用户名: 密码: 验证码:
一水硬铝石型低品位铝土矿在旋流力场中的分选行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为生产氧化铝的主要原料,铝土矿的矿石特征及其加工技术直接影响着该资源的综合利用率。在中国,铝土矿以一水硬铝石型为主,其主要特征是高铝、高硅、低铝硅比、矿物组成复杂且铝、硅矿物间的嵌布关系密切。这使得氧化铝的生产成本高、产品质量差。对我国储量巨大的一水硬铝石型低品位铝土矿进行经济有效的分选脱硅,从而为氧化铝生产提供优质原料,是一个摆在我们面前的重大研究课题。
     本文以铝硅比为4.39的一水硬铝石型铝土矿为处理对象,系统地研究了不同因素对其旋流分选和旋流-反浮选效果的影响,并对旋流器内部流场进行了多个参数条件下的数值模拟,依此分析了结构参数和操作参数对铝土矿旋流分选的影响机理。主要研究工作包括以下几个方面:
     (1)系统考察了在不同锥角条件下改变底流口直径和给矿压强对铝土矿旋流分离效果的影响。结果表明,增大底流口直径使液相在溢流的分配比例减小,溢流产物的粒度变细,铝硅比降低,底流产物的铝硅比也不断下降,而其中Al2O3的回收率提高;锥角和底流口直径对分级效果具有一定的交互作用;在不同锥角条件下增大给矿压强,液相在溢流的分配比例基本保持恒定,但分级效率呈现不同程度的下降,溢流的粒度变细,分级作用有所减弱;给矿压强和锥角对铝土矿的旋流分选存在交互作用,在特定的锥角条件下增大给矿压强可以强化分选作用;增大锥角还可使矿浆进入溢流的量增加,溢流的固体产率和分级效率相应提高。当锥角为11°,底流口直径为6mm,给矿压强为0.4MPa时,获得了较好的分选指标:底流产物的A/S为7.33,其中Al2O3的回收率为70.52%;溢流产物的A/S为2.30,其中SiO2的回收率为57.14%。
     (2)考察了给矿浓度、入料粒度、分散剂用量对铝土矿旋流分离效果的影响。结果表明,给矿浓度的增大不利于旋流分选过程的进行,其对分选指标的负面影响在10%~20%范围内尤为明显;铝土矿以较粗的入料粒度,即-0.074mm粒级占60%左右时更有利于改善旋流分选指标;添加适量的分散剂可以明显改善旋流器内部的分选环境,提高铝硅矿物的分选效果。
     (3)脱泥-旋流分选试验结果表明,在小锥角、大底流口直径的条件下,对铝土矿进行脱泥的适宜给矿压强为0.3~0.4MPa;采用7°锥角的旋流器脱泥、11°锥角的旋流器分选,所得精矿的铝硅比达到7.54,精矿中Al2O3的回收率达到71.11%,分选指标与不脱泥直接进行旋流分选相比有所改善。
     (4)系统地考察了充气量、浮选药剂、入料粒度等因素对铝土矿旋流-反浮选分离效果的影响。结果表明,充气量对流场和矿物颗粒间的分离效果具有一定程度的影响,充气量较低(0~0.8m3/h)时,增大充气量会使轴向零速包络面向轴心轻微收缩,削弱了分级作用,但却在一定程度上强化了分选作用,分选指标与不充气相比得到了一定程度的改善;经添加一定量的改性淀粉和十二胺醋酸盐,分选指标优于同样结构参数与操作条件下的旋流分选指标;入料粒度对旋流—反浮选的分选指标具有显著的影响,而且仍以-0.074mm占60%为宜。
     (5)对旋流器内部流场进行了多个参数条件下的数值模拟,并依此分析了不同因素对铝土矿旋流分选的影响机理。结果表明,结构参数主要通过改变流场的轴向零速包络面致使溢流和底流的体积产率及矿物颗粒的分离行为发生变化,而对有效分离区域内的速度场分布几乎没有影响,这与根据旋流分选试验结果的推断相一致;由于锥角不同时,流场的压强分布特征随底流口直径的增大而产生细微的变化,导致颗粒在径向的受力、运动行为及其分布特征发生改变,所以出现了锥角与底流口直径对铝土矿分级效果的交互影响;当结构参数一定时,增大给矿压强对轴向零速包络面没有明显影响,但可以使有效分离区域内的轴向速度和切向速度增大,从而可以改变颗粒在旋流器径向上的受力及其在旋流场内的分布,最终改善了矿物颗粒的分离效果。
Bauxite is the main raw material to produce alumina, whose mineralogical characteristic and processing technology affect its general utilization directly. Diasporic bauxite is the major kind in China, charactered by high-aluminum, high-silicon, low ratio of Al2O3 to SiO2, complicated mineral compositions and nearly disseminated associations of aluminous minerals and silicate minerals. These lead to a high production cost and a poor product quality in alumina industry. It's an important research project to carry out economical and effective beneficiation to desilicate from diasporic low-grade bauxite with great reserves in China and then provide excellent material for alumina production.
     With diasporic bauxite of A/S 4.39 as samples, the influence of different factors on its cyclonic separation and cyclonic-reverse flotation was studied systemically, and numerical simulation of fluent field in cyclone was carried out in the condition of many factors, according to which the mechanism of structural and operating parameters influence the cyclonic separation of bauxite was analysed. The main work in the present paper includes the following:
     (1) The influence of apex diameter and feed pressure under different cone angles on the cyclonic separation effect of bauxite was investigated systemically. The results showed the increase of apex diameter can reduce the flow ratio of overflow, particles in overflow becomes finer and the A/S of overflow decreases, and the A/S of underflow also decreases, the recovery of Al2O3 in underflow increases; Cone angle and apex diameter have interaction in classification efficiency; When the feed pressure increases under different cone angles, the flow ratio of overflow keeps invariable basically, but the classification efficiency decrease in different degree, particles in overflow becomes finer, the function of classification was weakened; Feed pressure and cone angle have interaction in cyclonic separation of bauxite, in the condition of special cone angle, the function of separation is strengthened; The increase of cone angle can also increase the flow ratio of overflow, the solid ratio of overflow can be increased accordingly. When cone angle is 11°, apex diameter is 6mm, and feed pressure is 0.4MPa, better separation indexes are obtained:The A/S of underflow is 7.33, the recovery of Al2O3 in underflow is 70.52%; the A/S of overflow is 2.30 and the recovery of SiO2 in overflow is 57.14%.
     (2) The influence of feed concentration, feed particle size and dispersant dosage on the cyclonic separation effect of bauxite was investigated. The results showed that the increase of feed concentration is disadvantageous to the process of cyclonic separation, it makes the separation indexes worsen obviously especially in the range of 10%~20%; Bigger particle size of bauxite is more advantageous to improve its cyclonic separation indexes, namely-0.074mm 60%; The separation environment and selectivity can be improved obviously by adding dispersant with suitable quantity.
     (3) The tests of desliming-cyclonic separation showed that in the condition of little cone angle and big apex diameter, feed pressure of 0.3~0.4MPa is suitable to deslime from bauxite; By desliming in hydrocyclone of 7°and separation in hydrocyclone of 11°, the A/S of concentrate is 7.54, the recovery of Al2O3 in it is 71.11%, the indexes are improved than those by cyclonic separation without desliming.
     (4) The influence of aeration quantity, flotation reagents and feed particle size on the effect of cyclonic-reverse flotation of bauxite was investigated systemically. The results showed that the aeration quantity have some influence on the fluent field and separation effect of mineral particles, when the aeration quantity increases in the range of 0~0.8m3/h, the envelope of zero vertical velocity shrinks to the axis slightly, the classification function is weakened, but the separation function is strengthened, the separation indexes are improved than no aeration; By adding some modified starch and laurylamine acetate, the separation indexes are better than those obtained by cyclonic separation in the same condition of structural and operating parameters; Feed particle size has remarkable influence on the separation indexes of cyclonic-reverse flotation,-0.074mm 60% is also suitable.
     (5) Numerical simulation of fluent field in cyclone was carried out in the condition of many factors, according to which the mechanism of different factors influence the cyclonic separation of bauxite was analysed. The results showed that structural parameters make the envelope of zero vertical velocity changed, make flow ratio of overflow to underflow accordingly, and the separation behavior of mineral particles changed. However, they have basically no influence on the velocity distribution in the effective separation district, which accords with the inference according to the test results of cyclonic separation; Because the distribution of pressure in different cone angles change finely with apex diameter, which makes the force, motion behavior and distribution characteristics of particles changed in radial, and so the interaction of cone angle and apex diameter on the classification effect of bauxite appears; When the structural parameters is certain, the increase of feed pressure has no obvious influence on the envelope of zero vertical velocity, but can increase the vertical and tangential velocity in the effective separation district, and can change the force and distribution characteristics of particles in the radial of hydrocyclone, finally makes the separation effect of mineral particles improved.
引文
[1]《矿产资源综合利用手册》编辑委员会.矿产资源综合利用手册[M],北京:科学出版社,2000,179-180.
    [2]陈祺,关慧勤,熊慧.世界铝工业资源—铝土矿、氧化铝开发利用情况[J],世界有色金属,2007(1):27-33.
    [3]张莓.1992~2003年世界铝土矿回顾与展望[J],世界有色金属,2005(4):11-16.
    [4]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J],中国有色金属学报,2004,14(5):91-97.
    [5]周汝国.世界铝土矿资源[J],中国金属通报,2005(25):29-30.
    [6]邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状与分析采矿技术[J],2001,(6):53-55.
    [7]赵祖德,姚良均,彭如清等.世界铝土矿和氧化铝工业[M],北京:科学出版社,1994,3-20.
    [8]刘中凡.世界铝土矿资源综述[J],轻金属,2001,5:7-12.
    [9]欧阳坚,卢寿慈.我国铝土矿资源特征与选矿加工研究[J],矿产综合利用,1995,(2):24-26.
    [10]方启学.我国铝土矿资源特征及其面临的问题与对策[J],轻金属,2000,(10):8-10.
    [11]于传敏.铝土矿选矿为氧化铝工业发展开辟一条新路[J],轻金属,2000,(9):3-6.
    [12]李章存.铝的能耗分析[J],轻金属,1995,(5):3-5.
    [13]黄国智,方启学,崔吉让等.铝土矿脱硅方法及其研究的进展[J],轻金属,1999,(5):16-20.
    [14]印万忠.铝土矿选择性磨矿与铝硅分离基础研究[D],沈阳:东北大学,2002.
    [15]朱忠平,范晓慧,姜涛等.我国氧化铝工业及铝土矿铝硅分离研究进展[J],矿产保护与利用,2002,8(4):28-29.
    [16]杨重愚.氧化铝生产工艺学[M], 北京:冶金工业出版社,1993,1-21.
    [17]王庆义.氧化铝生产[M],北京:冶金工业出版社,1995,1-13.
    [18]高子忠.轻金属冶金学[M],北京:冶金工业出版社,1995,1-10.
    [19]吴秀铭.影响我国铝工业生存与发展的几大问题[J],世界有色金属,1997,(7):4-10.
    [20]胡岳华,王毓花,王淀佐.铝硅矿物浮选化学与铝土矿脱硅[M],北京:科学出版社,2004,4-6.
    [21]张云海.高岭石与—水硬铝石反浮选分离的研究[D], 沈阳:东北大学,2005.
    [22]付高峰,程涛,陈宝民.氧化铝生产知识问答[M],北京:冶金工业出版社,2007,5-13.
    [23]朱训等,中国矿情(第二卷)[M],北京:科学出版社,1999,285-311.
    [24]顾松青,齐利娟,尹中林等.我国氧化铝工业的系统节能[J],矿业研究与开发,2003,(S1):217-221.
    [25]V.I.Grodeva等.铝土矿的微生物选矿[J], 国外金属矿选矿,1989,(11):9-11.
    [26]张文帅.我国铝工业能源消耗的基本情况[J],世界有色金属,2001,(1):29-31.
    [27]陆钦芳.关于我国氧化铝工业竞争力和发展对策的探讨[J],轻金属,2001,(5):3-6.
    [28]罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状述评[J], 金属矿山,1999(1):31-35.
    [29]马跃如,罗琳.铝土矿的化学选矿[J],中国猛业,1999,17(2):10-13.
    [30]刘水红,方启学.铝土矿选矿脱硅技术研究现状述评[J], 矿冶,2004,(4):25-29.
    [31]蒋昊,李光辉,胡岳华.铝土矿的铝硅分离[J],国外金属矿选矿,2001,(5):24-29,34.
    [32]罗琳,何伯泉,刘永康.国内外高硅铝土矿焙烧预脱硅工艺的述评[J], 国外金属矿选矿1999,(1):38-41,32.
    [33]罗琳.一水硬铝石型铝土矿化学选矿脱硅与综合利用[D],长沙:中南工业大学,1997.
    [34]刘永康.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究[D],长沙:中南工业大学,1997.
    [35]姜涛,李光辉,范晓慧等.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(Ⅰ)[J],中国有色金属学报,2000,(4):534-538.
    [36]李光辉,姜涛,范晓慧等.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(Ⅱ)[J]中国有色金属学报,2000,(5):705-709.
    [37]李光辉,范晓慧,姜涛等.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(Ⅲ)[J],中国有色金属学报,2000,(6):899-904.
    [38]范晓慧,李光辉,姜涛等.铝土矿焙烧碱浸脱硅新工艺[J],矿冶工程,2002,(9):83-85.
    [39]仇振琢.铝土矿预脱硅工艺的改进[J],轻金属,1985,(9):9-12.
    [40]罗琳,邱冠周,刘永康.论中国高硅低铁一水硬铝石型铝土矿的几种处理方法[J],轻金属,1996,(2):14-17.
    [41]刘振中.铝土矿选矿技术的发展研究报告[R],北京:冶金工业部矿冶研究院技术情报室,1980.
    [42]仇振琢.低铁中等品位铝土矿生产氧化铝合理方案的商榷[J],轻金属,1987,(2):8-14.
    [43]刘今,程汗林,吴若琼.低铝硅比铝土矿预脱硅研究[J],中南工业大学学报,1996,27(6)666-670.
    [44]刘丕,吕子钊,韩中岭.我国铝土矿预焙烧对拜耳法生产的影响及工业应用的分析[J],轻金属,1997,(4):15-18.
    [45]刘汝兴,周宗禹.中的品位铝土矿焙烧预脱硅的研究[J],轻金属,1998,(7):24-26.
    [46]罗琳,刘永康,何伯泉.一水硬铝石-高岭石型铝土矿焙烧脱硅热力学机理研究[J],有色金属,1999,51(1):25-30.
    [47]范晓慧,李光辉,姜涛等.铝土矿焙烧脱硅工艺及机理研究[J],金属矿山,2002,(7):16-18.
    [48]李光辉.铝硅矿物的热行为及铝土矿石的热化学活化脱硅[D],长沙:中南大学,2002.
    [49]B阿布拉莫夫.碱法综合处理含铝原料的物理化学原理俄书(译本)[M],1988.
    [50]北京矿冶研究总院.预脱硅分选—拜尔法的研究专题阶段总结报告[R],北京:北京矿冶研究总院,1997.
    [51]刘桂华,李小斌,彭志宏等.铝土矿湿法预处理的研究进展[J],矿冶工程,2000,20(3):55-58.
    [52]周国华,薛玉兰,蒋玉仁等.浅谈铝土矿生物选矿[J],矿产综合利用,2000,(6):38-41.
    [53]Vasan S S, Modak J M, Natarajan K A. Some recent advances in the bioprocessing of bauxite[J], International Journal of Mineral Processing,2001,62:173-186.
    [54]Grondeva V I等.铝土矿的微生物选矿[J],国外金属矿选矿,1989,(11):16-19.
    [55]李聆值.采用生物技术提高铝土矿质量[J],中国有色金属学报,1998,18(增刊2):361-364.
    [56]Grondeva V I等.铝土矿的微生物选矿[J],国外金属矿选矿,1989,(11):9-11.
    [57]谢珉.论铝土矿选矿的必要性和可行性[J],国外金属矿选矿,1991,(Z1):69-76.
    [58]姜涛,邱冠周,李光辉等.中低品位铝土矿选矿预脱硅的新进展[J],矿冶工程,1999,19(2):3-6.
    [59]梁爱珍,李廷惠.国外铝土矿选矿研究概况[J],轻金属,1984,(1):1-5.
    [60]马少建,杨梅金,胡浩流等.提高平果铝土矿难洗矿石洗矿效率的研究[J],金属矿山1999(12):40-43.
    [61]王振敏.平果岩溶堆积型铝土矿洗矿生产流程的优化[J],冶金矿山设计与建设,2001(6):12-14.
    [62]刘丕旺,张晓风,张伦和.高铝铝土矿选矿脱硅的现状和前景[J],轻金属,1998,(6):9-12.
    [63]苏汝民,冯道永,程运材.平果铝土矿的开采技术特点[J],世界采矿快报,1998,(3):11-15.
    [64]罗桂民,黄振艺.平果铝土矿降低洗矿含泥率的生产实践[J],轻金属原料矿山,2006,(7):6-8.
    [65]肖松文,罗立群,梁经冬.国内外铝土矿选矿研究概述[J],广西冶金,1992,(4):4-9.
    [66]潘泽琳.低品位铝十矿的流化分选法[J],轻金属,1987,(1):19-21.
    [67]贺飞丽.采用重选—浮选流程提高铝硅比的试验研究[J],湖南有色金属,1996,(6):18-20.
    [68]凌石生,章晓林,尚旭等.铝土矿物理选矿脱硅研究概述[J],国外金属矿选矿,2006,(7):9-12.
    [69]梁爱珍,李庭惠.选别铝土矿合理工艺流程探讨[J], 轻金属,1984,(1):1-6.
    [70]D.W.Fuersternau细粒浮选—选择性絮凝和浮选[J],国外金属矿选矿,1980(5):75-87.
    [71]费广智,吴英智.中国铝矿—合理开发资源促进矿业发展[J],中国矿业,1998,(1):7-10.
    [72]魏新超,韩跃新,印万忠等.铝土矿在球磨机中的选择性磨矿特性研究[J],中国矿业,2002,11(2):19-22.
    [73]田祎兰.一水硬铝石型铝土矿的选择性磨矿研究[D],沈阳:东北大学,2007.
    [74]欧乐明,冯其明,卢毅屏等.铝土矿碎解方式与铝硅矿物选择性分离[J],金属矿山,2005,(2):28-31.
    [75]Ishchenko V V et al. Action of sodium hexametaphosphate and sodium oleate upon bauxite minerals [J], Izv VUZ Tsvet Metal,1972,(5):8-12 (in Russian).
    [76]Ishchenko V V. physicochemical interaction of bauxite-forming minerals with flotation reagents [J], Nauch Tech. knof. Ureal.Politeckh Inst,1972,(1):10-11 (in Russian).
    [77]Salatic D et a. Floatability of boehmite and kaolin with anionic collectors [J], Trav.Com.Int.Etude bauxite, Alumina Alum,1979(15):157-159.
    [78]中国长城铝业公司,北京矿冶研究总院,中南工业大学等.铝土矿选矿—拜耳法生产氧化铝新工艺总报告[R],1999.
    [79]方启学,黄国智等.我国铝土矿资源特征及其选矿脱硅技术[J],国外金属矿选矿,2000,(5):11-16.
    [80]石伟,黄国智.微细粒高岭石对铝土矿浮选精矿质量的影响[J],有色金属(选矿部分),2000,(5):11-14.
    [81]黄国智,方启学等.放粗铝土矿选矿精矿的可行性研究[J],轻金属,2000,(7):7-10.
    [82]吴国亮,黄国智,方启学等.选别铝土矿合理磨矿工艺流程的研究[J],有色金属(选矿部分),2000,(5):1-4.
    [83]黄攀峰,张国范,冯其明.铝土矿浮选脱硅研究进展[J],矿产保护与利用,2003,(1):50-54.
    [84]何晓明,崔玉环,张纪云.新型捕收剂MZ-21代替RA-315的工业试验[J],国外金属矿山,2002,(5):48-51.
    [85]何晓明,吴险峰,徐冬林.捕收剂RA-515的研制与利用[J],矿业工程,2004,(2):47-49.
    [86]沈慧庭.东鞍山铁矿石脱泥—反浮选工艺流程研究[J],矿冶工程,1995,(12):20-23.
    [87]刘永红,方启学.铝土矿选矿脱硅技术研究现状述评[J],矿冶,2004,(12):24-29.
    [88]胡岳华,冯其明.矿物资源加工技术与设备[M],科学技术出版社,2006(9):272-273.
    [89]刘广义.一水硬铝石形铝土矿浮选脱硅研究[D],长沙:中南工业大学,1999.
    [90]林祥辉,路平,陈让怀等.高效新品种捕收剂RA-315的制取和应用研究[J],矿冶工程,1993,13(3):31-35.
    [91]丁浩,六偏磷酸钠在金红石浮选中对磷灰石的抑制作用[J],建材地质,1992,(1),31-34.
    [92]胡岳华,刘晓文,邱冠周等.一水硬铝石型铝土矿铝硅浮选分离溶液化学(Ⅰ—晶体结构与可浮性)[J],矿冶工程,2000,(6):11-14.
    [93]刘晓文,胡岳华,蒋吴等.硬质和软质高岭石的晶体结构与浮选行为[J],中国有色金属学报,2001,(4):685-687.
    [94]印万忠,韩跃新,魏新超等.一水硬铝石和高岭石可浮性的晶体化学分析[J],金属矿山,2001,(4):29-33.
    [95]曹学锋,胡岳华,蒋玉仁等.新型捕收剂N-十二烷基-1,3-丙二胺浮选铝硅酸盐类矿物的机理[J],中国有色金属学报,2001,(4):693-696.
    [96]赵世民,胡岳华,王淀佐等.N-(2-氨乙基)-月桂酰胺浮选铝硅酸盐矿物的研究[J],物理化学学报,2003(6):573-576.
    [97]赵世民,胡岳华,王淀佐等.N-(3-氨丙基)-月桂酰胺对铝硅酸盐矿物的浮选[J],中国有色金属学报,2003,(5):1273-1277.
    [98]赵世民,王淀佐,胡岳华等.甲萘胺浮选铝硅酸盐矿研究[J],非金属矿,2003,(9):34-35.
    [99]杜平,曹学锋,胡岳华等.胺类捕收剂结构与性能研究[J],轻金属,2003(1):27-31
    [100]张云海,魏德洲.硬质高岭石与一水硬铝石的反浮选分离[J],中国矿业,2003,12(12):52-53.
    [101]张云海,魏德洲,徐敬尧.选择性絮凝分离一水硬铝石和伊利石[J],金属矿山,2003,(12):31-33.
    [102]张云海,魏德洲.高岭石与一水硬铝石反浮选分离药剂研究[J],有色金属(选矿部分),2004,(2):45-47.
    [103]李海普,胡岳华,蒋玉仁等.铝土矿脱硅浮选药剂的应用及研究[J],矿产综合利用,2001(6):31-35.
    [104]李海普,蒋玉仁,曹学锋等.变性淀粉的合成及其性能[J],矿冶工程,2001,(4):29-32.
    [105]李海普,胡岳华,蒋玉仁等.变性淀粉在铝硅矿物浮选分离中的作用机理[J],中国有色金属学报,2001,(4):697-701.
    [106]HU Yue-hua, LI Pu-hai, JIANG Yu-ren. Effect of hydroxamic acid starch on reverse flotation desilicate from diasporic bauxite [J]. Transactions of Nonferrous Metals Society of China, 2002,(5):974-977.
    [107]李海普,胡岳华.氧肟酸高分子药剂在铝土矿反浮选中的作用[J],金属矿山,2004,(6):26-28.
    [108]HU Yue-hua,LI Pu-hai, JIANG Yu-ren. Effect of hydroxamic acid starch on reverse flotation desilicate from diasporic bauxite[J],Trans. Nonferrous Met. Soc. China,2002,(10):974-978.
    [109]LI Hai-pu, HU Yue-hua, WANG Dian-zuo, XU Jing. Effect of hydroxamic acid polymers on reverse flotation of bauxite[J],J.CENT.SOUTHUNIV.TECHNOL.,2004,(9):291-294.
    [109]刘广义,卢毅屏,戴塔根.阳离子聚丙烯酰胺反浮选分离一水硬铝石和高岭石[J],金属矿山,2003,(2):48-50.
    [110]陈湘清,王毓华,胡岳华,熊道陵.调整剂在浮选分离一水硬铝石和高岭石中的研究[J],矿冶工程,2004,24(5):35-38.
    [111]陈湘清,胡岳华,王毓华.氟化钠在铝硅酸盐矿物浮选中的作用机理研究[J],金属矿山2004,(10):32-35.
    [112]陈湘清,胡岳华,王毓华.氯化钠对铝硅矿物浮选的影响及其作用机理[J].中国有色金属学报,2004,14(10):1770-1775.
    [113]王毓华,胡岳华,何平波等.铝土矿选择性脱泥试验研究[J],金属矿山,2004,334(4):38-40.
    [114]王毓华.物料粒度组成对铝土矿反浮选的影响[J],金属矿山,2002,314(8):29-30,41.
    [115]胡岳华,蒋吴,邱冠周,王淀佐.一水硬铝石型铝土矿铝硅浮选分离的溶液化学[J],中国有色金属学报,2001,11(1):125-130.
    [116]胡岳华,刘晓文,邱冠周,黄圣生.一水硬铝石型铝土矿铝硅浮选分离溶液化学—晶体结构与可浮性[J],矿冶工程,2000,20(2):11-14.
    [117]徐政和.硬水铝石矿石反浮选的新进展[J],国外金属矿选矿,2005,(2):13-18.
    [118]张云海,郑桂兵,曾克文等.铝土矿反浮选小型及扩大连选试验报告[R],北京:北京矿冶研究总院,2006.
    [119]吕子虎,杨润全等.旋流分选设备的发展与展望[J],选煤技术,2005,(10):53-55.
    [120]魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000,226-381.
    [121]Eygeles,M.A.et al. Selective flotation of kaolinite-hydrargillite[J],Tsvetnye Met.,1970,(1):84-86.
    [122]Kuznetsov,V.P.et al.,Flotation of porous hydrargillite-kaolinite bauxite[J]. Leningrad,1972, (2): 143-145 (in Russian)
    [123]D. F. Kelsall. A Study of the Motion of Solid Particles in a Hydraulic Cyclone[J], Trans. Inst. Chem. Eng.,1952, (30):87-104.
    [124]杜玉成,郑水林.超微粉体材料精细分级研究[J],.粉体技术,1994,11(1):15-19.
    [125]曲顺祥,胡绳新,冯晓明.超细粉射流分级技术研究[J],轻金属,2000,(10):15-23.
    [126]孙玉波.浅谈水力旋流器的工作原理和影响参数[J],矿业快报,2003,403(1):5-8.
    [127]朱长增.水力旋流器替代螺旋分级在钟山选矿厂的应用[J],矿业快报,2003,19(10):39.
    [128]罗中平.分选水力旋流器的研究与应用[C],浙江溪口现代选矿技术研讨会论文集,1993,73-76.
    [129]任爱军,方启学.旋流分选技术进展[J],国外金属矿选矿,2002,(8):15-19.
    [130]李茂林,王跃林,朱剑等.用短锥旋流器分选黄铁矿的试验研究[J],铜业工程,2000,(4):4-6.
    [131]朱从杰.磷矿选别用水介质旋流器的研制[J],矿产保护与利用,1997,(6):34-38.
    [132]金BH,克林马MS.用水介质水力旋流器选别细的高密度的颗粒[J],国外选矿快报,1999,(14):6-9.
    [133]帕特尔DP.用WOC(仅用水)旋流器从粗精矿中除去石墨[J],国外选矿快报,1998,(4):1-5.
    [134]王敦曾.选煤新技术的研究与应用[M],北京:煤炭工业出版社,1999.
    [135]斯沃波达J.磁力旋流器在重介质选别中应用的试验研究[J],国外选矿快报,1999,(1):5-8.
    [136]FrickerAG,IMMTrans,1985,94.
    [137]ZimmelsY and LinIJ, IEEETrans,1982,18.
    [138]褚良银.充气水力旋流器分选过程行为研究及应用开发[D],沈阳:东北大学,1997.
    [139]李长根,刘永强.旋流闪速浮选法的研究:Ⅰ旋流闪速浮选法的可行性研究[J],有色金属(季刊),2000,52(1):22-30.
    [140]刘永强,李长根.旋流闪速浮选法的研究:Ⅱ旋流分选器中气泡的运动规律[J],有色金属(季刊),2000,52(2):22-25.
    [141]刘永强,李长根.旋流闪速浮选法的研究:Ⅲ旋流闪速浮选的理论研究[J],有色金属(季刊),2000,52(3):25-32.
    [142]任爱军.一水硬铝石型铝土矿旋流浮选研究[D],北京:北京矿冶研究总院,2002.
    [143]康文泽,吕一波,何志强等.离心力场中浮选旋流器的流态及浮选性能研究[J],煤炭学报, 2001,26(1):101-104.
    [144]杨俭.自然吸气式浮选旋流器结构理论分析及实验研究[J],煤炭转化,2000,23(1):87-89.
    [145]周晓华.浮选柱的旋流分选机理与矿物分选实践[D],徐州:中国矿冶大学,2005.
    [146]谢广元,张明旭,边炳鑫.选矿学[M],徐州:中国矿业大学出版社,2001:135-137.
    [147]龚达盛.影响水力旋流器分离性能各参数概述[J],甘肃冶金,2008,30(1):54-57.
    [148]Nikkam Suresh, N. Vannangamundi, T. C. Rao et al,水介质旋流器[J],矿山机械,1991,(2):31-33.
    [149]曾令移,苏跃华.分级旋流器与分选旋流器[J],有色金属(选矿部分),1996,(05),38-41.
    [150]曾令移.新型曲面旋流器选别隆回金矿的初步探讨[J],中南矿冶学院增刊第1期,1988.
    [151]霍志飞.旋流器分选原理与分选效果影响因素[J],煤炭技术,2006,25(2):89-91.
    [152]曹卫,方莹.水力旋流器的操作参数与物性参数对其性能影响研究[J],中国非金属矿工业导刊,2006,56(2):45-47.
    [153]苏晓东.旋流器分离性能研究[D],成都:成都科技大学,1992.
    [154]张鑑,陈炳辰,刘其瑞.水力旋流器倾角变化对其分级指标影响的研究[J],金属矿山,1990,(2):42-46.
    [155]刘培坤,魏杰锐.水力旋流器浓缩性能试验研究[J],矿业快报,2000,331(1):14-15.
    [156]王柏秋.水力旋流器内部流场数值模拟及分离效率研究[D],哈尔滨:哈尔滨工业大学,2006.
    [157]黄素逸等译.流动可视化[M],北京:科学出版社,1991,13-20.
    [158]D. F. Kelsall. Trans. I. Chem. E.,1952,30-87.
    [159]颜大椿等编.试验流体力学[M],北京:高等教育出版社,1992,30-57.
    [160]朱自强等.应用计算流体力学[M],北京:北京航空航天大学出版社,1998,1-5.
    [161]李玉星,张劲松,冯叔初.CFD在液—液水力旋流器能耗及分离效率预测中的应用[J],流体机械,2001,29(10):20-24.
    [162]褚良银,陈文梅,杨柳等.基于人工神经网络的油水分离旋流器设计模型[J],油田化学,2002,19(3):250-252.
    [163]Chu Liang-Yin, Chen Wen-Mei, Li Xiao-Zhong et al. Numerical simulation of turbulence and structure of turbulence in the hydrocyclone[J].Transactions of Nonferrous Met. Soc. China(English edition),1999,9(1):128-136.
    [164]Li Xiao-Zhong, Chen Wen-Mei, Chu Liang-Yin. Research on the turbulence in hydrocyclones[C], Proc. of 2nd Joint China/USA Chem. Eng. Conference,Beijing, China, 1997:19-22.
    [165]赵立新,蒋明虎,孙德智.水力旋流器流场分析与测试[J],化工机械,2005,32(3):139-142.
    [166]邹宽,杨茉,曹玮等.水力旋流器湍流流动的数值模拟[J],工程热物理学报,2004,25(1):127-129.
    [167]刘峰,钱爱军,郭秀军等.DSM重介质旋流器流场的数值模拟[J],煤炭学报,2006,31(5):627-630.
    [168]S. Murphy, R. Delfosb, M.J.B.M et al. Prediction of strongly swirling flowwithin an axial hydrocyclone using two commercial CFD codes[J],Chemical Engineering Science,2007, (62): 1619-1635.
    [169]K. Udaya Bhaskar, Y. Rama Murthy, N. Ramakrishnan et al. CFD validation for flyash particle classification in hydrocyclones[J], Minerals Engineering,2007, (20):290-302.
    [170]A. Mainza, M. Narasimha, M.S. Powell et al. Study of flow behaviour in a three-product cyclone using computational fluid dynamics[J], Minerals Engineering 2006,(19) 1048-1058.
    [171]M. Narasimha, Mathew Brennan, P.N. Holtham.Large eddy simulation of hydrocyclone—prediction of air-core diameter and shape[J], Int. J. Miner. Process.2006 (80) 1-14.
    [172]Jens Schmidt, Joachim Werther. Simulation and optimization of a centrifugal fluidized bed classifier in the micrometer range[J], Chemical Engineering and Processing,2006 (45):488-499.
    [173]M.D. Slack, S. Del Porte, M.S. Engelman et al. Designing automated computational fluid dynamics modeling tools for hydrocyclone design[J], Minerals Engineering 2004,(17): 705-711.
    [174]S. Schuetz, G. Mayer, M. Bierdel, et al. Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics[J], Int. J. Miner. Process.2004, (73): 229-237.
    [175]S A Grady, G D Wesson, M Abdullah et al. Prediction of 10-mm Hydrocyclone Separation Efficiency Using Computational Fluid Dynamics[J], Research Article,2003,(11):41-46.
    [176]M.S.Brennan. Multiphase CFD Simulations of Dense Medium and Classifying Hydrocylones [C]. Third International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia,2003:59-63
    [177]M. S. Brennan, P. N. Holtham. Computational Fluid Dynamic Simulation of Dense Medium Cyclones [A]. Proceedings 9th Australian Coal Preparation Conference [C]. Yeppoon, Australia.13-17 October 2002, Paper B3
    [178]J. C. Cullivan, R. A. Williams. Understanding the Hydrocyclone Separator through CFD[J], Transactions of the I Chem E, Part A, Chemical Engineering,2003,81:455-466.
    [179]J. C. Cullivan, R. A. Williams. New Understanding of a Hydrocyclone Flow Field and Separation Mechanism from CFD[J]. International Journal of Minerals Engineering.2004,17: 651-660.
    [180]F. M. Erdal, S. A. Shirazi, I. Mantilla, O. Shoham. Computational Fluid Dynamics (CFD) Study of Bubble Carry-Under in Gas-Liquid Cylindrical Cyclone Separators [R]. SPE 66500, 2000.
    [181]王福军.计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004,1-4.
    [182]曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟[J],机械设计与制造,2005,(8):22-24.
    [183]韩中忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M],北京:北京理工大学出版社,2004,19-21.
    [184]王瑞金,张凯,王刚Fluent技术基础与应用实例[M],北京:清华大学出版社,2007,1-6.
    [185]郭烈锦.两相与多相流体动力学[M],西安:西安交通大学出版社,2002,585-595.
    [186]刘峰,钱爱军.重介质旋流器流场的计算流体力学模拟[J],选煤技术,2004,(5):10-15.
    [187]刘峰,钱爱军,郭秀军.重介质旋流器流场湍流数值计算模型的选择[J],煤炭学报,2006,31(3):346-350.
    [188]阎超.计算流体力学方法及应用[M],北京:北京航空航天大学出版社,2006,227-230.
    [189]梁政,任连城,张梁等.水力旋流器流场径向速度分布规律研究[J],西南石油大学学报,2007,29(1):106-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700