用户名: 密码: 验证码:
鄂西高磷鲕状赤铁矿分选的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲕状赤铁矿是我国一种重要的沉积型铁矿床,也是国内亟待开发的国际知名的难选矿石。本文对已有的研究成果进行了分析,包括不同地域的鲕状赤铁矿的不同分选方法,并对不同分选方法的选矿效果进行分析和评述。在对鲕状赤铁矿的工艺矿物学特征研究的基础上,结合矿石的磨矿粒度特性,提出采用阶段磨矿阶段选别是处理该矿的较好方法。并通过对磷灰石和绿泥石的浮选特性的研究,分析了矿浆环境和调整剂在鲕状赤铁矿浮选过程中对磷灰石和绿泥石选别的影响,最后提出了一个完整的处理鲕状赤铁矿选别流程,并针对细粒级选别流程,对浮选柱和浮选机选别指标进行了对比。
     利用扫描电镜、XRD衍射和金相显微镜对鲕状赤铁矿进行了工艺矿物学研究,分析了鲕状赤铁矿不同矿物之间的结晶结构、赋存状态、嵌布特征和矿物的连生关系等。研究表明赤铁矿与脉石矿物主要成鲕状构造和浸染状构造及同心环状构造,赤铁矿与鲕绿泥石互层,鲕粒间石英和磷灰石的嵌布粒度较大且含量较多,另有少部分粗粒级的磷灰石和石英赋存于鲕粒内,鲕绿泥石是构成鲕状赤铁矿基质的主要矿物。根据矿物性质和嵌布特征,提出了在粗磨情况下脱除粗粒级的石英和磷灰石,细磨后进一步提铁降硅的选别思路。
     鲕状赤铁矿浮选单因素条件实验优化结果为:矿浆浓度20%,NaOH调整溶液的pH值为10,加入硅酸钠20g/t,苛化淀粉10kg/t,调浆2分钟,加入生石灰4kg/t,再调浆2分钟,之后加入捕收剂油酸钠8kg/t和煤油20g/t。
     矿浆环境和分散剂对磷灰石和绿泥石浮选的影响试验表明,pH值、硅酸钠用量和油酸钠用量对磷灰石和绿泥石的选别都有很大影响。矿浆环境中的金属离子Ca2+、Mg2+对油酸钠浮选磷灰石和绿泥石普遍具有抑制作用,碱性条件下,提高pH值可以降低Ca2+、Mg2+对磷灰石抑制作用的影响。适量添加硅酸钠可以起到很好的分散效果,有利于阴离子反浮选对脱磷,但对脱硅有一定的抑制作用,调整和优化硅酸钠用量可以实现在鲕状赤铁矿反浮选脱硅的同时脱磷。
     不同磨矿细度条件下浮选结果显示,影响选别指标的主要是细粒级产物;分析粗磨浮选尾矿发现,尾矿粗粒级中脉石解离较为充分,细粒级产物铁含量较高,通过筛分脱除粗粒级颗粒后强磁选可提高回收率;对浮选精矿粒度分析发现精矿中-0.080+0.050mm粒级的含铁量较高,应加强对这部分铁精矿的回收,所以初步确定只对浮选精矿中粗粒级部分进行再磨,粗粒级再磨后与细粒级混合再选达到提铁降硅的目的。
     对浮选精矿进行了X射线衍射分析和粒度分析,表明影响精矿品位提高的原因在于细粒级铁精矿中存在有难分离的微细粒硅酸盐,导致铁精矿很难有大幅度的提高。
     本文使用激光粒度仪测定酸溶解前后矿物的粒度,通过对酸溶解前后粒度累积曲线的计算分析石英的解离,该法测定矿泥中细粒级的石英最小粒度可达1.5μm,脱泥后的铁精矿中石英的最小粒度达3.7μm。铁精矿只有磨矿到-0.028mm,石英才能大部分解离,很难将其浮选完全脱除。
     通过实验和综合分析,最终确定了采用阶段磨矿阶段选别的工艺流程,可以获得精矿铁品位为57.52%,铁精矿中磷的含量为0.12%,总回收率为75.19%。该矿物分选流程具有较强的针对性,实现了同时脱硅脱磷的目标。该工艺流程对于处理同类高磷难选鲕状赤铁矿具有借鉴意义。
Oolitic hematite is an important kind of sedimentary iron deposits, which is a complicated and internationally-known refractory iron needs to be developed urgently. This paper comprehensively analyzes and compares the studies already conducted by other researchers, which cover different regions Oolitic hematite with different separation methods, combined with separation conditions and separation principles, analyze and make comments on concrete separation effects. In accordance to the mineralogical characteristics and grinding size characteristic of Oolitic hematite, a flowsheet of stage-grinding and stage-separation is proposed which may deal with this ore successfully. Through studying floatation characteristics of apatite and chlorite, explain the effects of pulp environment and regulators on apatite and chlorite floatation in the real floatation process of Oolitic hematite. Finally a systemic flowsheet is proposed to deal with Oolitic hematite and the effects of flotator and the effects of floatation column in the floatation of fine concentrate are compared.
     The mineralogy of Oolitic hematite has been studied systemically by SEM, XRD analysis etc, which reveals the crystalline structure, occurrence state, natural interlocking assemblages of different minerals. The studies show that concentric annular structure is the characteristics of Oolitic hematite ore. The interbed of hematite and chlorite is very intricate. The majority of quartzes and apatites among Oolites have large disseminated grain size, part of quartzes and apatites are large in the Oolites. Therefore a flowsheet of removing large quartz and apatite firstly in raw grinding then desilicating and enriching iron after fine grinding on the base of disseminating characteristics and mineralogical properties.
     Reagent condition and dosage are determined by single factor experiments for Oolitic hematite reverse floatation. The results are as follows:pulp density 20%, NaOH adjusting pH to 10, causticized starch dosage 10kg/t, conditioning for 2 minutes, adding lime 4kg/t, and then conditioning for 2 minutes, and collector sodium oleate 8kg/t. In order to disperse the pulp and improve the dephosphorization effects, sodium silicate is added with 20g/t.
     Pulp environment and dispersants on apatite and chlorite in the floatation process of Oolitic hematite has been studied. The results show that pH value and the dosage of sodium oleate and sodium silicate have very important effects on the floatability of apatite and chlorite. Ca2+ and Mg2+ have depression effect on the floatation of apatite and chlorite using sodium oleate as collector, but this impact can be reduced to some extent by increasing the pH value and increase the dosage of collector. Sodium silicate can be used as dispersant when dosage is appropriate but abundant sodium silicate can depress the floatation of quartz. Dephosphorization and desilication can be achieved simultaneously when sodium silicate is used appropriately and rationally in the reverse floatation of Oolitic hematite.
     The floatation results of run-of-mine in different grinding fineness are studied; separation index is affected primarily by fine fraction ore. Because the dissociation degree of gangue is better in the coarse fraction of floatation tailing, and the hematite content of floatation tailing is very high, Fe recovery can be increased by HIMS (high intensity magnetic separation) after separating the large gangue by screening firstly. Size analysis of concentrate shows that the products of-0.080+0.054mm size fraction have higher iron content; the products of +0.080mm size fraction should be regrinded. Fine fraction and regrinded coarse fraction are reseperated for the purpose of desilication and iron enrichment.
     Size analysis and XRD analysis of concentrate show that the key factor affecting the Fe grade of concentrate is that there is a kind of very fine silicate distributed in the concentrate, and this silicate is very difficult to separate from concentrate by conventional separation methods.
     In this paper size of the mineral is determined by laser particle analyzer, the liberation degree of quartz is analyzed by computational analysis of sizing curves before and after dissolution by acid, The results show that the minimal granularity of quartz in slime is 1.5 micron, and the minimal granularity of quartz in concentrate deslimed is 3.7 micron. The majority of quartz in fine concentrate may be liberated only when grinding fineness reaches to -0.028mm. It is very difficult to remove these fine quartzes completely.
     Based on intensive research, a stage grinding and stage floatation processing flowsheet is proposed finally, the concentrate Fe grade and Fe recovery reach to 57.52% and 77.34% respectively, the P content in concentrate is only 0.12%. This process realizes the aim of dephosphorization and desilication simultaneously and has great pertinency. The optimal separation index is obtained using this processing flowsheet compared with other conventional processing flowsheet. This processing flowsheet has great instructive significance on development of other Oolitic hematite.
引文
[1]毛丕建,秦元奎.湖北省建始县“宁乡式”铁矿基本特征及开发利用[J].资源环境与工程.2007(05):524-532.
    [2]李桂玲,邹本利.“宁乡式”铁矿的选矿与利用研究[J].科技创业月刊.2007(04):191-193.
    [3]萧光.关于开发利用我国宁乡式铁矿资源的探讨[J].矿产综合利用.1984(03):91-95.
    [4]赵一鸣,毕承思.宁乡式沉积铁矿时空分布和演化[J].矿床地质.2000(4):350-360.
    [5]刘殿文.关于鲕状赤铁矿选矿问题的探讨[J].河北理工学院学报.1983(01):24-26.
    [6]徐岩,徐博,康华.新编选矿知识问答[M].北京:化学工业出版社,2008:544.
    [7]周正.单矿物分选学[M].广东科技出版社,1997:487.
    [8]柳衡琪,张宏福.国外鲕状铁矿石选矿研究现状[J].湖南冶金.1987(04):45-51.
    [9]张锦瑞,胡力可,梁银英,等.难选鲕状赤铁矿的研究利用现状及展望[J].中国矿业.2007(07):74-76.
    [10]马鞍山矿山研究院.我国弱磁性贫铁矿石的选矿研究和实践(上)[J].金属矿山.1973(02):37-39.
    [11]白丽梅,牛福生,吴根,等.鲕状赤铁矿强磁-重选工艺的试验研究[J].矿业快报.2008(05):26-28.
    [12]朱江,萧敢汪,桂萍.湖北宜昌某高磷赤铁矿的选矿工艺研究[C].2006:189-191.
    [13]肖巧斌,戈保梁.云南某鲕状赤铁矿选矿试验研究[C].2005.153-155
    [14]杨君勤.SLon立环脉动高梯度磁选机在梅山铁矿降磷工程中的应用[J].矿山机械.1997(10):46-47.
    [15]洪家凯.采用磁选工艺改善梅山铁矿铁精矿的质量[J]_矿冶工程.1997(04):28-30.
    [16]尹伟露.提质、降磷、节能的新型高效磁选设备在姑山选厂的应用[C].广东珠海:2002.
    [17]胡国英,朱德华.宣钢庞家堡菱-赤鲕状贫铁矿选矿工艺研究[J].矿冶工程.1987(03):33-35.
    [18]姚敬劬,张华成.宁乡式铁矿工艺矿物学特征及选矿效果预期[J].资源环境与工程.2008(05):481-487.
    [19]陈文祥,胡万明,王兵.巫山桃花高磷鲕状赤铁矿联合选矿脱磷工艺研究[J].金属矿山.2009(03):50-53.
    [20]王燕民,李明德.鲕状赤铁矿的高梯度磁选[J].矿冶工程.1986(03):38-40.
    [21]王代军.鲕状赤铁矿磁浮选工艺研究[D].武汉:武汉理工大学,2008.
    [22]文勤.鲕状赤铁矿提铁降磷工艺研究[D].武汉:武汉理工大学,2007.
    [23]李广涛.四川某高磷鲕状赤褐铁矿选矿试验研究[D].昆明理工大学,,2008.
    [24]洪家凯.采用全磁工艺流程深选梅山铁精矿的研究[J].江西有色金属.199l(03):156-160.
    [25]衣德强.磁选降磷在梅山铁矿选矿厂的应用[J].冶金矿山设计与建设.1996(06):37-39.
    [26]陈友谊.对梅山铁精矿降磷的探讨[J].金属矿山.1994(03):30-33.
    [27]杨龙.梅山铁精矿降磷工艺存在的问题与对策[J].金属矿山.2003(04):21-23.
    [28]吴敏娟.梅山铁精矿降磷工艺的应用及探讨[J].2000(11):34-36.
    [29]编写组.黑色金属矿石选矿试验[M].北京:冶金工业出版社,1978:814.
    [30]王运敏,田嘉印.中国黑色金属矿选矿实践[M].北京:科学出版社,2008.
    [31]张洪恩.红铁矿选矿[M].北京:冶金工业出版社,1983:41.
    [32]朱俊士.选矿试验研究与产业化[M].北京:冶金工业出版社,2004.
    [33]左倩,王一,田赋,等.鄂西某鲕状赤铁矿焙烧磁选试验研究[J].金属矿山.2008(08):36-38.
    [34]李广涛,张宗华,张昱,等.某高磷鲕状赤褐铁矿的焙烧-磁选试验研究[J].矿业快报.2008(01):27-30.
    [35]梅光军,饶鹏,余永富,等.河北某鲕状(菱)赤铁矿选矿试验研究[J].武汉理工大学学报.2008(12):63-66.
    [36]白丽梅,刘丽娜,李萌,等.张家口地区鲕状赤铁矿还原焙烧-弱磁选试验研究[J].中国矿业.2009(03):83-85.
    [37]于宏东.长阳火烧坪铁矿工艺矿物学研究[J].矿冶.2008,17(02):107-110.
    [38]周建军,朱庆山,王化军,等.某鲕状赤褐铁矿流化床磁化焙烧-磁选工艺[J].过程工程学报.2009(02):307-312.
    [39]刘宗周.鲕状赤铁矿的炼前处理初探[J].云南冶金.1987(04):38-41.
    [40]重磁选教研室.贵州平黄山鲕状贫赤铁矿焙烧磁选试验[J].中南大学学报(自然科学版).1978(03):37-42.
    [41]朱俊士.选矿试验研究与产业化[M].北京:冶金工业出版社,2004:373-375.
    [42]周继程,薛正良,张海峰,等.高磷鲕状赤铁矿脱磷技术研究[J].炼铁.2007(02):40-43.
    [43]陈述文,曾永振,陈启平.贵州赫章鲕状赤铁矿直接还原磁选试验研究[J].金属矿山.1997(11):13-15.
    [44]赵志龙,王海华,唐惠庆,等.高磷铁矿除磷的实验研究[C].中国贵州贵阳:2008:666-681.
    [45]周继程,薛正良,李宗强,等.高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究[J].武汉科技大学学报(自然科学版).2007(05):458-460.
    [46]郭兴敏.烧结过程铁酸钙生成及矿物学[M].北京:冶金工业出版社,1999.
    [47]朱德庆,郭宇峰,邱冠周.钒钛磁铁精矿冷固结球团催化还[J].中南工业大学学报.2000(03):208-211.
    [48]周继程.高磷鲕状赤铁矿煤基直接还原法提铁脱磷技术研究[D].武汉科技大学,武汉,2007.
    [49]陈述文,曾永振,陈启平.贵州赫章鲕状赤铁矿直接还原磁选试验研究[J].金属矿山.1997(11):13-15.
    [50]孙永升,李淑菲,史广全,等.某鲕状赤铁矿深度还原试验研究[J].金属矿山.2009(05):80-83.
    [51]史广全,孙永升.某鲕状赤铁矿深度还原过程研究[J].现代矿业.2009(08):80-83.
    [52]沈慧庭,周波,黄晓毅,等.难选鲕状赤铁矿焙烧-磁选和直接还原工艺的探讨[J].矿冶工程.2008(05):30-34.
    [53]周波.难选鲕状赤铁矿焙烧-磁选和直接还原的研究[D].广西大学,南宁,2008.
    [54]Zhang Y, Muhammed M. The removal of phosphorus from iron ore by leaching with nitric acid[J]. Hydrometallurgy.1989,21(3):255~275.
    [55]周满富.云南某高磷赤褐铁矿的选矿试验研究[D].昆明:昆明理工大学,昆明,2007.
    [56]卢尚文,刘云派,陈士荣,等.乌石山铁矿石酸式浸矿脱磷研究及其意义[J].江西冶金.1993(04):23-26.
    [57]石原透,各务泰道,石铁铮.利用超声波的铁矿石脱磷[J].国外金属矿选矿.1966(02):38-40.
    [58]罗绍尧,周淑珊,许孝元.钛铁矿精矿的选择性浸出法降磷[J].有色金属(选矿部分).1994(02):20-23.
    [59]Yong-shi J, Tao J, Yong-bin Y, 等. Removal of phosphorus from iron ores by chemical leaching[J]. Journal of Central South University of Technology.2006(06):673~675.
    [60]何良菊,胡芳仁,魏德洲.梅山高磷铁矿石微生物脱磷研究[J].矿冶.2000(01):31-35.
    [61]何良菊,周建民,胡芳仁,等.梅山高磷铁矿矿石性质及微生物脱磷的可行性[J].黄金学报.2000(01):26-29.
    [62]何良菊,张维庆,魏德洲,等.高磷贫碳酸锰矿石微生物的脱磷机理[J].中国锰业.1999(11):29-33.
    [63]黄剑胯,杨云妹,谢珙.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].南京林业大学学报.1994(02):25-29.
    [64]李成秀,文书明.浅谈铁矿降磷的现状[J].国外金属矿选矿.2004(08):4-7.
    [65]松全元,朱秦生,李定一.梅山铁矿铁精矿降磷研究[J].金属矿山.1993(08):43-46.
    [66]樊绍良,毛益平,储德应.梅山铁精矿粗细分级选别降磷研究[J].金属矿山.1995(03):36-38.
    [67]孙克己,卢寿慈,王淀佐,等.梅山铁矿选择性反浮选磷灰石的试验研究[J].矿冶.2000(02):23-25.
    [68]孙克己,卢寿慈,王淀佐,等.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业.1999(06):61-63.
    [69]方启学.微细粒弱磁性铁矿分散与复合聚团理论及分选工艺研究[D].长沙:中南工业大学,1996.
    [70]林祥辉,路平,陈让怀,等.高效新品种捕收剂RA—315的制取及应用研究[J].矿冶工程.1993(03):31-35.
    [71]王兢,尚衍波,张覃.鲕状赤铁矿浮选试验初步研究[J].矿冶工程.2004(03):38-40.
    [72]刘万峰,陈金中,李成必,等.湖北含磷鲕状赤铁矿选矿扩大试验研究[J].有色金属(选矿部分).2008(02):9-12.
    [73]张芹,张一敏,胡定国.湖北巴东鲕状赤铁矿选矿试验研究[C].2006:186-188.
    [74]庞玉荣,郭秀平,李朝晖,等.某鲕状赤铁矿矿石反浮选试验研究[J].国外金属矿选矿2008(07):22-25.
    [75]张小雨.广西铁矿资源的合理开发及应用[J].柳钢科技.2006(03):48-50.
    [76]周光俊,胡国英,石云良,等.美国蒂尔登铁矿浮选降磷研究[J].矿冶工程.1991(02):19-22.
    [77]林祥辉,罗仁美,刘靖,等.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程.2007(03):28-29.
    [78]S·r·n·佩雷拉.非极性油在某铁矿石阳离子反浮选工艺中的应用[J].国外金属矿选矿.2007(03):16-19.
    [79]纪军.高磷铁矿石脱磷技术研究[J].矿冶.2003(02):34-37.
    [80]彭会清,李广,胡海祥.难选鲕状赤铁矿复合药剂制度脱泥试验研究[J].现代矿业.2009(03):37-40.
    [81]姚敬劬,张华成.宁乡式铁矿工艺矿物学特征及选矿效果预期[J].资源环境与工程.2006(10):481-487.
    [82]于宏东.长阳火烧坪铁矿工艺矿物学研究[J].矿冶.2008,17(02):107-110.
    [83]周建军,朱庆山,王化军,等.某鲕状赤褐铁矿流化床磁化焙烧-磁选工艺[J].过程工程学报.2009(02):307-313.
    [84]沈慧庭,周波,黄晓毅,等.难选鲕状赤铁矿焙烧-磁选和直接还原工艺的探讨[J].矿冶工程.2008(05):30-34.
    [85]周波.难选鲕状赤铁矿焙烧-磁选和直接还原的研究[D].广西大学,2008.
    [86]蔡有兴.湖南省铁矿选矿研究[J].矿冶工程.1987(04):34-36.
    [87]郭梦熊.浮选[M].中国矿业大学出版社,1989:309.
    [88]胡为柏.浮选[M].冶金工业出版社,1989:373.
    [89]崔宪,松全元,朱秦生.磷灰石可浮性规律的研究[J]。金属矿山.1992(11):43-46.
    [90]任翔,毛来群,张洪恩.细粒菱锰矿、磷灰石表面转化与浮选分离[J].金属矿山.1992(05):47-50.
    [91]任翔,张洪恩.细粒菱锰矿、磷灰石溶解组分对其浮选分离的交互作用[J].矿冶. 1993(04):24-31.
    [92]任翔,张洪恩.细粒菱锰矿、磷灰石溶液化学及浮选分离的研究[J].中国锰业.1992(06):3-10.
    [93]低品位磷矿选矿.辽宁省地质局中心实验室[M].北京:石油化学工业出版社,1978:208.
    [94]郭秉文Ca2+、Fe2+、Cu2+对黑钨矿和磷灰石浮选分离影响的研究[J].矿产综合利用.1981(Z1):19-24.
    [95]胡岳华,徐竞,王淀佐.水玻璃与磷灰石、方解石作用的溶液化学研究[J].矿冶工程.1992(02):23-26.
    [96]龚明光.浮游选矿[M].冶金工业出版社,1981:276.
    [97]A·f·鲁伊茨.火成磷酸盐矿石中的磷灰石和脉石矿物的可浮性[J].国外金属矿选矿.2009(1).
    [98]B·и·克拉辛.化学原料矿选矿[M].北京:化学工业出版社,1984:113.
    [99]胡熙庚,黄和慰.浮选理论与工艺[M].中南工业大学出版社,1991.
    [100]松同功.浮选中硅酸钠作用的研究[J].国外金属矿选矿.1976(04).
    [101]J. Drzymala D W F. Selective flocculation of hematite in the hematite-quartz-ferric ion-polyacrylic acid system. Part 1, activation and deactivation of quartz[J]. International Journal of Mineral Processing.1981,8:265~277.
    [102]丁浩,崔林.六偏磷酸钠在金红石与硅钙质矿物浮选分离中的作用机理[J].有色金属.1991(04):33-35.
    [103]丁浩.六偏磷酸钠在金红石浮选中对磷灰石的抑制作用[J].中国非金属矿工业导刊.1992(01):31-34.
    [104]胡熙庚.浮选理论与工艺[M].中南工业大学出版社,1991:468.
    [105]周杰强.低品位胶磷矿浮选试验研究[D].南宁:广西大学,2007.
    [106]周乐光.工艺矿物学[M].冶金工业出版社,2007.
    [107]王淀佐.矿物加工学[M].徐州:中国矿业大学出版社,2003:70-75.
    [108]张芹,张一敏,胡定国.湖北巴东鲕状赤铁矿选矿试验研究[C].2006.
    [109]肖巧斌,戈保梁.云南某鲕状赤铁矿选矿试验研究[C].2005.
    [110]李广涛.四川某高磷鲕状赤褐铁矿选矿试验研究[D].昆明理工大学,2008.
    [111]Weissenborn P K. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore[J]. International Journal of Mineral Processing.1996,47:197~211.
    [112]Pavlovic S, Brandao P R. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz[J]. Minerals Engineering Froth Flotation.2003,16(11): 1117-1122.
    [113]Araujo A C, Viana P R, Peres A E. Reagents in iron ores flotation[J]. Minerals Engineering Reagents '04.2005,18(2):219-224.
    [114]S,张兴仁,肖力子.淀粉、直链淀粉、支链淀粉和葡萄糖单体的吸附作用及其对赤铁矿和石英浮选的影响[J].国外金属矿选矿.2004(06).
    [115]朱建光,朱玉霜.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996:386.
    [116]马松勃,韩跃新,杨小生,等.不同种类淀粉对赤铁矿抑制效果的研究[J].有色矿冶.2006(05):23-25.
    [117]Wills B A选矿工艺学[M].北京:冶金工业出版社,1986:491.
    [118]郑贵山,刘炯天.水的硬度对赤铁矿反浮选的影响[J].中国矿业.2009(08).
    [119]石云良,邱冠周,胡岳华,等.石英浮选中的表面化学反应[J].矿冶工程.2001(03):43-45.
    [120]石云良,陈淳,邱冠周.石英的油酸盐浮选化学[J].有色金属.1999(01):31-35.
    [121]石云良.石英活化、浮选的溶液和表面化学[J].有色金属.1992(02):37-39.
    [122]石云良.过量油酸抑制石英浮选的研究[J].矿产综合利用.1991(05):42-44.
    [123]爱格列斯MA,石增荣译.非硫化矿物浮选理论基础下册[M].北京:冶金工业出版社,1957:128.
    [124]爱格列斯,郭庆华.硅酸盐和氧化物的浮选[M].中国工业出版社,1965:252.
    [125]刘承宪,陈绍林,岳子明.选择性疏水絮凝浮选法分离微细粒菱锰矿、绿泥石、石英的研究[J].中国锰业.1993(04).
    [126]朱巨建,李晓安,董淑媛,等.赤铁矿磁铁矿石英和绿泥石的可浮性研究[J].鞍山科技大学学报.1993(03).
    [127]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988:276.
    [128]印万忠,孙传尧.硅酸盐矿物浮选原理[M].北京:科学出版社,2001:256.
    [129]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社,1995:494.
    [130]刘炯天,樊民强.试验研究方法[M]徐州:中国矿业大学出版社,2006:526.
    [131]许时.矿石可选性研究(修订版)[M].北京:冶金工业出版社,1989:318.
    [132]成清书.矿石可选性研究(修订版)[M].北京:冶金工业出版社,1981:156.
    [133]林国梁.矿石可选性研究[M].北京:冶金工业出版社,1988:225.
    [134]董建瓴.在弱酸性矿浆中浮选铁矿物[J]_金属矿山.1979(06):36-39.
    [135]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982:314.
    [136]朱家骥.中国铁矿选矿技术[M].北京:冶金工业出版社,1994:393.
    [137]Quast K B. A review of hematite flotation using 12-carbon chain collectors[J]. MINERALS ENGINEERING.2000,13(13):1361-1376.
    [138]A·C·阿鲁基奥.浮选铁矿的药剂[J].国外金属矿选矿.2009(Z1):24-27.
    [139]陈达,葛英勇,余永富.磁选铁精矿再提纯反浮选工艺和药剂的研究[J].矿产保护与利用.2005(04):46-50.
    [140]Vieira A M, Peres A E. The effect of amine type, pH, and size range in the flotation of quartz[J]. Minerals Engineering Selected papers from Reagents '06, Cape Town, South Africa, November 2006. 2007,20(10):1008-1013.
    [141]王兢,尚衍波,张覃,等.鲕状赤铁矿浮选试验初步研究[J].矿冶工程.2004(03):38-40.
    [142]马松勃.淀粉抑制剂在铁矿浮选中的作用研究[D].沈阳:东北大学,2006.
    [143]朱建光,朱玉霜.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987:313.
    [144]朱建光.浮选药剂[M].北京:冶金工业出版社,1993:215.
    [145]见百熙.浮选药剂[M].北京:冶金工业出版社,1981:496.
    [146]印万忠,丁亚卓.铁矿选矿新技术与新设备[M].北京:冶金工业出版社,2008:218.
    [147]田嘉印,刘保平,陈占金,等.我国红铁矿选矿高效节能技术及设备评述[J].金属矿山.2005(09):4-10.
    [148]李维兵,刘保平,陈占金,等.我国红铁矿选矿技术研究现状及发展方向[J].金属矿山.2005(03):1-6.
    [1]郑贵山;刘炯天.水的硬度对赤铁矿反浮选的影响[J].中国矿业.2009(08):68-71.
    [2]郑贵山;刘炯天;李琳.用旋流-静态微泡浮选柱反浮选磁选铁精矿[J].金属矿山.2008(08):40-44.
    [3]郑贵山;刘炯天.十二烷基磺酸钠浮选赤铁矿的研究[J].金属矿山.2009(09):70-74.
    [4]郑贵山;刘炯天;陈天修.羟肟酸浮选赤铁矿的研究[J].矿冶.2009(04):10-13.
    [5]郑贵山;刘炯天.浅析鲕状赤铁矿提铁脱磷研究方法[C].桂林:2009年金属矿产资源高效选冶加工利用和节能减排技术及设备学术研讨展示会.2009:220-226.
    [6]ZHENG Gui-shan;LIU Li-jun; LIU Jiong-tian. The Study of Chlorite Flotation and its Influencing Factors[C]. XuZhou: The 6th International Conference on Mining Science & Technology,2009.
    [7]LIU Li-jun; ZHENG Gui-shan;LIU Jiong-tian. Studies on Exploration and Optimization of Separation Conditions of Scarce Coal Sludge[C]. XuZhou: The 6th International Conference on Mining Science & Technology,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700