用户名: 密码: 验证码:
铝合金表面钛锆—有机膦酸盐复合膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代经济的各个领域中,铝及其合金被广泛使用,成为了其使用量仅次于钢铁的第二大类金属材料。为了防止铝及其合金的腐蚀,通常采用铬酸盐钝化技术在铝及其合金表面形成铬酸盐钝化膜,但铬酸盐钝化膜含有六价铬,对环境污染严重,对人体危害大,世界各国纷纷出台政策法规限制或禁止铬酸盐钝化技术的使用,并要求使用环保的无铬钝化技术用于铝及其合金的腐蚀防护。在无铬钝化技术的实践选择中,钛锆基的无铬钝化体系逐渐显示出良好的工业应用前景,但是钛锆基钝化膜的耐蚀性和油漆附着力远不及铬酸盐钝化膜,不能满足许多使用条件下对制备技术和性能的要求。为了研发出环保型、高性能、低成本的无铬钝化新技术。本论文基于钛锆基钝化技术进行了优化和改进,提出了钛锆盐-有机膦酸盐的复合处理技术。利用有机膦酸分子的化学特性与钛锆钝化膜相杂化,获得一层疏水性的有机膦酸盐膜层,强化钛锆钝化膜与油漆间的附着力,同时使得整个涂层体系具有更好的腐蚀防护性能。
     本论文以AA6061铝合金为试验基材,主要采用一步成膜法,即有机膦酸作为添加剂添加到钛锆基处理液中处理铝合金以获得钛锆钝化膜与有机膦酸盐膜相杂化的复合膜。为了验证一步成膜法获得的钛锆-有机膦酸盐复合膜的性能与结构,本论文又采用了两步成膜法与一步成膜法进行对比研究,即有机膦酸作为后处理剂,对钛锆钝化膜进行二次有机膦酸封闭处理获得钛锆-有机膦酸盐复合膜。同时,本论文也研究了A356合金表面的钛锆-有机膦酸盐复合膜以及AA6061合金表面的自组装有机膦酸盐膜的涂漆性能。利用扫描电子显微镜(SEM)及附带的能谱分析(EDAX)、原子力显微镜(AFM)、激光共聚焦显微镜(LSCM)、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)等分析手段系统深入地研究了所成膜的表面形貌、元素构成、化学结合状态和相关机理。利用点滴试验、中性盐雾试验(SST)和电化学测试等腐蚀试验手段考察了所成膜的耐蚀性能和涂漆性能。
     利用单因素实验和正交实验,对处理液的配方进行了设计和优化,确定了处理液的基本组成及用量;确定了有机膦酸的种类及用量;优化了一步成膜法所成膜的制备工艺。利用电化学测试和盐雾试验研究了复合膜的耐蚀性能,电化学结果表明,一步法优于两步法,一步法所成膜的耐腐蚀性能与铬酸盐膜相当。盐雾试验结果表明,未涂漆的一步法所成膜的耐盐雾性能与两步法所成膜相当。利用SEM和AFM分析了复合膜的表面形貌,结果表明,一步法和两步法所成膜都为连续膜。利用FTIR和XPS分析了复合膜的结构,结果表明,一步法和两步法所成膜的结构都为钛锆钝化膜和有机膦酸盐膜相互杂化构成的复合结构。利用浸泡试验和盐雾试验研究了复合膜的涂漆性能,结果表明,钛锆-有机膦酸盐复合膜与油漆间的附着力明显提高,涂漆后的钛锆-有机膦酸盐复合膜能有效抑制涂层的起泡和脱漆,提高涂层的耐蚀性能,与涂漆后的六价铬酸盐膜性能相当。
     利用浸泡试验和盐雾试验研究了钛锆-有机膦酸盐复合膜/油漆体系对A356合金的防护性能,结果表明,涂漆后的钛锆-有机膦酸盐复合膜能提高A356合金的附着力性能和耐蚀性能。
     对有机膦酸自组装分子技术在AA6061合金上的应用进行了探讨,结果表明,氨基三甲叉膦酸能在铝合金表面自组装形成氨基三甲叉膦酸盐膜,涂漆后的氨基三甲叉膦酸盐膜的耐盐雾性能和附着力性能与涂漆后的六价铬酸盐膜相当。
     总之,一步法所成的钛锆-有机膦酸盐复合膜的结构与二步法所成膜相同,具有独特结构和优异性能。结构都为钛锆钝化膜和有机膦酸盐膜相互杂化构成的复合结构。涂漆后的钛锆-有机膦酸盐复合膜的附着力明显提高,有效抑制涂层的起泡和脱漆,提高了整个涂层的耐蚀性能,与涂漆后的六价铬酸盐膜性能相当。钛锆-有机膦酸盐复合膜具有优异性能的机理在于不同结构的膜层间的协同作用,使复合膜具有更优异的机械阻碍作用及其电绝缘,有效地抑制了氧和电子的自由扩散和迁移,阻碍Cl-的渗入,提高了铝合金的耐蚀性能。涂漆后,复合膜结构中的有机膦酸盐膜层能够与油漆中的有机树脂通过共价键连接,增加了整个涂层体系的附着力,阻止了水、氧、Cl-的侵入,抑制腐蚀引起的电渗透作用,避免了起泡和脱漆等现象的发生。
Aluminum and aluminum alloy are widely applied on every field of modern economy; its usage quantity is the second only next to steel material. As it well known, the chromate passivation technique is proverbially used for the corrosion resistance of aluminum and aluminum alloy. However, the chromate passivation films contains hexavalent chrome which is a kind of extremely poisonous to environment and carcinogenic to the body, many countries in the world have released some policies or laws to restrict or forbid the usage of chromate passivation technique and appealed to use chrome-free passivation technique. In the practice choice of chrome-free passivation technique, the titanate and/or zirconate passivation system showed gradually nicer foreground of industrial application, but its corrosion resistance and adhesion to paint are so far from chromate passivation films that it can not meet needs of preparation technique and performance in many usage condition. For the sake of researching and developing environmental-friendly and high-performance and low-cost chrome-free passivation technique, the titanate-zirconate and organophosphonate composite treatment technique was put forward on the base of optimizing and improving the titanate-zirconate passivation technique in this paper. A hydrophobic layers hybridized with the titanate-zirconate films was obtained using chemistry characteristic of an organophosphonic acid to intensify the adhesion to paint and improve the corrosion resistance of the whole coatings system.
     AA6061 aluminum alloy in this paper was mainly investigated by one-step method, namely, an organophosphonic acid was added to the titanate-zirconate treatment solution as addition reagent and the titanate-zirconate organophosphonate hybrid films was obtained on AA6061 aluminum alloy. The two-step method was studied to contrast the performance and structure of the titanate-zirconate organophosphonate hybrid films obtained by one-step method, namely, the organophosphonic acid as post-treatment reagent was used to block off the titanate-zirconate films on AA6061 aluminum alloy. The paint performance of the titanate-zirconate organophosphonate hybrid films with paint on A356 aluminum alloy and a self-assemble organophosphonate layers with paint on AA6061 aluminum alloy was investigated, too.
     The morphology, element composition, chemistry state and corresponding mechanism were systematically investigated by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDAX), atomic force microscopy (AFM), laser scanning confocal microscope (LSCM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance and paint performance were explored by the methods of dropping test, neutral salt spray test and electrochemical test.
     The composition of the treatment solution was designed and optimized by single factor test and orthogonal test; The basic composition and concentration of the treatment solution were confirmed; The kind and concentration of organophosphonic acid were determined; The preparation technique parameters of the hybrid films obtained by one-step method was researched. The corrosion resistance performance of the hybrid films was evaluated by electrochemical test and salt spray test. The electrochemical results show that one-step method is better than two-step method, the hybrid films obtained by one-step method is good as the chromate passivation films. The salt spray test results show that the hybrid films by one-step method without paint is similar to the hybrid films by two-step method without paint. The morphology of the hybrid films was observed by SEM and AFM, the test results show that the hybrid films by one-step method and two-step method are both continuous films. The characterization and structure of the hybrid films were analyzed by FTIR and XPS, the test results show that the structure of the hybrid films by one-step method and two-step method are both hybrid composite structure of the titanate-zirconate films and organophosphonate films. The paint performance of the hybrid films was evaluated by adhesion test, dipping test and neutral salt spray test, the results show the adhesion of the hybrid films to paint is obviously increased compared with the titanate-zirconate films, the blistering and de-painting are effectively restrained, the corrosion performance of the hybrid films is advanced and similar to the chromate passivation films with paint.
     The performance of the titanate-zirconate organophosphonate hybrid films/paint system on A356 alloy was investigated by dipping test and neutral salt spray test. The results show that the titanate-zirconate organophosphonate hybrid films can improve the adhesion and the corrosion resistance on A356 aluminum alloy.
     The application of the organophosphonic acid as a self-assemble molecular technique (SAM) on AA6061 aluminum alloy was explored. The aminotrimethylene phosphonate films were formed by aminotrimethylene phosphonic acid adsorption on the surface of AA6061 aluminum alloy. The results show that the corrosion resistance and the adhesion of the aminotrimethylene phosphonate films with paint have a similar performance comparing with the chromate passivation films with paint.
     To sum up, the structure of the titanate-zirconate organophosphonate hybrid films obtained by one-step method is similar to two-step method, which have particular structure and superior performance. The structure is hybrid composite structure of the titanate-zirconate films and the organophosphonate films. The adhesion to paint of the titanate-zirconate organophosphonate hybrid films is obviously advanced, the blistering and de-painting are effectively restrained, and the corrosion resistance performance is similar to the chromate passivation films with paint. The mechanism of the the hybrid films having superior performance rests with synergy effects between different structure films. This structure make the hybrid films have more superior barrier and insulation, block off infiltration of Cl- ion and improve the corrosion resistance. After coated paint, the organophosphonate films in the structure of the hybrid films can link with the resin in the paint by covalence bond, improve the corrosion resistance of the whole coatings system, block off infiltration of H2O, O2 and Cl" ion, restrain electroosmosis and avoid blistering and de-painting.
引文
[1]安百刚,张学元,韩恩厚等.铝和铝合金的大气腐蚀研究现状[J],中国有色金属学报,2001,11(s2):11-15.
    [2]马腾,王振尧,韩薇.铝和铝合金的大气腐蚀[J],腐蚀科学与防护技术,2004,16(3):155-161.
    [3]王祝堂.世界汽车用铝状况及发展趋势[J],铝加工,2001,24(1):10-14.
    [4]刘希燕,蒋健明,陈正涛等.铝合金防腐保护研究进展[J],现代涂料与涂装,2007,10(12):11-13.
    [5]刘静安,谢水生.《铝合金材料的应用与技术开发》[M],北京:冶金工业出版社,2004.
    [6]李金桂,吴再恩.防腐蚀表面工程技术[M],北京:化学工业出版社,2003.
    [7]Twite R L, Bierwagen G P. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys [J], Prog. Org. Coat.,1998,33:91-100.
    [8]朱祖芳.铝合金阳极氧化与表面处理技术[M],北京:化学工业出版社,2004.
    [9]朱祖芳.建筑铝型材聚合物膜下的丝状腐蚀[J],腐蚀与防护,1999,20(6):225-256.
    [10]杨振海,徐宁,邱竹贤.铝的电位-pH图及铝腐蚀曲线的测定[J],东北大学学报(自然科学版),2000,21(4):401-403.
    [11]Bogar F D, Foley R T. Corrosion penetration and crystal structure of AA5022 in HC1 solution and rare earth element [J], J. Electrochem. Soc.,1972,119:462-464.
    [12]Foroulis Z A, Thubrikar M J. On the kinetics of breakdown of passivity of preanodized aluminum alloy by chloride ions [J], J. Electrochem. Soc.,1975,122:1296-1301.
    [13]Turner R C, Ross G J. Conditions in solution during the formation of gibbsite in dilute Al salt solution. 4. Effect of C1 concentration and temperature and a proposed mechanism for gibbsite formation [J], Can. J. Chem.,1970,48:723-729.
    [14]Foley R T, Nguyen T H. The chemical nature of aluminum corrosion [J], J. Electrochem. Soc.,1980, 127:2563-2566.
    [15]周鼎华.铝合金表面处理技术新进展[J],热处理技术与装备,2006,27(4):10-15.
    [16]蒙多尔福L F.铝合金的性能与组织[M],北京:冶金工业出版社,1988.
    [17]Davis J R. Corrosion of aluminum and aluminum alloys [M], Phoenix, Arizona, USA: ASM International,1999.
    [18]Raymond A H. Engineering metallurgy, part Ⅰ [M], Melbourne, Florida, USA: Robert E Krieger Publishing Company Inc,1983.
    [19]Cohen S M. Review: replacements for chromium pretreatments on aluminum [J], Corrosion,1995, 51(1):71-78.
    [20]李金桂,郑家燊.表面工程技术和缓蚀剂[M],中国石化出版社,2007.
    [21]李国英.表面工程手册[M],北京:机械工业出版社,1997.
    [22]张允诚,胡如南,向荣.电镀手册:上册[M],北京:国防工业出版社,1997.
    [23]谈华民.铝及铝合金的铬酸盐转化膜[J],电镀与精饰,2003,25(2):8-10.
    [24]储荣邦,储春娟.铝及其合金化学导电氧化的生产工艺介绍(Ⅱ)[J],材料保护,2003,37(7):58-60.
    [25]高云霞,仁继嘉,宁福元.铝合金表面处理[M],北京:冶金工业出版社,北京,1991.
    [26]洪光日.汽车用铝材的涂装前处理技术[J],汽车工艺与材料,2004,3:32-36.
    [27]王成,江峰.LY12A1合金铬磷化处理[J],腐蚀科学与防护技术,2002,14(2):82-85.
    [28]曹鹏军,仵海东,范培耕等.铝合金的转化膜处理工艺研究[J],表面技术,2003,32(2):44-46.
    [29]夏传义,刘巧明.铝合金上的无色导电转化膜[J],电镀与精饰,1996,15(2):10-16.
    [30]王成,江峰.LY12A1合金铬磷化处理[J],腐蚀科学与防护技术,2002,14(2):82-85.
    [31]王恩生,杨波.铝及铝合金的涂装前处理[J],现代涂料与涂装,2007,10(12):21-25.
    [32]张景双,屠振密,杨哲龙等.铝上铬磷化工艺及促进剂的研究[J],材料保护,1995,28(9):9-11.
    [33]余泉和.铝型材喷涂化学转化处理工艺现状与发展[J],轻合金加工技术,2008,36(1):39-41.
    [34]Trolho J, Litsitana P C. Phosphochromate and chrome-free conversion coatings for aluminum [A].4th world congress aluminum 2000 [C], Montiehiari (Brescia)-Italy,2000.
    [35]GB/T 17460-1998,化学转化膜铝及铝合金上漂洗和不漂洗铬酸盐转化膜[S].
    [36]Roland W A. Conversion processes for aluminum: How can chromium be substitute? [J], Acta Technica Belgica,1998,38(4):51-57.
    [37]Kending M W, Buchheit R G. Corrosion inhibition of aluminum and aluminum alloys by sluble chromates, chromate coatings, and chromate-free coatings [J], Corrosion,2003,59(5):379-400.
    [38]Kending A J, Davenport, Isaacs H S. The mechanism of corrosion inhibitor by chromate conversion coatings from X-ray absorption near edge spectroscopy (XANES) [J], Corrosion Science,1993,34(1): 41-49.
    [39]Ita A O. Paint Treatments for aluminum [J], Metal Finishing,2000,98(6A):74-76.
    [40]黄志辉.铝合金彩色化学氧化[J],福建化工,2004,1:14-16.
    [41]李杨.铝的金黄色导电氧化膜制备工艺[J],材料保护,2003,36(44):70-71.
    [42]李鑫庆,陈迪勤,余静勤.化学转化膜技术与应用[M],北京:机械工业出版社,2005.
    [43]刘希燕,蒋健民,陈正涛等.铝合金防腐保护研究进展[J],现代涂料与涂装,2007,10(12):11-14.
    [44]US Environmental Protection Agency. Integrated risk information system (IRIS) on chromium. national center for environmental assessment [Z], Washington, DC: Office of Research and Development,1999.
    [45]Hinton B R W. Corrosion prevention and chromates, the end of an era? [J], Metal Finishing,1991,89: 55-61.
    [46]John W, Ibber B. Chromate-free conversion coatings for aluminum [C], Proceedings of the AESF annual technical conference,2002:425-433.
    [47]闫秀.铝合金表面处理中的清洁生产技术[J],机电工程技术,2004,33(11):80-81.
    [48]胡传忻.表面处理技术手册[M],北京:北京工业大学出版社,2001.
    [49]Sampath K. Desirable feathers of non-chromate conversion coating process [J], Plating and Surface Finishing,2004,91(3):38-44.
    [50]刘建军.三价铬钝化技术及其最近进展[J],电镀与环保,2002,22(6):22-23.
    [51]Wynn P C. Replacing hexavalent chromium in passivation on zinc plated parts [J], Products Finishing, 2001,65(5):55-62.
    [52]Morchead C N. Non-chromated rinses as replacements for chromated rinses [J], Products Finishing, 2000,64(5):54-57.
    [53]Barnes C, Ward J J. Trivalent chromium passivated processes [J], Trans. IMF,1982,60(1):35-37.
    [54]Uplan P. The effect of sealers on increase corrosion resistant of chromate-free passivated on zinc and zinc alloys [J], Plating and Surface Finishing,2001,88(2):68-71.
    [55]曾令喜,肖德平.三价铬天蓝色钝化工艺及应用[J],材料保护,2000,33(11):15-13.
    [56]刘建军.三价铬钝化技术及其最近进展[J],电镀与环保,2002,22(6):22-23.
    [57]于元春,李宁,胡会利等.无铬钝化与三价铬钝化的研究进展[J],表面技术,2005,34(5):6-9.
    [58]沈品华,钱宝梁.三价铬蓝白和彩色钝化溶液的研制[J],2006,4(5):26-29.
    [59]叶金堆.三价铬高耐蚀性钝化技术[J],表面科学与工程,2006,1:24-27.
    [60]Matzdorf C A, Kane M J, Green J L. Post-treatment for metal coaten substrates [P], US: 6527841, 2003.
    [61]朱祖芳.铝合金化学转化处理技术的进展及工业应用[J],材料保护,2003,36(3):14.
    [62]罗坤英,余国强,李大旭.环保型铝及铝合金表面化学转化工艺及性能研究[J],材料保护,2006,39(10):74-75.
    [63]Wendel T. Pretreatment of aluminum surface with chromate-free solutions [P], US Patent: 6562148, 2000.
    [64]Satoshi I, Masayuki K. Surface treatment composition, surface treatment solution and surface treatment method for aluminum and its alloys [P], US Patent: 5728233,1998.
    [65]Sander L S, Princeton N J, Musingo E M, et al. Composition and method for non-chromate coating of aluminum [P], US Patent:5129967,1992.
    [66]Fedrizzi L, Deflorian F, Bonora P L. Corrosion behavior of fluotitanate pretreated and painted aluminum sheets [J], Electrochimica Acta,1997,42(26):969-978.
    [67]Smitma A, Sykes J M. Titanium based conversion coatings on aluminum alloy 3003 [J], Surface Engineering,1999,15(3):407-410.
    [68]Schram T, Goeminne G. Study of the composition of Zr conversion layers on A1 [J], Trans Institute of Metal Finishing (UK),1995,73(3):91-95.
    [69]邹洪庆,陈世英.铝质易开罐表面处理成膜剂[J],表面技术,1990,2:31-35.袁文艺,赵富勤.铝和铝合金表面涂层液的组成及其应用[J],材料保护,1991,24(10):28-33[71] Wernick S, Pinner R. The surface treatment and finishing of aluminum and its alloys (Third Edition) [M], England: Robert Draper,1979.
    [72]周谟银.铝及其全金的化学转化膜[J],上海电镀,1989(4):13-22.
    [73]王祝堂.铝材及其表面处理手册[M],南京:江苏科学技术出版社,1992.
    [74]周谟银.铝及铝合金涂装前预处理[Ⅱ]无铬转化膜综合介绍[J],腐蚀与防护,1996,17(5):236-239.
    [75]Philip D, Molly M. Investigation of fluoacid based conversion coatings on aluminum [J], Prog Org Coating,1998,34(1-4):39-48.
    [76]汪泉法,黎燕.铝及其合金的化学转化膜技术[J],电镀与环保,1993,134:11-15.
    [77]Wu K H, Chang T C. Dynamics and corrosion resistance of amine-cured organically modified silicate coatings on aluminum alloys [J], Thin Solid Films,2006,513:84-89.
    [78]Galjaard D. Surface treating aluminum for prepainting [J], Finishing,1983,7(3):34-40.
    [79]Smit M A, Hunter J A, Sharman J D B, et al. Effect of organic additives on the performance of titanium-based conversion coatings [J], Corrosion Science,2003,45:1903-1920.
    [80]Paloumpa I, Yfantis A, Hoffmann P, et al. Mechanisms to inhibit corrosion of A1 alloys by polymeric conversion coatings [J], Surface and Coatings Technology,2004, (180-181):308-312.
    [81]Schieferstein L, Gorzinski M, Kuepper S, et al. chromium-free, organic coating for metal [P], US Patent, No.:6365234B1,2002.
    [82]Ryosuke S, Keiichi U, Takumi H. Composition and process for treating metal surface and resultsing article [P], US Patent:6736908B2,2004.
    [83]Koch M, Motzkat K, Hackbarth K, et al. Chromium-free corrosion preventive and corrosion prevention method [P], US Patent:7083831B1,2006.
    [84]Takaomi N, Hiroyuki S, Tetsuo O, et al. Treating solution for surface treatment of metal and surface treatment method [P], US Patent:2004/0244874A1.
    [85]Heike Q, Aline K, Patrick D, et al. Anticorrosion agent and corrosion protection progress for metal surfaces [P], US Patent: 20040151619A1.
    [86]Bernd S, Alina M K. Anticorrosion agent and method for metal surfaces againt corrosion [P], US Patent: 200340138567A1.
    [87]Sander L S, Musingo E M, Neill W J, et al. Composion and method for non-chromate coating of aluminum [P], US Patent: 005129967.
    [88]Fristad W E, Liang J L, Kelly T S. Coating composition [P], US Patent: US7063735B2,2006.
    [89]Fristad W E, Liang J L, Montrose D C. Coating composition [P], US Patent: US7332021B2,2008.
    [90]Takumi H, Mutsumi Y. Process for improving the corrosion resistance of metal surface [P], US Patent: US6395336B 1,2002.
    [91]Meagher K K, Prescott T J, Kelly T L. High performance non-chrome pretreatment for canend stock aluminum [P], US Patent: US6881279B2,2005.
    [92]Yasuhiko N, Hiroki H. Surface treatment composition for metallic material and method for treatment [P], US Patent: US6180177B1,2001.
    [93]Kazuya T, Akioshimizu, Ryoji M, et al. Aqueous agent for treating substrate, method for treating substrate and treated substrate [P], US Patent, No.:US7294362B2,2007.
    [94]Dolan S E, Kay M J, Carlson L R. Process for treating steel-, zinc- and aluminum-based metals using a two-step coating system [P], US Patent: US6733896B2,2004.
    [95]Liu J P, Scalera P A, Dolan S E. Non-chromate conversion coating compositions, process for conversion coating metals and articles so coated [P], US Patent: US6821633B2,2004.
    [96]Sander L S, Musingo E M, Neill W J. Composition and method for non-chromate coating of aluminum [P], US Patent:4921552,1990.
    [97]Dollman D Y, O'Grady T J. Method and apparatus for reducing the calorific consumption of a cement producing plant [P], US Patent:4191586,1980.
    [98]Dollman D Y, Timothy J, O'Grady A. Method and compositions for coating aluminum [P], US Patent: 4191596,1980.
    [99]邹洪庆.铸铝合金锆系非铬化学成膜处理工艺应用[J],材料保护,2001,34(2):29-30.
    [100]郭瑞光,杨杰,康娟.铝合金表面钛酸盐化学转化膜研究[J],电镀与精饰,2006,25(1):46-48.
    [101]郭瑞光.铝合金无铬化学转化液及其使用方法[P], CN Patent: 1683590A,2005.
    [102]朱祖芳.建筑铝型材粉末喷涂的发展及涂前化学转化处理现况[J],有色金属加工,2002,31(6):31-33.
    [103]Fedrizzi L, Bianchi A, Deflorian F, et al. Effect of chemical cleaning on the corrosion behaviour of painted aluminum alloys [J], Electrochimica Acta,2002,47:2159-2168.
    [104]Andreatta F, Turco A, Graeve I. d, et al. SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminum alloy [J], Surface & Coatings Technology,2007, 201:7668-7685.
    [105]Nordlien J H, Walmsley J C,(?)sterberg H, et al. Formation of a titanium-zirconium based conversion layer on AA 6060 aluminum [J], Surface and Coatings Technology,2002,153:72-78.
    [106]Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminum [J], Surface and Coatings Technology,2004,184:278-290.
    [107]Brown G M, Shimizu K, Kobayashi K, et al. The growth of chromate conversion coatings on high purity aluminum, Corr. Sci.,1993,34(7):1045-1054.
    [108]Olsen H L, Nisancioglu K. Filiform corrosion morphologies on painted aluminum alloy 3105 coil material [J], Corrosion,1997,53(9):705-717.
    [109]Olsen H L, Afseth A, Nisancioglu K. Filiform corrosion of aluminum sheet. Ⅱ. Electrochemical and corrosion behaviour of bare substrates, Corr. Sci.,1998,40(7):1195-1214.
    [110]Olsen H L, Nordlien J H, Nisancioglu K. Filiform corrosion of aluminum sheet. Ⅲ. microstructure of reactive surfaces, Corr. Sci.,199840(12):2051-2063.
    [111]Moffitt C E, Wielczka D M, Yasuda H K. An XPS study of the elemental enrichment on aluminum alloy surfaces from chemical cleaning, Surf. Coat. Technol.,2001,137(2-3):188-196.
    [112]沈宁.表面处理新工艺[M],上海:上海科学文献出版社,1987.
    [113]Benjamin S Y. Prepaint treatments for aluminum [J], Met. Fin.,1986,7:11-14.
    [114]Fedrizzi L. Corrosion behaviour of fluotitanate pretreated and painted aluminum sheets [J], Electrochim. Acta,1997,42(6):969-978.
    [115]福冈贵之.涂装技术,1994,(7):72-78.
    [116]Phillip D D. Metal Finishing,1992,90(4):29-35.
    [117]Laha P, Schram T, Terryn H. Use of spectroscopic ellipsometry to study Zr/Ti films on Al [J], Surf. Interface Anal.,2002,34:677-680.
    [118]Galjaard D. Surface treating aluminum for prepainting [J], Finishing,1983,7(3):34-40.
    [119]Lunder O, Lapique F, Johnsen B, et al. Effect of pre-treatment on the durability of epoxy-bonded AA6060 aluminum joints [J], International Journal of Adhesion & Adhesives,2004,24:107-117.
    [120]Dyllus T, Stutte J. Latest development in alternative conversion coatings [A], ibid.
    [121]Smit M A, Hunter J A, Sharman J D B, et al. Effects of thermal and mechanical treatments on a titanium-based conversion coating for aluminum alloys [J], Corrosion Science,2004,46:1713-1727.
    [122]Karmaschek U, Roland A, Vennschott H, et al. Chromium-free conversion coating treatment of aluminum [P], US Patent:5584946,1996.
    [123]Hallman L. Method and composition for coating aluminum [P], US Patent:4992116,1991.
    [124]Hinton B R W, Arnott D R, Ryan N E. Cerium conversion coatings for the corrosion protection of aluminum [J], Materials Forum,1986,9(3):162-173.
    [125]Arnott D R, Hinton B R W, Ryan N E. Cationic films forming in hibitors for the protection of AA7075 aluminum alloy against corrosion in aqueous chloride solution [J], Corrosion,1989,45(1): 12-19.
    [126]Miller. Non-toxic corrosion resistant conversion coating process for aluminum and aluminum alloys [P], US Patent:5356492,1994.
    [127]Miller. Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys [P], US Parent:5419790,1995.
    [128]Arnott D R, Hinton B R W, Ryan N E. Cationic films forming in hibitors for the corrosion protect ion of AA7075 aluminum alloy in chloride solutions [J], Materials Performance,1987,26(8):42-47.
    [129]Hinton B R W. The inhibition of aluminum corrosion by cerium cations [J], Materials Forum,1984, 7(4):211-217.
    [130]Hinton B R W. The inhibition of aluminum alloy corrosion by rare earth metal cations [J], Corrosion Australas,1985,210(3):12-17.
    [131]Buldwin K R, Lane P L, Hewins M A H, et al. Metallic cations as corrosion inhibitors for aluminum-copper alloys [A], U K Ministry of Defence, Royal Aircraft Establishment Technical Report 87052 [C], London,1987.
    [132]Mansfeld F, Lin S, Kim S, Shin H. Surface modification of Al alloys and Al-based metal-matrix composites by chemical passivation [J], Electrochem. Acta.,1989,34(8):1123-1132.
    [133]Arnott D R. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy [J], Appl. Surf. Sci.,1985,22/23:236-251.
    [134]Hiton B R W. Corrosion inhibition with rare earth metal salts [J], J. Alloys and Compd.,1992,180: 15-19.
    [135]Baldwin K R, Lane P L, Hewins M A H. Metallic cations as corrosion inhibitors for aluminum-copper alloys [R], U K Ministry of Defence, Royal Air craft Establishment Technical Report 87052, September,1987.
    [136]Bethencourt M, Botana F J, Caugui M A. Protection against corrosion in marine environments of AA5083 Al-Mg alloy by lanthanide chlorides [J], J. Alloys and Compounds,1997,250:455-460.
    [137]Neil W, Garrad C. Corrosion behavior of aluminum lithium alloys [J], Corrosion,1994,50(3): 215-225.
    [139]Mansfeld F, Lin S, Kim S. Corrosion protection of Al alloys and Al-based metal matrix composites by chemical passivation [J], Corrosion,1989,45(8):615-630.
    [140]Mansfeld F, Wang V, Shih H. Development of stainless aluminum [J], J Electrochem Soc,1991, 138(12):L74-L75.
    [141]Mansfeld F, Wang V. Corrosion protection of high copper aluminum alloy by surface modification [J], Corrosion,1994,29(3):194-200.
    [142]刘伯生.铝及铝合金上铈转化膜的研究[J],材料保护,1992,25(5):16-19.
    [143]陈根香,曹经倩,吴纯素.铝合金上铈氧化膜形成的电化学研究[J],材料保护,1995,28(3):1-3.
    [144]李久青,卢翠英,高陆生.铝合金表面稀土铈耐蚀膜[J],北京科技大学学报,1995,17(6): 584-589.
    [145]李久青,高陆生,卢翠英.铝合金表面四价铈盐转化膜及其耐蚀性[J],腐蚀科学与防护技术,1996,8(4):271-274.
    [146]陈溯,陈晓帆,刘传烨等.铝合金表面稀土转化膜工艺研究[J],材料保护,2003,36(8):33-36.
    [147]陆峰.稀土化合物缓蚀剂对A12024铝合金防护的研究[J],材料工程,1998,(7):9-11.
    [148]王成,江峰,林海潮等.LY12A1合金铈转化膜的研究[J],腐蚀科学与防护技术,2001,13(2):74-76.
    [149]王成,江峰,林海潮.LY12铝合金三价铈盐溶液中成膜工艺[J],中国有色金属学报,2001,11(2):181-185.
    [150]王成,江峰.LY12铝合金铈化学转化膜的结构及耐蚀性研究[J],材料保护,2002,35(4):23-25.
    [151]杨宁,龙晋明.稀土钝化金属防腐蚀表面处理新技术[J],稀土,2002,23(2):55-61.
    [152]石铁,左禹,赵景茂等.铝合金表面电解沉积稀土转化膜工艺研究[J],电镀与涂饰,2005,24(6):22-25.
    [153]Yu X W. Corrosion behavior of rare earth metal conversion coating on aluminum alloys LY12 [J], Materials Science and Engineering A,2000, A284(1-2):56-63.
    [154]于兴文,曹楚南,林海潮.铝基复合材料表面四价铈转化膜的研究[J],电镀与精饰,2000,22(3):6-9.
    [155]Wilson L, Hinton B R W. Method of forming corrosion resistant coating containing cerium [P], AU Patant:WO 06639,1988.
    [156]Hinton B R W. Metal cleaning treatment with acidic solutions containing rare earth ions and suitable for desmutting [P], AU Patent:WO 08008,1995.
    [157]Ikeda S. Surface treatment composition and surface treatment bath for aluminum and aluminum alloys [P], US Patent:US4992115,1991.
    [158]Kindler A. Chromium-free method and composition to protect aluminum [P], US patent: 5192374, 1993.
    [159]李久青,田虹,卢翠英.铝合金稀土转化膜的碱性成膜工艺[J],材料保护,1998,31(9):11-13.
    [160]顾宝珊,刘建华,纪晓春.铈盐对铝合金的缓蚀机理研究[J],中国腐蚀与防护学报,2006,26(1):53-57.
    [161]邵敏华,付燕,胡融刚等.Al合金铈盐转化膜缓蚀机理研究[J],电化学,2002,18(1):15-21.
    [162]Manuele D, Lidia A, Alberto B, et al. Cerium-based conversion layers on aluminum alloys [J], Appl. Surf. Sci.,2001,172:312-322.
    [163]William G F, Matthew J O, Zhou H F, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys [J], Surf. Coat. Technol.,2002:208-213.
    [164]Bethencourt M, Botana F J, Cano M J, et al. High protective environmental friendly and short-time developed conversion coatings for aluminum alloys [J], Appl. Surf. Sci.,2002,189:162-173.
    [165]于兴文,曹楚南,林海潮等.铝合金表面稀土转化膜研究进展[J],中国腐蚀与防护学报,2000,20(5):298-307.
    [166]于兴文,曹楚南,林海潮.LY12铝合金表面稀土转化膜腐蚀行为的研究[J],中国稀土学报,2000,18(3):243-248.
    [167]李国强,李荻,李久青等.新型铝合金Ce-Mo基转化膜[J],材料工程,2003,3:6-9.
    [168]Mansfeld F. Development of "Stainless" aluminum alloys by surface modification [J], Materials Science and Engineering,1995, A198:51-61.
    [169]Hughes A E, Gorman J D, Paterson P J K. The Characterization of Ce-Mo based conversion coatings on A1-Alloys:Part I [J], Corrosion Science,1996,38(11):1957-1976.
    [170]Moshier W C, Davis G D. Interaction of molybdate anions with the passive films on aluminum [J], Corrosion,1990,46(1):43-50.
    [171]Wilcox G D, Gabe D R, Warwick M E. The development of passivation coatings by cathodic reduction in sodium molybdate solutions [J], Corrosion Science,1988,28(6):577-585.
    [172]王成,江峰.LY12铝合金钼酸盐转化膜及其耐蚀性[J], Electroplating & Pollution Control,2001, 21(5):16-18.
    [173]王成,江峰,林海潮.钼酸铵对LY12铝合金的缓蚀作用[J],腐蚀与防护,2001,22(3):115-117.
    [174]王成,江峰,林海潮.LY12铝合金钼酸盐转化膜研究[J],稀有金属材料与工程,2003,32(2):130-133.
    [175]王成,江峰,林海潮等.铝合金钼酸盐转化膜研究[J],电镀与精饰,2001,23(3):8-10.
    [176]林生岭,谢春生,王俊德等.Al及LY12A1的表面处理与复合转化膜的耐蚀性能研究[J],腐蚀与防护,2003,24(4):142-145.
    [177]陈东初,黄柱周,李文芳.铝合金表面无铬化学转化膜的研究[J],表面技术,2005,36(6):38-39.
    [178]周谟银.钼酸盐在金属表面处理中的应用(1)-应用类型及处理条件[J],材料保护,2000,33(10):45-47.
    [179]周谟银.钼酸盐在金属表面处理中的应用(2)-钼酸盐转化膜的防护性能和涂装性能[J],材料保护,2000,33(11):52-55.
    [180]Al-Kharafi F M, Badawy W A. Inhibition of Corrosion of A16061, aluminum and an aluminum-copper alloy in chloride-free aqueous media: Part2-Behavior in Basic Solutions [J], Corrosion,1998,54(5):377-380.
    [181]Buchheit R G, Bode M D, Stone G E. Corrosion-resistant, chromate-free talc coatings for aluminum [J], Corrosion,1994,50(3):205-214.
    [182]郑辅养,丁红波,马廷椿等.中国腐蚀与防护学会成立二十周年论文集[M],中国腐蚀与防护学会主编,北京:化学工业出版社,1999.
    [183]Buchheit R.G. Chromate-free corrosion resistant conversion coatings for aluminum alloys [J], Proceedings of Asymposium,1995,173-182.
    [184]Bibber J W. Corrosion resistance aluminum coating composition [P], US Patent: 4755224,1987.
    [185]葛圣松,杨玉香,邵谦.铸铝表面无铬黑色转化膜的形貌及耐蚀性[J],腐蚀科学与防护技术,2006,18(3):228-230.
    [186]Hager H E, Johnson C J, Blohowial K Y, et al. Chromate-free protective coatings [P], US Patent: 6077885,2000.
    [187]Buchheit R G, Guan H. Active corrosion protection and corrosion sensing in chromate-free organic coatings [J], Progress in Organic Coatings,2003,47:174-182.
    [188]Hamdy A S, Butt D P. Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for aluminum alloys [J], Journal of Materials Processing Technology,2007,181:76-80.
    [189]Hamdy A S, Beccaria A M. Corrosion protection performance of thickened oxide conversion coatings containing vanadium ions formed on aluminum composites [J], Corros. Prevent. Contr., 2001,48(4):143-146.
    [190]Pakes A, Thompson G E, Skeldon P, et al. Development of porous anodic films on 2014-T4 aluminum alloy in tetraborate electrolyte [J], Corrosion Science,2003,45:1275-1287.
    [191]Wong C M, Moji Y. Method for anodizing aluminum [P], US Patent:4894127,1989.
    [192]Smith C J E, Baldwin K R, Garette S A, et al. Proceedings of the 1st International Symposium on Aluminium [C], Surface Science and Technology, Antwerp, Belgium,1997.
    [193]吴双成.单宁酸在表面处理中的应用[J],表面技术,2000,29(2):36-37.
    [194]Zhu D Q, Ooij W J V. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane [J], Progress in Organic Coatings,2004, 49:42-53.
    [195]Shacham R, Avnir D, Mandler D. Electrodeposition of methylated sol-gel films on conducting surfaces [J], Adv. Mater.,1999,11:384-390.
    [196]Sheffer M, Groysman A, Mandler D. Electrodeposition of sol-gel films on Al for corrosion protection [J], Corros. Sci.,2003,45:2893-2898.
    [197]张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能[J],金属学报,2006,42(3):295-298.
    [198]许越,李英杰,吕祖舜.Sol-gel法制备耐蚀涂层的技术及应用[J],材料科学与工艺,2005,13(2):200-204.
    [199]游咏,匡加才.溶胶—凝胶法在材料制备中的研究进展[J],高科技纤维与应用,2002,27(2):12-15.
    [200]乔俊娟,袁坚.溶胶-凝胶法制备有机-无机复合材料[J],佛山陶瓷,2001,4:1-2.
    [201]刘惊,胡吉明,张鉴清.金属表面硅烷化防护处理及其研究现状[J],中国腐蚀与防护学报,2006,26(1):59-64.
    [202]Beccaria A M, Chiaruttini L. The inhibitive action of metacryloxypropyl-methoxysilane (MAOS) on aluminum corrosion in NaCl solutions [J], Corrosion Science,1999,41(8):885-889.
    [203]王秀华,孙益民,刘守华等.有机-无机杂化涂层制备及耐腐蚀性能研究[J],腐蚀科学与防护技术,2006,18(4):349-352.
    [204]尤宏,刘琰,孙德智等.LY12铝合金表面有机-无机杂化膜的防腐性能研究[J],材料工程,2004,(4):7-11.
    [205]苏红来,尤宏,姚杰等.LY12铝合金表面有机-无机杂化膜特性研究[J],材料科学与工艺,2006,14(4):349-357.
    [206]Chu L, Daniels M W, Francis L F. Use of glycidoxypropyl)trimethoxysilane as a binder in colloidal silica coatings [J], Chem. Mater.,1997,9:2577-2582.
    [207]Metroke T L, Kachurina O, Knobbe E T. Spectroscopic and corrosion resistance characterization of GLYMO-TEOS ormosil coatings for aluminum alloy corrosion inhibition [J], Prog. Org. Coat.,2002, 44:295-305.
    [208]Metroke T L, Kachurina O, Knobbe E T. Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic-inorganic thin films on 2024-T3 aluminum alloy [J], Prog. Org. Coat.,2002,44:185-259.
    [209]Ooij W J V, Zhu D Q, Prasad G, et al. Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding [J], Surf. Eng.,2000,16(5):386-391.
    [210]Zandi-zand R., Ershad-langroudi A, Rahimi A. Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection [J], Progress in Organic Coatings,2005,53:286-291.
    [211]Zandi-zand R, Ershad-langroudi A, Rahimi A. Organic-inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy [J], Journal of Non-Crystalline Solids,2005,351:1307-1311.
    [212]Wu K H, Chang T C. Dynamics and corrosion resistance of amine-cured organically modified silicate coatings on aluminum alloys [J], Thin Solid Films,2006,513:84-89.
    [213]Ooij W J V, Zhu D, Stacy M. Corrosion protection properties of organofunctional silanes-an overview [J], Tsinghua Science and Technology,2005,10(6):639-664.
    [214]Brown K, Bines E B, Song J, at el. Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture [J], US Patent: US6596853B1,2003.
    [215]Gao W, Dickinson L, Grozinger C. Self-assembled monolayers of alkylphosphonic acid on metal oxides [J], Langmuir,1996, (12):6429-6435.
    [216]Lin C T, Lin P, Quitian-Puello F. Interfacial chemistry of a single-step phosphate/paint system [J], Ind. Eng. Chem. Res.,1993,32(5):818-825.
    [217]Li L, Lin C T. SEM-EDS investigations of self-phosphating coatings [J], Ind. Eng. Chem. Res.,1994, 33(12):3241-3246.
    [218]Whitten M C, Burke V J, Neuder H A. Simultaneous acid catalysis and in situ phosphatization using a polyester-melamine paint: a surface phosphatization study [J], Ind. Eng. Chem. Res.,2003,42(16): 3671-3679.
    [219]Lin C T. Green chemistry in situ phosphatizing coatings [J], Prog. Org. Coat.,2001,42(3/4): 226-235.
    [220]Neuder H, Sizemore C, Kolody M. Molecular design of in situ phosphatizing coatings (ISPCs) for aerospace primers [J], Prog. Org. Coat.,2003,47(3/4):225-232.
    [221]Whitten M C, Lin C T. An in situ phosphatizing coating on 2024-T3 aluminum coupons [J], Prog. Org. Coat.,2000,38(3/4):151-162.
    [222]Maege I, Jaehne E, Henke A. Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces [J], Prog. Org. Coat.,1998,34:1-12.
    [223]Adler H J P, Bram C, Feser R, et al. Process of treating metallic surfaces [P], US Patent: US6436475.
    [224]Wetterer S M, Heights B, Sebralla L, et al. Process for providing coatings on a metallic surface [P], US Patent:US6488990,2002.
    [225]Wapner K, Stratmann M, Grundmeier G. Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminum oxide interfaces [J], Int. J. Adhesion Adhesives,2007,28: 59-70.
    [226]Lin C T, Lin P, Quitian-Puello F. Interfacial chemistry of a single-step phosphate/paint system [J], Ind. Eng. Chem. Res.,1993,32(5):818-825.
    [227]Li L., Lin C T. SEM-EDS investigations of self-phosphating coatings [J], Ind. Eng. Chem. Res., 1994,33(12):3241-3246.
    [228]Lin C T. Green chemistry in situ phosphatizing coatings [J], Prog. Org. Coat.,2001,42(3/4): 226-235.
    [229]Van J, Alsten G. Self-assembled monolayers on engineering metals:structure, derivatization and utility [J], Langmuir,1999,15:7605-7614.
    [230]Felhosi I, Telegdi J. Kinetics of self-assembled layer formation on Iron [J], Elctrochim. Acta.,2002, 47:2335-2340.
    [231]Harm U, Burgler R. Novel protective coatings for steel based on a combination of self-assembled monolayers and conducting polymers [J], Macro Symp,2002,187:65-75.
    [232]Azusa S, Hiroyuki S, Masanobu F, et al. Zirconium-phosphate films self-assembled on aluminum substrate toward corrosion protection [J], Surf. Coat. Tech.,2003,169-170:686-690.
    [233]HB5056-1977,铝及铝合金铬酸阳极氧化膜层质量检验.
    [234]杨玉香,葛圣松,邵谦.铸铝合金黑色转化膜工艺[J],电镀与涂饰,2006,25(2):36-38.
    [235]张康天,王秀容,陈聪儒等.防锈存封包装手册[M].北京:机械工业部301研究所,1982.
    [236]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002.
    [237]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004.
    [238]Fedrizzil, Deflorian F, Bonora P L. Corrosion behavior of fluotitanate pretreated and painted aluminum sheets [J], Electrochimica Acta,1997,42(26):969-978.
    [239]Smitm A, Sykes J M. Titanium based conversion coatings on aluminum alloy 3003 [J], Surface Engineering,1999,15(3):407-410.
    [240]Deck P D, Moon M, Sujdakr J, Investigation of fluoacid based conversion coatings on aluminum [J], Progress in Organic Coatings,1998,34(1/4):39-48.
    [241]Schram T, Goeminne G. Study of the composition of Zr conversion layers on Al [J], Trans Institute of Metal Finishing (UK),1995,73(3):91-95.
    [242]罗坤英,余国强,李大旭.一种在铝及其合金表面上形成转化膜的环保型工艺[P], CN Patent: 1614090A,2005.
    [243]石仓和弘.用于铝或镁金属表面处理的表面处理溶液以及表面处理方法[P], CN Patent: 1623010A,2005.
    [244]Kiniju Y, Yoshio M. Metal surface coating agent [P], US Patent:4341558,1982.
    [245]Thomas W., Klaus B, Hardy W, et al. Pretrement of aluminum surfaces with chrome-free solutions [P], US Patent: 6562148B1,2003.
    [246]Hardy W, Klaus B, Thomas K. Method for applying a phosphate covering and use of metal parts thus phospated [P], US Patent: 7208053,2007.
    [247]宋诗哲,唐子龙.工业纯铝在3.5% NaCl溶液中的电化学阻抗谱分析[J],中国腐蚀与防护学报,1996,16(2):127-132.
    [248]Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady state. Ⅰ. One state variable besides electrode potential [J], Electrochim. Acta, 1990,35(5):831-836.
    [249]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京科学出版社,1988,P:1-15.
    [250]Textor M. Structural Chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces [J]. Langmuir,2000,16:3257-3271.
    [251]Folkers J P, Gorman C B, Laibinis P E, et al. Self-assembled monolayers of long-chain hydroxamic acids on the native oxides of metals [J]. Langmuir,1995,11:813-824.
    [252]Hofer R. Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces [J]. Langmuir,2001,17:4014-4020.
    [253]张金涛,胡吉明,张鉴清等.LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为[J],金属学报,2006,42(5):528-532.
    [254]胡吉明,张鉴清,谢德明等.环氧树脂涂覆LY12铝合金在NaCl溶液中的阻抗模型[J],物理化学学报,2003,19(2):144-149.
    [255]Hirayama R, Haruyama S. Electrochemical impedance for degraded coated steel having pores [J], Corrosion,1991(42):952-958.
    [256]曹晓东,孙金忠.中性盐雾试验中漆膜划痕处起泡探析[J],涂料工业,2006,36(3):55-56.
    [257]林海潮,李谋成.涂层下金属的腐蚀过程[J],腐蚀科学与防护技术,2002,14(3):180-181.
    [258]Volmer-Uebing M, Stratmann M. A surface analytical and an electrochemical study of iron surfaces modified by thiols [J]. Appl. Surf. Sci.,1992,55:19-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700