and P3HT [J]. Adv. Funct. Mater.2009,19(6):894-904.
    [308]Chae S Y, Park M K, Lee S K, Kim T Y, Kim S K, Lee W I. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J]. Chem. Mater.2003,15(17):3326-3331.
    [309]Li J G, Ishigaki T, Sun X D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:Phase-selective synthesis and physicochemical properties [J]. J. Phys. Chem. C.2007,111(13):4969-4976.
    [310]Zhang X, Ge X, Wang C. Synthesis of titania in ethanol/acetic acid mixture solvents: phase and morphology variations [J]. Cryst. Growth Des.2009,9(10):4301-4307.
    [311]Reddy K M, Reddy C V G, Manorama S V. Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2 [J]. J. Solid State Chem.2001,158(2): 180-286.
    [312]Suriye K, Praserthdam P, Jongsomjit B. Impact of Ti3+ present in titania on characteristics and catalytic properties of the Co/TiO2 catalyst [J]. Ind. Eng. Chem. Res. 2005,44(17):6599-6604.
    [313]Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y. Organic photovoltaic cells based on an acceptor of soluble graphene [J]. Appl. Phys. Lett.2008,92(22):223303.
    [314]Wang W D, Serp P, Kalck P, Faria J L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. J. Mol. Catal. A:Chem.2005,235(1-2):194-199.
    [315]Ou Y, Lin J D, Fang S M, Liao D M. MWNT-TiO2:Ni composite catalyst:A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination [J]. Chem. Phys. Lett.2006,429(1-3):199-203.
    [316]Eder D, Windle A H. Carbon-inorganic hybrid materials:The carbon-nanotube/TiO2 interface [J]. Adv. Mater.2008,20(9):1787-1793.
    [317]Cao H, Zhu Y, Tan X, Kang H, Yang X, Li C. Fabrication of TiO2/CdS composite fiber via an electrospinning method [J]. New J. Chem.2010,34(6):1116-1119.
    [318]Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation [J]. J. Phys. Chem. C.2009,113(47):20214-20220.
    [319]Czerw R, Foley B, Tekleab D, Rubio A, Ajayan P M, Carroll D L. Substrate-interface interactions between carbon nanotubes and the supporting substrate [J]. Phys. Rev. B: Condens. Matter.2002,66(3):033408.
    [320]Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. Am. Mineral.2000,85(3-4):543-556.
    [321]Rao C N R, Nag A. Inorganic analogues of graphene [J]. Eur. J. Inorg. Chem.2010, 2010:4244-4250.
    [322]Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, Mcgovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol. 2008,3:563-568.
    [323]Chhowalla M, Amaratunga G A. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear [J]. Nature.2000,407:164-167.
    [324]Pourabbas B, Jamshidi B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem. Eng. J.2008,138(1-3):55-62.
    [325]Chen J, Kuriyama N, Yuan H T, Takeshita H T, Sakai A. Electrochemical hydrogen storage in MoS2 nanotubes [J]. J. Am. Chem. Soc.2001,123(47):11813-11814:
    [326]Soon J M, Loh K P. Electrochemical double-layer capacitance of MoS2 nanowall films [J]. Electrochem. Solid-State Lett.2007,10(11):A250-A254.
    [327]Ho W K, Yu J C, Lin J, Yu J G, Li P S. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmuir.2004,20(14):5865-5869.
    [328]Li T, Galli G. Electronic properties of MoS2 nanoparticles [J]. J. Phys. Chem. B.2007, 111(44):16192-16196.
    [329]Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2 [J]. Nano Lett.2010,10(4):1271-1275.
    [330]Aslan K, Wu M, Lakowicz J R, Geddes C D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms [J]. J. Am. Chem. Soc.2007,129(6):1524-1525.
    [331]Jung D R, Kim J, Nam S, Nahm C, Choi H, Kim J I, Lee J, Kim C, Park B. Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance [J]. Appl. Phys. Lett.2011,99(4):041906.
    [332]Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals:A single-molecule fluorescence study [J]. J. Am. Chem. Soc.2006, 128(28):8998-8999.
    [333]Liu S, Zhang Z, Han M. Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection [J]. Anal. Chem.2005,77(8): 2595-2600.
    [334]Bergin S D, Nicolosi V, Streich P V, Giordani S, Sun Z, Windle A H, Ryan P, Niraj N P P, Wang Z T, Carpenter L, Blau W J, Boland J J, Hamilton J P, Coleman J N. Towards solutions of single-walled carbon nanotubes in common solvents [J]. Adv. Mater.2007,20(10):1876-1881.
    [335]Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C. The density functional theory (DFT) programs CASTEP [J]. Z. Kristallogr.2005,220: 567-570.
    [336]Drexhage K H. Influence of a dielectric interface on fluorescence decay time [J]. J. Lumin.1970,12:693-701.
    [337]Brolo A G, Kwok S C, Moffitt M G, Gordon R, Riordon J, Kavanagh K L. Enhanced fluorescence from arrays of nanoholes in a gold film [J]. J. Am. Chem. Soc.2005, 127(42):14936-14941.
    [338]Zhang Y, Goncalves H, da Silva J C G E, Geddes C D. Metal-enhanced photoluminescence from carbon nanodots [J]. Chem. Commun.2011,47(18): 5313-5315.
    [339]Gersten J, Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles [J]. J. Chem. Phys.1981,75(3):1139-1152.
    [340]Guerrero A R, Aroca R F. Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF) [J]. Angew. Chem. Int. Ed.2011,50(3):665-668.
    [341]Cheng D, Xu Q H. Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles [J]. Chem. Commun.2007,3: 248-250.
    [342]Guo L, Guan A, Lin X, Zhang C, Chen G. Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement [J]. Talanta.2010, 82(5):1696-1700.
    [343]Mulvaney P. Plasmon spectroscopy of nanosized metal particles [J]. Langmuir.1996, 12(3):788-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700