用户名: 密码: 验证码:
镁合金ZK60及过共晶铝硅合金强流脉冲电子束表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流脉冲电子束处理是近十几年来发展起来的一门新兴材料表面改性技术。大量研究工作表明,强流脉冲电子束表面处理能显著提高铝和钢表面的抗腐蚀及耐摩擦磨损性能,因此为进一步扩大镁合金及铝硅合金的服役范围,本论文采用强流脉冲电子束对ZK60镁合金和过共晶铝硅合金进行表面改性,改善其抗腐蚀和耐摩擦磨损性能,研究改性层组织结构特征变化以及不同参数对合金耐腐蚀性能和摩擦磨损性能的影响;同时本论文首次尝试将微弧氧化和强流脉冲电子束复合改性应用于ZK60镁合金的表面改性中,初步探索此两种表面改性技术复合处理的可行性。研究主要结果如下:
     (1)经强流脉冲电子束处理后ZK60镁合金表面生成了一层厚度约为5-11μm的重熔层。重熔层最表层有少量裂纹和熔坑;同时由于镁的蒸发,表面沉积有细小的纯镁颗粒;重熔层组织晶粒细小,合金元素偏析程度显著降低、固溶度增加;3.5%NaCl溶液中动电位极化曲线测试结果表明ZK60镁合金强流脉冲电子束改性后耐腐蚀性得到显著提高,其中23KV加速电压下电子束轰击15次的ZK60镁合金腐蚀电流密度从311μA/cm2下降至42.2μA/cm2,下降了86%,腐蚀电位从-1312mV上升至-1220mV,升高了92mV;另一方面,摩擦磨损实验结果证明改性后的合金摩擦系数降低,磨损体积减少,耐磨擦性能得到提高,加速电压为27KV,轰击15次的样品摩擦系数和磨损量均优于其它样品,其磨损量下降了80%;
     (2)ZK60镁合金经微弧氧化处理后表面生成了一层厚度约为18μm的陶瓷层,陶瓷层由疏松层和致密层组成,疏松层分布有孔洞,约占整个膜层厚度的90%;经微弧氧化再经强流脉冲电子束处理的ZK60镁合金改性层厚度约为3~4μm,陶瓷层变的致密;经强流脉冲电子束再经微弧氧化处理的ZK60镁合金表面同样生成了一层厚度不均匀的陶瓷改性层;建立了强流脉冲电子束再微弧氧化处理表面改性层的简单生长模型。3.5%NaCl溶液中动电位极化曲线测试及摩擦磨损实验结果表明:经过复合表面改性处理的试样耐腐蚀性、耐摩擦性能均得到了提高,其中经强流脉冲电子束处理再经微弧氧化处理试样的耐腐蚀性能得到显著提高,腐蚀电流密度从311μA/cm2下降至0.2μA/cm2,降低了3个数量级;经微弧氧化再经强流脉冲电子束处理的试样磨损量降低了80%。复合表面处理实验同时验证了强流脉冲电子束的快速熔凝作用对微弧氧化形成的疏孔具有封孔作用,其具体实验参数的优化设置还有待进一步探索改进。
     (3)强流脉冲电子束轰击实现铝硅合金表面快速熔凝,显著细化改性层内晶粒尺寸,提高合金元素Si的固溶度,Si相在合金中分布弥散,合金成分均匀化。强流脉冲电子束轰击处理使合金表面局部出现熔坑和微裂纹的特征形貌。熔坑形成过程可达到净化表层的效果,而微裂纹通过截面形貌观察只在最表层,对基体性能影响不大。性能测试结果表明强流脉冲电子束处理后三种过共晶铝硅合金摩擦系数降低,磨损量减小,耐磨性能提高。强流脉冲电子束处理后合金在3.5%NaCl溶液中的腐蚀电流降低,24小时盐浸实验表明改性合金平均腐蚀速率均降低。处理合金耐蚀性能提高。
High current pulsed electron beam (HCPEB) has been developed intensively as a new high-power energetic beam used for surface modification of materials in the last few decades. It has been confirmed that the properties of modified surface layers of pure Al and mold steels treated by HCPEB such as wear and corrosion resistance could be improved significantly in the previous works. As a consequent, HCPEB treatment was selected to improve the surface properties of ZK60 Mg alloy because of the inferior corrosion and wear resistance with an aim of expanding its scope of application in this paper. While the characteristics of the modified surface and optimum parameters for the treatment operation were studied. Then HCPEB technology was compounded with another surface modification technology micro-arc oxidation (MAO) as a new technology for the Mg alloy surface modification treatment basing on the available study with the purpose of developing a new surface treatment technology of Mg alloy.
     The microstructure characteristic of modified surface of Mg alloy ZK60 after HCPEB and/or MAO complex treatment were analysis by XRD and SEM, and corrosion and wear resistance were tested. The results were as following:
     (1) There was a remelted layer with the thickness of 4-8μm on the top surface of the alloy irradiated by HCPEB characterized with a few of cracks and craters. As the temperature of the melting layer was much higher than that of evaporation of Mg, particles of pure Mg were found on the surface of the treated sample. The grain of alloy surface was refined, and the degree of segregation phenomenon of alloying agents was reduced significantly. Solid solubility of alloying element in Mg base was increased as the result of the rapid solidification process. Effects of HCPEB surface treatment on the corrosion resistance of Mg alloy ZK60 was investigated by means of potentiodynamic polarization curves in 3.5% NaCl solution. It can be concluded that the treated samples exhibited an improved corrosion resistance as the result of the refined grain and homogeneous distribution of alloying agents. The sample treated with 10 pulses at the accelerating voltage of 23KV performed better than any other treated samples as the corrosion current decreased 86%, from 311μA/cm2 to 42.2μA/cm2, and corrosion potential increased from-1312mV to-1220mV. The friction and wear test results showed that the friction coefficients of treated alloys surfaces were decreased, of which was treated with 15 pulses at the accelerating voltage of 27KV represented lower wear rate as it was just 80%.
     (2) ZK60 Mg alloy treated by MAO showed that a ceramic coating formed on the sample surface. The average thickness of this layer was about 18μm. The ceramic layer comprised two layers, an outer looser layer and inner denser layer, the thickness of the former was 90% compared with that of the whole coating. The pores and cracks were observed on the outer layer. After MAO then HCPEB treatments, the sample surface became rougher with a melted layer of 3-4μm. While with the converse process, the sample surface was formed a similar ceramic coating as the sample after MAO treatment. The model for the modified layer with HCPEB then MAO treatments was established. The potentiodynamic polarization curves in 3.5% NaCl solution indicated that the corrosion resistance of alloys treated with MAO and/or HCPEB treatment were improved significantly. Especially that, the sample modified by HCPEB then MAO exhibited better corrosion resistance than any other samples and the corrosion current density decreased 3 orders, from 311μA/cm2 to 0.2μA/cm2. The frictional wear test was showed that the friction coefficients and wear rates of all treated samples were decreased. The wear rate of alloy treated by MAO then HCPEB decreased 80% compared with that of initial sample. The result of the complex treatment with MAO then HCPEB illustrated that the superfast fused process decreased the porosity of ceramic layer similar as a plugging agent.
     (3) HCBEB bombardment induces hypereutectic Al-Si alloys surface rapid melting and solidification. As a result, grains of remelted layer have been significantly refined, content of Si in a(Al) solid solutions was improved and Si element distribution in the alloys intended to be homogenous.The typical surface morphology-crater and a few crack are observed on the surface layer after the bombardment of HCPEB. It is confirmed that temperature rises faster at a sublayer instead of on the top surface. Such a special sub-layer heating and melting mode causes eruptions of the sub-layer liquid through the outer surface and produces the typical surface crater morphology and this process can purify the matrix. The micro-cracks are only on the top surface by cross-section SEM analysis and the mechanical performances of alloys have been little influenced.The friction coefficient decreases and wear resistance was improved of the alloys after HCPEB treatment. According to potential-dynamic polarization curves measurement, the treated samples exhibit an improved corrosion resistance in 3.5%NaCl solution compared with the initial samples. In the weight-loss experiment, the corrosion rate of the treated alloys significantly decreased Corrosion resistance in 3.5%NaCl solution of all the modified alloys was improved.
引文
1.柏建仁.适应地球环境要求的汽车材料[J],汽车工艺与材料,2004,(6):1-5.
    2.苏鸿英.轻金属——汽车减重的最佳材料[J],世界有色金属,2004,(7):56-59.
    3.景艳,赵培全,何平.汽车新材料的应用——轻量化[J],现代制造技术与装备,2007,(1):75-78.
    4.曹红兵.汽车材料的发展方向综述[J],安庆师范学院学报(自然科学版),2000,6(2):86-88.
    5.由剑.汽车材料国产化及轻量化问题探讨[J],汽车工艺与材料,2007,(4):7-8.
    6.鲁春艳.汽车轻量化技术的发展现状及其实施途径[J],上海汽车,2007,(6):28-31.
    7.邓泽英.汽车材料应用发展趋势[J],中国机电工业,2002,(9):29-31.
    8.肖永清.轻金属材料在汽车上的开发应用前景[J],有色金属加工,2006,3(6):3-6.
    9.袁序弟.轻金属材料在汽车上的应用[J],汽车工艺与材料,2002,(8/9):30-33.
    10.陆刚.铝、镁、钛合金材料在汽车工业中的应用和发展[J],上海有色金属,2006,27(2):43-48.
    11.马鸣图,李志刚,易红亮等.汽车轻量化及铝合金的应用[J],世界有色金属,2006,(10):10-14.
    12.王祝堂.轻金属材料在超级轿车中的应用[J],铝加工,1996,(4):3940.
    13.敖炳秋.轻量化汽车材料技术的最新动态[J],汽车工艺与材料,2002,(Z1):1-21.
    14.彭晓东,李玉兰,刘江.轻合金在汽车上的应用[J],机械工程材料,1999,23(2):1-4.
    15.杨忠敏.谈现代汽车的材料及其轻量化技术[J],汽车研究与开发,2003,(6):51-55.
    16.高亚楠,温龙飞.浅谈汽车材料的轻量化发展态势[J],汽车工业研究,2007,(3):33-35.
    17.李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J],钛工业进展,2004,21(5):19-24.
    18.李文平.钛合金的应用现状及发展前景[J],轻金属,2002,(5):53-55.
    19.潘复生,张丁非.铝合金及应用[M],化学工业出版社,2006.
    20.刘静安,谢水生.铝合金材料的应用与技术开发[M],冶金工业出版社,2004.
    21.刘静安.铝加工行业的技术创新与产品开发新方向[J],铝加工,2001,24:1-4.
    22.唐远景.我国铝及铝合金的应用及趋势浅析[J],轻金属,1994,(5):61-64.
    23.杜明义.用铝合金材料实现汽车轻量化[J],轻合金加工技术,2007,35(2):11,51.
    24.孙丹丹.铝合金—未来汽车材料的先导[J],上海汽车,2003,(6):38-40.
    25.郭学锋,魏建锋,张忠明.镁合金与超高强度镁合金[J],铸造技术,2002,23(3):133-136.
    26.杨波,张伟强.镁合金熔体防氧化燃烧技术的进展[J],铸造,2001,53(11):36-38.
    27.王渠东,丁文江.轿车用阻燃镁合金的研制[J],材料导报,2000,14(特刊):53-56.
    28. Mordike B L, Ebert T. Magnesium Properties - applications-potential[J], Materials Science and Engineering A,2001,302(1):37-45.
    29. Aghino E, Bronfin B, Eliezer D, et al. The art of development new magnesium alloys for high temperature application [J], Materials Science Forum,2003,419-422:407-417.
    30.刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M],北京:机械工业出版社,2002.
    31.陈振华,严红革,陈吉华等.镁合金[M],北京:化学工业出版社,2004.
    32.刘静安,徐河.镁合金材料的应用及其加工技术的发展(2)[J],轻合金加工技术,2007,35(9):1-5.
    33.向群,屈伟平.镁合金的发展与应用[J],有色设备,2004,(5):38-43.
    34.杨程,杜红星,刘晓平.镁合金在3C产品中应用现状及前景展望[J],铸造设备研究,2005,(6):46-49.
    35.阎峰云,张玉海.镁合金的发展及其应用[J],设计与研究,2007,4:13-15.
    36.曾小勤,王渠东,吕宜振等.镁合金应用新进展[J],铸造,1998,(11):39-43.
    37.李轶,程培元,华林.镁合金在汽车工业和3C产品中的应用[J],2007,21(2):30-33.
    38.訾炳涛,王辉.镁合金及其在工业中的应用[J],稀有金属,2004,28(1):229-232.
    39.王智文,张治民,张星.镁合金的应用现状及其塑性成形技术[J],华北工学院学报,2005,26(1):70-74.
    40.许小忠,刘强,程军.镁合金在工业及国防中的应用[J],华北工学院学报,2002,23(3):190-192.
    41. Kojima Y. Project of platform science and technology for advanced magnesium alloys[J], Materials Transactions,2001,42(7):1154-1159.
    42.刘晋春,赵家齐.特种加工(第二版)[M],北京:机械工业出版社,1994.
    43. Song G, Atrens A, Wu X et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J], Corrosion Science,1998,40(10):1769-1791.
    44. Bonora P L, Andrei M, Eliezer A et al. Corrosion behaviour of stressed magnesium alloys[J], Corrosion Science,2002,44(4):729-749.
    45. Song G, Atrens A, Stjohn D et al. Electrochemical corrosion of pure magnesium in 1N NaCl[J], Corrosion Science,1997,39(5):855-875.
    46. Udhayan R, Devendra, Prakash B.On the corrosion behaviour of magnesium and its alloys using electrochemical techniques[J], Journal of Power Sources,1996,63(1):103-107.
    47. Guo X W, Ding W J, Lu C. Influence of ultrasonic power on the structure and composition of anodizing coatings formed on Mg alloys[J], Surface and Coatings Technology,2004,183(2-3): 359-368.
    48.刘永锋.机械工程材料的表面处理方法[J],煤炭技术,2008,27(5):22-23.
    49.高波,郝胜智,董闯等.镁合金表面处理研究进展[J],材料保护,2002,36(1):1-3.
    50.韩夏云,龙晋明,薛方勤等.镁及镁合金应用与表面处理现状及发展[J],轻金属,2003,(2):48-51.
    51.周鼎华.铝合金表面处理技术新进展[J].热处理技术与装备,2006,27(4):10-15
    52.余美琼.铝及铝合金表面处理技术新进展[J].化学工程与装备,2008,(6):84-88
    53.付宇,侯明,明平文,衣宝廉等.铝合金表面处理新工艺[J],腐蚀科学与防护技术,2008,20(1):65-67.
    54.梁春林,刘宜汉,韩变华等.镁合金表面处理研究现状及发展趋势[J],表面技术,2006,35(3):57-64.
    55. Elgar Martin R. Surface treatment of magnesium alloys for aerospace applications[J], Foundry Trade Journal,1988,162(3373):554-563.
    56. Hawkeq D, Albright D L. Phosphate permanganate conversion coating for Magnesium [J], Metal Finishing,1995,93(10):4.
    57.程瑾宁,孙伶,胡会利等.镁合金无铬化学转化膜工艺研究现状[J],电镀与精饰,2008,(2):11-16.
    58.王桂香,张密林,董国君等.镁合金表面化学转化膜的研究进展[J],材料保护,2008,41(1):46-51.
    59.杨延华,杨专钊,丁毅.等离子体微弧氧化技术概述[J],西安航空技术高等专科学校学报,2008,26(3):34-35.
    60.韦星,吴幸凯,植海深等.铝及其合金表面微弧氧化工艺的研究进展[J],煤矿机械,2008,29(9):10-13.
    61.王志刚,朱瑞富,吕宇鹏等.钛、镁、铝合金的表面微弧氧化技术[J],陶瓷,2007,(1):17-20.
    62.张恒华.有色金属表面微弧氧化技术[J],热处理,2008,(2):5.
    63.来永春,施修龄,华铭.铝合金表面等离子微弧氧化处理技术[J],电镀与涂饰,2003,22(3):1-3.
    64.蒋百灵,张淑芬,吴国建等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性[J],中国有色金属学报,2002,2(3):454-457.
    65.张淑芬,张先锋,蒋百灵.镁合金微弧氧化陶瓷层形成及生长过程的研究[J],中国表面工程,2004(1):35-38.
    66.曹发和,张昭,施彦彦等.镁合金阳极氧化膜的微观结构与耐蚀性能研究[J],浙江大学学报,2006,40(4):629-633.
    67.王立世,潘春旭,蔡启舟等.镁合金表面微弧氧化陶瓷膜的腐蚀失效机理[J],中国腐蚀与防护学报,2008,28(4):219-224.
    68.刘新宽,向阳辉,胡文彬等.镁合金化学镀工艺研究[J],电镀与涂饰,2004,23(5):16-18.
    69.石磊,石勇,董新民.铝及铝合金电镀[J],表面技术,2007,36(4):87-88.
    70.秦伟,张吴.铝及其合金电镀硬铬工艺探讨[J],电镀与环保,2008,28(4):13-15
    71.韩锦.有机涂层[J],材料保护,1992,25(12):4548.
    72.李保成,张星,马丹.镁合金有机涂层特性研究[J],新技术新工艺,2006,(5):85-86.
    73.刘宏伟.有机涂层电化学快速评价方法及其失效机制的研究[J],腐蚀科学与防护技术,1992,(3):216.
    74.逯丹,刘铸,王春光.喷丸强化原理与表层材料性能[J],中国高新技术企业,2008,(14):104.
    75.维尔贝莱特(集团).喷丸强化技术的应用[J],金属加工,2008,(19):33.
    76.冯忠信,何家文,张建中等.ZM1镁合金的滚轧形变强化及机理[J],机械工程学报,1996,32(1):103-108.
    77.冯忠信,张建中,陈新增.ZM1镁合金的表面滚压强化[J],金属学报,1994,30(9):422-426.
    78. Altenberger B, Scholters. Improvement of Fatigue Behaviour of Machanically Surface Treatmented Materials by Annealing[J], Scripta Materialia,1999,41(8):873-881.
    79. Dube D, Eiset M, Couture A et al. Characterization and perfonnance of laser melted AZ91D and AM60B[J], Materials Science and Engineering A,2001,299(1-2):38-45.
    80.丁阳喜,周立志.激光表面处理技术的现状及发展[J],热加工工艺,2007,36(6):69-72.
    81.廖宁,肖泽辉.镁合金激光表面处理技术的应用[J],表面技术,2008,37(3):68-70.
    82.陈菊芳,张永康,许仁军.镁合金激光表面处理的研究进展[J],激光技术,2008,32(3):293-295.
    83.姚建华.铝合金激光表面处理技术及其发展新[J],技术新工艺,1994,(1):39-40
    84.李智,马椿喻,刘相华等.激光表面合金化工艺进展[J],材料科学与工程,1999,17(2):81-84.
    85.王明红.离子束增强沉积表面处理方法探索[J],上海工程技术大学学报,2000,14(3):200-204
    86.杨建华,顾卫标,张通和.表面处理的新方法—强束流脉冲金属离子束处理技术[J],机械工程师,1996(6):11-12
    87. Stippich F, Vera E, Wolf G K et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation[J], Surface and Coatings Technology,1998, 103-104(1):29-35.
    88. Bruckner J,Giinzel R,Richter E et al. Metal plasma immersion ion implantation and deposition(MPIIID):chromium on magnesium[J],Surface and Coatings Technology,1998,103-104(1): 227-230.
    89. Proskurovsky D I, Ozur G E,Rotshtein V P. Low-energy high-current electron beams:production and application[J], IEEE International Conference on Plasma Science,1998:252-253.
    90. Eagar T W. Electron beam and laser beam materials processing in Japan[J], Welding Journal,1986, 65(7):19-31.
    91.丛欣,朱穗东,刘春梅等.电子束淬火在9SiCr冷挤模具上的应用[J].新技术新工艺,1992,6:7-13.
    92.赵晖,王涛.脉冲电子束对高速钢表面组织的影响[J],金属热处理,2004,29(6):51-54.
    93.邹慧,关庆丰,张庆瑜等.利用强流脉冲电子束对45钢进行表面改性[J],吉林大学学报,2004,34(1):127-131.
    94.吴爱民,陈景松,张爱民等.模具钢电子束表面改性研究[J],核技术,2002,25(8):608-614.
    95.吴爱民,刘捍卫,邹建新等.D2钢电子束表面改性抗微动磨损性能研究[J],核技术,2002,25(9):758-765.
    96.胡传顺,陈晓风,孙长义.电子束表面熔凝处理钛镀镍合金的组织与溶质浓度分布[J],金属热处理,2000,(7):11-12.
    97.胡传顺,王福会,吴维弢.电子束表面熔凝处理对镍基高温合金熔凝层组织及其抗高温氧化性能的影响[J],金属热处理,2001,26(7):20-22.
    98.郝胜智,钟溥,董闯.强流脉冲电子束材料表面改性技术[J],真空与低温,2001,7(2):77-80.
    99.赵晖,王涛.纯铝脉冲电子束表面强化研究[J],沈阳工业学院学报,2003,22(4):43-45.
    100.高波,郝胜智,姜利民等.镁合金AZ91HP强流脉冲电子束表面处理及其抗蚀性能研究[J],材料热处理学报,2004,24(4):67-71.
    101.王秀敏,韩会民,高波等.镁合金AZ91HP电子束表面改性EPMA分析[J],电子显微学报,2005,24(1):46-49.
    102.赵晖,廖惠敏.钛合金脉冲电子束表面处理.新技术新工艺[J],2005,(1):53-54.
    103.赵铁钧,高波,田小梅等.纯镁强流脉冲电子束表面改性及合金化研究,真空科学与技术学报,2008,28(1):11-15.
    104.赵铁钧,高波,涂赣峰等.纯镁强流脉冲电子束表面改性,东北大学学报,2007,28(增):198-201.
    105.石其年.45钢电子束表面合金化处理研究[J],黄石理工学院学报,2007,23(1):16-22.
    106.张可敏,邹建新,杨大智.316L不锈钢强流脉冲电子束表面钛合金化及其耐蚀性[J],材料热处理学报,2006,27(5):108-114.
    107.陈迎春,冯吉才.TiAl合金电子束表面合金化层组织和性能研究[J],稀有金属材料与工程,2005,34(12):1969-1073.
    108.陈迎春,冯吉才.电子束表面合金化制备Ti5Si3/TiAl复相合金改性层[J],中国有色金属学报,2004,11(11):1839-1843.
    109.邹建新,吴爱民,刘振民等.钢的强流脉冲电子束表面快速渗铝及其抗氧化性能[J],大连理工大学学报,2003,43(5):555-560.
    110.M V Radchenko,刘治刚译.用电子束表面处理技术使铝硅合金活塞表面产生硬化层[J],柴油机,2002,(1):43-45.
    111.[俄]M B P用电子束堆焊法强化铝硅合金活塞表面[J],国外机车车辆工艺,2001,(1):18-20.
    112.唐敦乙,林书锉,刘志敏.强流荷电粒子束技术与应用 [M],北京:电子工业出版社,1995.
    113.胡传顺,陈晓风,孙长义.电子束表面超快速熔凝冷却速率对形成非晶层的影响[J],石油化工高等学校学报,1997,10(4):52-58.
    114.杨志卿,金志雄,陈吉等.电子束辐照诱发纳米Al/Al2O3复合颗粒中A1非晶化的纳米束斑原位分析[J],金属学报,2001,37(9):897-899.
    115. Little R G, Greenwald, Minnucci J A. Pulsed electron beams for annealing of ion implanted silicon[J], IEEE Transactions on Nuclear Science,1978,26:1683-1685.
    116. Greenwald A C, Kirkpatrick A R, et al. Pulsed-electron-beam annealing of ion-implantation damage[J], Journal of Applied Physics,1979,50:783-787.
    117. Jerkins J E. Surface modification by electron beam glazing. Thin Solid Films,1981,84:341-346.
    118. Jun Cheol Oh, Kwangjun E, et al. Hardness improvement of TiB2Ti surface-alloyed materialfabricated by high-energy electron beam irradiation[J], Scripta Material,1998,39(10): 1389-1394.
    119. Kowalski Z W. Use of scnning electron microscopy to study the ion beam sputter modification of thesurface topography of biological implants[J], Journal of Materials Science,1982,17:2599-2604.
    120. Kennedy E F, Lau S S. Pulsed electron beam annealing of ion implanted Si layers[J], Radiation Effects Letters,1979,43:31-36.
    121. Dumas M, Benkacem M, Lassabatere L. Modifications of InP(110) surfaces induced by electron beamduring Auger measurement Thin Solid Films[J],1989,172:L65-70.
    122. Engelko V, Mueller G. Influence of particle fluxes from a target on the characteristics of intenseelectron beams[J], Vacuum,2001,62(2-3):97-103.
    123. Bethe H A. Theory of passage of swift corpuscular rays through matter[J], Annual Physik,1930, 5:325-400.
    124.高本辉、崔索言.真空物理[M],科学出版社,1983,12.
    125. Giinzel R, Rogozin A I, Astrelin V T. Fast, uniform and large-scale heat treatment by plasma-based electrons[J], Vacuum,2002,65:59-65.
    126江兴流,韩丽君,陈思富.纳秒赝火花脉冲电子束烧蚀法制备铌酸锂薄膜,仪器仪表学报,1996,17(S1):203-205.
    127.郝胜智.纯铝材强流脉冲电子束表面改性的研究[D],大连理工大学博士学论文,2000.
    128. Hao S, Yao S, Guan J. Surface treatment of aluminum by high current pulsed electron beam[J], Current applied physics,2001,1:203-208.
    129. HAO S Z, GAO B, WU A M et al. Surface treatment of materials with high current pulsed electron beam[J], The 5th Pacific Rim International Conference on Advanced Materials and Processing,2004, 11:3959-3962.
    130.吴爱民.模具钢电子束表面改性及应用基础研究[D],大连理工大学博士学位论文,2003,3.
    131.邹建新,吴爱民,刘振民等.H13钢电弧沉积铝膜及强流脉冲电子束后处理的复合改性研究[J],真空科学与技术,2003,23(2):94-95.
    132. Aimin WU, Hanwei LIU, Jianxin ZOU, Zhongrong ZHOU, Chuang DONG, Fretting wear behavior of D2 die steel after surface modification by High Current Pulsed Electron Beam,3rd International Conference on Surface Engineering(Cheng Du), Oct.11-13,2002:392-396
    133.邹建新.强流脉冲电子束表面改性过程数值模拟[D],大连理工大学硕士学位论文,2003.
    134. Zou J, Qin Y, Dong C et al. Numerical simulation of the thermal-mechanical process of high current pulsed electron beam treatment[J], Journal of Vacuum Science and Technology A,2004,22(3): 545-552.
    135.邹建新,刘振民,吴爱民等.脉冲电子束辐照中增强扩散效应的数值计算[J],材料热处理学报,2003,(2):70-74.
    136.秦颖.强流脉冲电子束材料改性机制及数值模拟[D],大连理工大学博士学位论文,2004,7.
    137.秦颖.王晓钢.董闯等.强流脉冲电子束诱发温度场及表面熔坑的形成[J],物理学报,2003,52(12):3043-3048
    138. Qin Y, Dong C, Wang X et al. Temperature profile and crater formation induced in high current pulsed electron beam processing[J], Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,2003,21 (6):1934-1938.
    139. GAO Bo, HAO Shengzhi, ZOU Jianxin et al.High Current Pulsed Electron Treatment of AZ31 Mg Alloy[J], Journal of Vacuum Science and Technology,2005,23(6):1548-1553
    140. GAO Bo, HAO Shengzhi, Zou Jianxin et al.Improvement of wear resistance of magnesium alloy AZ31 and AZ91HP by high current pulsed electron beam treatment[J], Transaction of Nonferrous Metals Society of China,2005,15(5):978-984
    141. GAO Bo, HAO Shengzhi, ZOU Jianxin et al.Improvement of wear resistance of magnesium alloy AZ91HP by high current pulsed electron Beam treatment [J], The 14th International Federation for Heat Treatment and Surface Engineering Congress,2004,10.
    142.张可敏,杨大志,邹建新等.316L不锈钢强流脉冲电子束表面改性研究—表面选择净化及机理[J],金属学报,2007,43(1):64-70.
    143.张可敏,邹建新,杨大志.316L不锈钢强流脉冲电子束钛合金化及其耐蚀性[J],材料热处理,2007,43(1):64-70.
    144. K.M.Zhang, D.Z.Yang, J.X.Zou, T.Grosdidier, C.Dong. Improved in vitro corrosion resistance of a NiTi alloy by high current pulsed electron beam treatment[J], Surface and Coatings Technology 2006:201 (3-4):1393-1400.
    145. K.M.Zhang, J.X.Zou, T.Grosdidier, D.Z.Yang, C.Dong. Surface modification of a Ni (50.6at%) Ti alloy by high current pulsed electron beam treatment[J], Journal of Alloys and Compounds,2007:434-435(spec):682-685
    146.关庆丰,安春香,秦颖等.强流脉冲电子束辐照下单晶铝中的堆垛层错四面体[J],物理学报,2005,54(8):3927-3933.
    147.关庆丰,安春香,张庆瑜等.结构缺陷对电子束诱发纯铝表面熔坑的影响[J],材料研究学报,2005,19(5):492-498.
    148. Q. F. Guan, H. Zou, G. T. Zou et al. Surface nanostructure and amorphous state of a low carbon steel induced by high-current pulsed electron beam[J], Surace and Coatings technology,2005,196: 145-149.
    149. Q.F Guan, L. Pan, H. Zou et al. Stacking fault tetrahedra in aluminum[J], Journal of Material Science,2004,39:6349-6351.
    150.马林斯基.新型电子束物理气相沉积设备[J],航空工艺技术,1998,(2):31-38.
    151. Nazarov, D S, Ozur G E, Proskurovsky D I. Production of low-energy high-current electron beams in a reflected-discharge plasma.anode gun[J], Digest of Technical Papers-IEEE International Pulsed Power Conference,1997,2:1335-1340.
    152. Batrakov A V, Popov S A, Proskurovsky D I. Simple high-repetitive-rate pulsed electron-beam source[J],Digest of Technical Papers-IEEE International Pulsed Power Conference,1997,2: 1329-1334.
    153.徐佐仁.电子束热处理技术的进展[J],国外金属热处理,1987,(6):63-65.
    154.出田隆洋,熊谷泰.电子束表面热处理[J],兵器材料科学与工程,1989,(3):63-68.
    155.廖乾初.表面处理技术现状及其在材料科学中的应用[J],兵器材料科学与工程,1988,(3):10-17.
    156. Batrakov A V, McDaniel D H, Nazarov D S. Enhancement of the electric strength of vacuum insulation by pulsed electron beam treatment[J], Digest of Technical Papers-IEEE International Pulsed Power Conference,1997,1:519-524.
    157. Lyutovich, Maile K, Gusko A, et al. Characterisation of the generation of ions in electron beam evaporator for the control of metal-deposition processes[J], Surface and Coatings Technology, 2002,151-152:105-109.
    158. Ainley E, Nordquist K, Resnick D J et al. Process optimization of a chemically amplified negative resist for electron beam exposure and mask making applications [J], Microelectronic Engineering, 1999,46(1-4):375-378.
    159.张荣发,单大勇,韩恩厚.一种耐腐蚀性镁合金微弧氧化电解液及其微弧氧化方法[P],中国专利:200410100410.X,2004-12-20.
    160.王维青.合金元素对ZK60镁合金第二相的影响[D],重庆大学硕十学位论文,2005.
    161.姜利民.强流脉冲电子束处理冷轧纯铜及361L不锈钢的表层显微结构分析[D],大连:大连理工大学硕士论文,2006.
    162.房灿峰,张兴国,于延浩等.镁合金的性能、成形技术及其应用研究[J],金属热处理,2006,31(3):12-16.
    163. Ying Qin, Chuang Dong, Xiaogang Wang et al. Temperature profile and crater formation induced in high current pulsed electron beam processing [J], Vacuum Science and Technology A: Vacuum, Surfaces and Films,2003,21 (6):1934-1938.
    164.秦颖,吴爱民,邹建新等.强流脉冲电子束轰击产生表面熔坑的数值模拟研究[J],材料热处理学报,2003,24(1):85-89.
    165.秦颖,吴爱民,邹建新等.强流脉冲电子束表面改性的物理模型及数值模拟[J],强激光与粒子束,2003,15(7):701-704.
    166. Schiller S, Heisig U, Panzer S. Electron Beam Technology [M], A Wiley-Interscience Publication, 1982:29-42.
    167. Proskurovsky D I, Rotshtein V P, Ozur G E, et al. Pulsed electron-beam technology for surface modification of metallic materials [J], Vacuum Science and Technology A,1998,16 (4):2480-2488.
    168.吴爱民,刘捍卫,邹建新等.D2钢电子束表面改性抗微动磨损性能研究[J],核技术,2002,25(9):758-765.
    169. Hehmann F, Sommer F, Predel B. Extension of solid solubility in magnesium by rapid solidification[J], Materials Science and Engineering A,1990, A125(2):249-265.
    170.刘政军,苏允海,刘铎等.镁合金及其成型技术综述[J],沈阳工业大学学报,2006,28(1):14-20.
    171. Vogel M, Kraft O, Kraft O, et al. Quasi-crystalline Grain-boundary Phase in the Magnesium Die-cast Alloy ZA85 [J], Scripta Materialia,2001,45(5):517-524.
    172. Bae D H, Kim W T. High strength Mg-Zn-Y Alloy Containing Quasi-crystalline Particles [J], Materials Transaction,2001,42(10):2144-2147.
    173.关绍康,王利国,朱世杰等.快速凝固合金的研究发展趋势[J],现代铸铁,2004,(4):22-26.
    174. Liang D, Cowley C B. The Twin-Roll Strip Casting of Magnesium [J], Journal of the Minerals, Metals and Materials Society,2004,56(5):26-28.
    175. Sklenicka V, Pahutova M, Lucharova K, et al. Creep of reinforced and unreinforced AZ91 magnesium alloy [J], Key Engineering Materials,2000,171(1):593-600.
    176.杨晓华.不同工艺制备的ZK60镁合金腐蚀性能研究[D],西安:西安理工大学,2007.
    177. Slonova A L, Terleeva O P, Shulepko E k et al. Certain specific feature of the formation of microarc coatings [J], Elektrochimiya.1992,28(9):1280.
    178. Nie X, Leyland A, Song H W, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys [J], Surface and coatings Technology.1999,116-119: 1055-1060.
    179.朱立群.功能膜层的电沉积理论与技术[M],北京航空航天大学出版社,北京,2005.
    180. Writz G P, Brown S D, Kriven W M. Ceramic Coating by Anodic Spork Deposition [J], Material Manufacture Process,1991,6(1):87-115.
    181.郦振声,杨明安.现代表面工程技术[M],北京:机械工业出版社,2007,128-141.
    182. WOOD G C, PEARSON C. Short communication die-electric breakdown of anodic oxide films on valve metals [J], Corrosion Science,1967,7:119-125.
    183. William G.. Fahrenholtz, Matthew J. O'Keefe, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys [J], Surface and coatings Technology,2002, 155(2-3):208-213.
    184.张荣发,单大勇,韩恩厚等.电流模式对镁合金微弧氧化膜性能的影响[J],稀有金属材料与工程,2006,35(9):1392-1395.
    185. Hsiao H Y, Tsai W T. Characterization of anodic films formed on AZ91D magnesium alloy [J], Surface and Coatings Technology,2005,190(2-3):299-308.
    186. Mizutani Y, Kim S J, Ichino R et al. Anodizing of Mg alloys in alkaline solutions [J], Surface and Coatings Technology,2003,169-170:143-146.
    187.蔡宗德,张连方,孙建荣.过共晶铝硅合金的生产及其应用.特种铸造及有色合金[J],1990,(4):37-39.
    188.赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用[J],汽车工艺与材料,2001,(10):21-24.
    189.杨留栓.国内外活塞材料浅析[J],铸造技术,1987(6):38-41.
    190.李应堂.现代汽车铝铸件[M],上海:上海科学技术出版社,1990.
    191. S.HENRY,T.MINGHETTI,M.RAPPAZ.Dendrite growth morphologies in aluminum alloys[J], Acta materialia,1998,46(18):6434-6443.
    192.杨利兴.铝硅合金强流脉冲电子束表面改性研究[D],沈阳:东北大学学十学位论文,2008.
    193. Amano N,Odani Y, Takeda Y, et al. Development of wear-resistant rapid-solidified PM aluminum alloy [J].MPR,1989,6:186-190.
    194.谢壮德,沈军.董寅生等快速凝固铝硅合金的制备、组织特征及断裂行为[J],粉末冶金技术,2000,18(5):111-115.
    195.赵爱民,毛卫民,,甄子胜等.冷却速度对过共晶铝硅合金凝固组织和耐磨性能的影响[J],中国有色金属学报,2001,11(5):828-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700