用户名: 密码: 验证码:
一种2UPS-UPR并联机床的设计理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机床作为并联机器人技术和现代数控机床技术结合的产物,是从上个世纪末开始出现的一种新型制造装备。与传统机床相比,并联机床具有刚度重量比大、响应速度快、环境适应性强、技术附加值高、适合复杂曲面加工等特点,因此在制造领域具有很广泛的应用前景。其中,少自由度并联机床以其自身的优点已成为并联加工装备发展的重要趋势。
     世界上许多国家已经对并联机床的研究投入了大量的人力物力,也取得了许多的研究成果,但目前对并联机床的研究总体上还是处于研发、试制和试用阶段。我国在并联机床的研究方面也取得了一些阶段性成果,但目前我国已开发的大多数并联机床尚未达到实用产品水平,均存在动态刚度和加工精度低的共同问题。这反映出国内对并联机床理论、设计与应用等方面的关键技术研究与国外相比较仍有较大差距。因此,系统地研究并联机床设计理论,切实解决设计中的关键技术难题,为并联机床设计提供理论基础,对推动我国并联机床的产业化有着及其重要的意义。
     本文以一种新型2UPS-UPR并联机床的研制为主要研究内容,围绕并联机床设计基本理论,从运动学设计、动力学设计、刚度设计、结构动力学建模及数字化样机仿真等方面进行了深入的研究,具体包括以下内容:
     (1)对2UPS-UPR并联机床运动学设计进行了研究。根据机床的结构,对机床的并联机构和平行约束机构进行了运动学分析,给出了并联机构和平行约束机构的位置正、逆解,机床的雅可比矩阵,平行约束机构各构件的速度。在此基础上,对机床工作空间的影响因素和工作空间的构成进行了分析,最后,分析并得到了机床结构参数和运动参数对工作空间影响的规律以及机床设计变量对尺度综合性能指标影响的变化规律。
     (2)对2UPS-UPR并联机床刚体动力学优化设计进行了研究。首先,通过拉格朗日方程建立了机床刚体动力学模型,以此为基础建立了以获得机床3根驱动杆中最大驱动力的最小值为目标的动力学参数优化设计的数学模型,并通过仿真分析得出了机床设计变量对动力学设计指标的影响规律。然后,从更有实际意义的部分平衡角度出发,给出了基于平行约束机构的动力平衡结构,提出了采用线性加权法建立的动力平衡优化数学模型,并利用MATLAB软件进行了优化求解和计算比较,证明了动力平衡结构对平衡平行约束机构的震动力和震动力矩所起到的良好作用。
     (3)对2UPS-UPR并联机床静刚度进行了分析与优化设计。在建立机床整机的刚度模型基础上,给出了各轴向静刚度的计算公式并进行了仿真分析与计算,得出了各轴向静刚度在工作空间的分布规律及典型工况下轴向静刚度数值。然后,分别从轴向刚度和并联机床刚度矩阵的条件数这两个方面定义了机床静刚度性能设计指标,通过利用MATLAB软件进行仿真分析,给出了机床设计变量对这两个设计指标的影响规律并经分析证明了这两个设计指标在衡量机床静刚度性能的一致性,完成了静刚度优化设计。
     (4)对2UPS-UPR并联机床结构动力学建模和机构固有频率求解进行了研究,建立了机床整体机构的结构动力学方程,给出了子空间迭代法求解机床结构前5阶固有频率的计算步骤并计算出机床在典型位置时一阶固有频率值。
     (5)利用2UPS-UPR并联机床数字化样机在ANSYS Workbench Enviroment中对机床进行了静刚度和模态仿真分析,得到了机床在三个典型位置点时的x、y和z三个方向静刚度值并经分析证明了静刚度仿真结果与理论分析结果是一致的。通过模态仿真并分析所得到的机床固有频率和振型,证明了该机床有比较稳定的动态特性。
     (6)对机床的驱动杆和主轴部件进行了结构设计,给出了驱动杆部件设计参数的计算过程和主轴部件运动干涉的判别条件,得到了驱动杆和主轴部件的实体模型和装配图,并依此加工制造出相应的零部件。
     (7)利用2UPS-UPR并联机床物理样机进行了静刚度实验和模态分析实验研究,得到了该机床在典型位置时的静刚度数值和一阶固有频率,从而验证了机床静刚度理论研究与仿真分析和机床模态仿真分析的正确性。另外,通过与前期研制的3-TPT并联机床进行比较,证明了2UPS-UPR并联机床比3-TPT并联机床有着更加良好的运动性能、刚度性能和精度性能。
     本文对2UPS-UPR并联机床运动学设计、动力学设计、静刚度设计等若干问题的研究成果,为该并联机床物理样机的研发提供了基础性的理论依据和数据参考。同时,也为其它构型的并联机床设计提供了借鉴。然而,由于并联机床动态特性设计的复杂性和数字化样机技术的迅速发展,为完善和发展2UPS-UPR并联机床的设计理论,还需在该机床动态特性设计和机床数字化样机参数设计等方面做大量的深入研究工作。
Parallel machine tool is the combination of parallel robot and modern CNC machine tool technology. It is a kind of new type manufacturing equipment emerging from the end of last century. Compared to conventional machine tools, parallel machine tool is characterized by high ratio of stiffness to weight, fast response speed, strong environmental adaptation, high technology added value and suitable for machining complex surfaces and so on. Thus it has wide application prospect in manufacturing filed. Among these, due to its own advantages, No-full DOF Parallel Machine Tool has become a significant tendency in the field of parallel machining equipment's development.
     Although many people in the worldwide range have resorted to develop parallel machine tool, and even to achieve a little progress, the current overall focuses of parallel machine tool research are still in research, trial-production and probation stage. In the P.R. China, although domestic scholars and designers have gotten some research fruits, most of he parallel machine tools which we have developed have not yet reached the level of practical products and have common problems of low dynamic stiffness and machining precision. This reflects that there is still a wide gap between the domestic and abroad research on the key technology of the theory, design and application of parallel machine tool. Thus, systematically studying the design theory of parallel machine tool and effectively resolving the key technical problems during the design can provide a theoretical basis for the design of parallel machine tool, which has the important significance in promoting the industrialization of China's parallel machine tool.
     In this paper, the main research content is to develop a new 2UPS-UPR parallel machine tool. According to the basic design theory of parallel machine tool, it is deeply studied from kinematic design, dynamic design, stiffness design, structural dynamic modeling and digital prototype simulation. It is specifically included as follows:
     (1) Kinematic design of 2UPS-UPR parallel machine tool is studied. According to the structure of machine tools, kinematic analysis of parallel mechanism and parallel restriction mechanism of machine tools is conducted, the normal and converse solutions of position analysis of parallel mechanism and parallel restriction mechanism of machine tools, Jacobian matrix and the speeds of the components of parallel restriction mechanism are also given. On this basis, the Influence Factors and the composition of the workspace of machine tools are analyzed. Finally, the law of the influence of structural parameters and motion parameters on the workspace of machine tools and the variation of the influence of design parameters on dimensional synthesis performance index are analyzed and obtained.
     (2) Dynamic optimization of rigid body of 2UPS-UPR parallel machine tool is studied. First, rigid body dynamic model of this machine tool is established with Lagrange's equation. On this basis, to obtain the minimum value of the maximum driving force among the three drive rods of this machine tool, mathematical model of optimization design of dynamic parameters is established. Meanwhile, the law of the influence of design parameters on dynamic design index is gained by simulation analysis. Then, from a more meaningful point of view of partial balancing, dynamic equilibrium structure is given based on parallel constraint structure, the establishment of optimization mathematical model of dynamic equilibrium is proposed with a linear weighting method, optimization solution and calculation comparison are conducted with MATLAB software, thus the positive effect which dynamic equilibrium structure has had on shaking force and shaking moment of parallel constraint structure is proved.
     (3) Static stiffness of 2UPS-UPR parallel machine tool is analyzed and optimized. On the basis of establishing the stiffness model of machine tool, the formula of axial stiffness is given and simulation analysis and calculation are conducted, thus axial stiffness distribution in the work space and axial stiffness values in typical working conditions are obtained. Then, Static stiffness performance design index is separately defined from axial stiffness and stiffness matrix condition numbers of parallel machine tool. By conducting simulation analysis with MATLAB software, the law of the influence of design parameters of parallel machine tool on the two design indexes is given and the consistency of the two design indexes in measuring stiffness properties is proved. Finally, the static stiffness optimization design is fulfilled.
     (4) Study on structural dynamic modeling of 2UPS-UPR parallel machine tool and natural frequency solution of the organization are conducted, the structural dynamic equations of the whole machine tool organization are established, the subspace iteration method is given for solving the former five-order calculation steps of machine structure natural frequency and the value of the first-order natural frequency in the typical location is calculated.
     (5) By means of the digital prototype of 2UPS-UPR parallel machine tool, static stiffness and modal simulation analysis of the machine tool is conducted in the ANSYS Workbench Environment, static stiffness values of directions x, y and z in the three typical positions are obtained, The fact that the static stiffness simulation results are consistent with the theoretical analysis results is proved by analysis. With modal simulation analysis of natural frequency and vibration modes of the machine tool, the fact that the machine tool has relatively stable dynamic characteristics is proved.
     (6) Drive rods and spindle parts of the machine tool are structurally designed. The calculation process of the design parameters of the drive rod components and the criterion of the movement interference of the spindle components are given. Solid model and assembly drawings of the drive rods and spindle components are gained. According to this, corresponding parts can be manufactured.
     (7) By means of the physical prototype of 2UPS-UPR parallel machine tool, static stiffness and modal analysis experiments of the machine tool are conducted, the value of the static stiffness and the first-order natural frequency in the typical location are gained, thus the accuracy of the theoretical study and simulation analysis of machine tool static stiffness and modal simulation analysis of machine tool is verified. Besides, compared with 3-TPT parallel machine tool pre-developed,2UPS-UPR parallel machine tool is proved to have much better sports, stiffness and precision performance.
     In this paper, the research results of a number of issues such as kinematic design, dynamic design, static stiffness design provide foundational theoretical basis and data reference for the development of the physical prototype for the parallel machine tool and also provide a reference for parallel machine tool design of other configurations. However, because of the complexity of dynamic characteristic design of parallel machine tool and the rapid development of digital prototyping technology, to improve and develop the design theory of 2UPS-UPR parallel machine tool, a lot more and deeper research work is needed in the dynamic characteristic design and the digital prototype parameters design of the machine tool.
引文
1.国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006年-2010年)——机械与制造科学[M],北京:科学出版社,2006
    2.张学良.并联机床及其前景展望,太原重型机械学院学报[J],2003,24(3):195-200
    3.汪劲松,黄田.并联机床—机床行业面临的机遇与挑战[J],中国机械工程,1999,10(10):1103-1107
    4.李金泉,丁洪生等.并联机床的历史、现状及展望[J],机床与液压,2003(3):3-8
    5.黄真,孔令富,方跃法.并联机器人机构学理论及控制[M],北京:机械工业出版社,1997,1-268
    6.陈文家,王洪光,房立金,赵明扬.并联机床的发展现状与展望[J],机电工程,200118(4):5-9
    7.李桥梁,吴洪涛,朱剑英Stewart机床发展大事记[J],机械设计与制造工程,1999,28(4)
    8. Stewart D. A platform with six degree of freedom[J], Proc lnst Mech. Eng,1965,180(5): 371-386
    9. Bonev I. Delta Parallel Robot—The Story of Success[J], The Parallel Mechanisms Information Center.2001. www.paralemic.org/reviews/review 002.html
    10. http://www.neosrobotics.com/[EB/OL]
    11. Birglen L. Haptic Devices based on Parallel mechanisms, State of the Art[J], The Parallel Mechanisms Information Center.2001. www.paralemic.org/reviews/review003.html.
    12. Morizono T, Kawamura S. Analysis and control of a force display system driven by parallel wire mechanism[J], Robotics,1998,16(5):551-563
    13. Kawamura S, Choe W, Tanaka S, et al. Development of an ultrahigh speed robot FALCON using wire drive system[J], Journal of the Robotics Society of Japan,1997,15(1):82-89
    14. Lafourcade P, Libre M, Reboulet C. Design of a parallel wire-driven manipulator for wind tunnels[J], In:Proceedings of Workshop on Fundamental Issues and Future Directions for parallel Mechanisms and Manipulators, Quebec City, Canada,2002:187-194
    15. Barrette G, Gosselin C. Kinematic analysis and design of planar parallel mechanisms actuated with cables[J], In:Proceedings of the ASME 26th Biennial Mechanisms and robotics Conference, Montreal, Caanada,2002
    16. Verhoeven R, Hiller M. Estimating the controllable workspace of tendon-based Stewart platforms[J], In:Proceedings of the ARK'OO 7th. International Symposium on Advances in robot kinematics, Portoroz, Slovenia,2000:277-284
    17. http://www.physikinstrumente. com/microposition-ingsystem/[EB/OL]
    18. Martin A. Das Hexapod-Teleskop[J], Spica, October,2000. www.bph. ruhr-uniboc-hum.de /~axelm/spica/text_151.html
    19.张曙,U. Heisel并联运动机床[M],北京:机械工业出版社,2003,26-169
    20.中国机床工具工业协会赴EM097工作组.EM097新技术系列报道之一:六条腿机床取得重大进展[J],世界制造装备与市场,1998,(1):17-21
    21.中国机床工具工业协会EM097工作组.并联杆系机床的新发展[J],世界制造装备与市场,1999,(4):16-18
    22.李雷.并联机床的新发展—在汉诺威EM02001展出的并联机床[J],世界制造技术与装备市场,2002年6月:15~19
    23.黄真,曲义远.空间并联多环机构的特殊位形分析[J],东北重型机械学院学报,1989,13(2):1-6
    24.曲义远,黄真.空间6自由度多回路机构位置的三维搜索法[J],机器人,1989,5:25-29
    25.汪劲松,段广洪,杨向东VAMT1Y虚拟轴机床[J],制造技术与机床,1998(2):42-43
    26.周凯,陆启建.新一代超高速加工中心[J],中国机械工程,1999,10(5):509-512
    27.蔡光起,胡明等.机器人化三腿磨削机床的研制[J],制造技术与机床,1998,10:4-6
    28.胡明.三杆平动机器人运动学、力学及误差若干研究[D],东北大学博士论文,1999
    29.王启明.三平移自由度并联机器人力学及相关问题研究[D],东北大学博士论文,1999
    30.王启明,胡明等.并联式钢坯修磨机器人动力学及轨迹规划研究[J],机器人,1999,21(1):69-74
    31.李波.三杆虚轴机床数控技术研究[D],东北大学博士论文,2000
    32.蔡光起,史家顺等.新型3—PTT型三杆并联磨削机床[J],制造技术与机床,2002,10:24-25
    33. Yang D C H, Lee T W. Feasibility study of a platform type of robotic manipulators from a kinematic viewpoint[J], ASME Mech Des,1984,106(2):191-198
    34. Hudgens J, Tesar D. A fully-parallel six degree-of-freedom micromanipulator: kinematics analysis and dynamic model[C],20th Biennial ASME Mechanisms Conference, Sept.25-28, 1988, Kissimmee, Florida. New York: ASME,1988:29-38.
    35.黄真.并联机器人位置正解分析[J],东北重型机械学院研究报告.1984
    36. Innocenti C, Parenti-Castelli V. Forward Kinematics of the General 6-6 Fully Parallel Mechanism:An Executive Numerical Approach via a Mono Dimension Search Algorithm[J], Proc. of 22nd ASME Mech. Conf.1992, DE-45:545-553
    37. Shi X, Feston R G. Forward Kinematic Solution of A General 6-DOF Stewart Platform Based on Three Point Position Data[J], Proc of the Eighth World Congress on Theory of Machines and Machanisms, Prague,1991:1015-1018.
    38. Wampler C W. Forward displacement analysis of general six-in-parallel SPS(Stewart) platform manipulators using SOMA coordinates [J], Mech Mach Theory,1995,31(3): 331-337
    39. Griffs M, Duffy J. A Forward Displacement Analysis of a Class of Stewart Platforms[J], Journal of Robotic Systems,1989,6(6):703-720
    40. Nanua P, Waldron K. Direct Kinematic Solution of a Stewart Platform[J], IEEE Trans. Robtic Automation,1990,6(4):438-444
    41. Waldron K, Raghavan M. Kinematic of a Hybrid Series-Parallel Manipulation System[J], ASME J. Dynamic System Meas. Control,1989,111(2):211-221
    42. Innocenti C, Parenti-Castelli V. Direct Position Analysis of the Stewart Platform Mechanism[J], Mech. Mach. Theory,1990,25(6):611-621
    43.文福安,梁崇高,廖启征.并联机器人机构位置正解[J],中国机械工程,1999,10(9):1011-1013
    44. K.C. Cheok, J.L. Overholt, R.R.Beck. Exact Methods for Determining the Kinematics of a Stewart Platform Using Additional Displacement Sensors[J], Journal of Robotics Systems, 1993,10(5):689-695
    45. J.P. Merlet. Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data[J], IEEE International Conference on Robotics and Automation,1993,1: 200-204
    46. P.B.Petrovic and Vlddimir R. Milacic. Closed-form resolution scheme of the direct kinematics of parallel link systems based on redundant sensory information[J], Annals of the CIRP,1999,48(1):341-344
    47. Geng Z, Haynes L. Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform[J], Proc IEEE Int. Conf. Robot. Automn.1991,2650-2655
    48. Roger Boudreau, Glen Levesque, Salah Darenfed. Parallel manipulator kinematics learning using holographic neural network models[J], Robotics and Computer Integrated Manufacturing,1998,14(1):37-44.
    49. Ficher E F. A Stewart platform-based Manipulator: General Theory and Practical Construction[J], The International Journal Of Robotics Research,1986,5(2):157-182
    50. Merlet J P. Parallel Manipulators Part I:Theory Design, Kinematics, Dynamics and Control[J], INRIA Research Report No.646,1987,1-10
    51.黄真,赵永生,赵铁石.高等空间机构学[M],北京:高等教育出版社,2006
    52. Yi Lu, Bo Hu, Yan Shi. Kinematics analysis and statics of a 2SPS+UPR parallel manipulator[J], Multibody System Dynamics,2007,18(4):619-636
    53. Kumar V. Characterization of Workspace of Parallel Manipula-tors[J], ASME Mech Des, 1992,114:368-375
    54. Gupta K C, Roth B. Design Consideration for Manipulator Workspace[J], J. Mech. Design. 1982,104(4):704-712
    55.陈建涛,郝秀清,胡福生.3RRC并联机构位置和工作空间的图解法[J],山东理工大学学报,2006(3):26-29
    56. Chi-Mei Luh, F. A. Adkins, E. J. Haug, C. C. Qiu, Working Capability Analysis of Stewart Platforms[J], Trans. of the ASME, J. of Mech.Des.,1996,118(6):220-227
    57. Zhiming Ji. Analysis of Design Parameters in Platform Manipulators[J], Transactions of the ASME, Journal of Mechanical Design,1996,118(12):526-531
    58.詹泳,周云飞,师汉民等.串并联数控机床的作业空间分析[J],应用科学学报,2004,22(1):60-65
    59. Pennock G R, Kassner D J. The Workspace of a General Geometry Planar 3-DOF Plat form-Type Manipulator[J], ASME J Mech Des,1993(115):269-276
    60. Fallahi B, etal. A Study of the Workspace of Five-Bar Closed Loop Manipulator[J], Mech Mach Theory,1994,29(5):759-765
    61.范守文,徐礼锯.6-SPS并联机器人工作空间的边界曲面分析方法[J],机械科学与技术,2002,21(1):66-71
    62. Jo D Y, Haug E J. Workspace analysis of closed loop mechanisms with unilateral constraints[J], Proceedings, ASME Advances in Design Automation, DE,1989,3(3):53-60
    63. Gosselin C. Determination of the Workspace of 6-DOF Parallel Manipulators[J], ASME J. Mech. Des,1990,112(3):331-336
    64. Merlet J P. Determination of the orientation workspace of parallel manipulator[J], Journal of Intelligent and Robotic Systems,1995,13(2):143-160
    65. Huang T, Wang J S, Whitehouse D J. Closed form solution to the workspace of Stewart parallel manipulators [J], Science in China, Series E,1998,41(4):384-403
    66. Cleary K, Arai T. A Prototype Parallel Manipulator: Kinematics Construction, Software, Workspace Results and Singularity analysis[J], In IEEE Int. Conf. on Robotics and Automation, Sacramento, USA,1991:566-571
    67.陈恳,李嘉等.并联微操作手运动空间分析[J],中国机械工程,1998,9(3):47-49
    68.黄真.空间机构学[M],北京:机械工业出版社,1991
    69. Fichter E F. A Stewart Platform-Based Manipulator: General Theory and Practical Construction[J], International Journal of Robotics Research,1986,5(2):157-182
    70. Gosselin C M, Lavoie E, Toutant P. Robotics Spatial Mechanisms and Mechanical Systems[J], ASME-45(1992):323-328
    71.Masory O, Wang J. Workspace Evaluation of Stewart Platforms[J], In 22nd Biennial Mechanisms Conf., Scottsdale, USA,1992:337-346
    72. Gosselin C, Angeles J. The optimum kinematic design of a spherical three Degree-of-Freedom parallel manipulator[J], Journal of Mechanisms, Transmissions, and Automations in Design,1989,111(2):202-207
    73. Pittens K H, Podhorodeski R P. A family of Stewart platform with optimal dexterity[J], Journal of Robotic Systems,1993,10(4):463-479
    74. Huang T, Whitehouse D J, Wang J S. Local dexterity, optimum architecture and design criteria of parallel machine tools[J], Annals of the CIRP,1998,47(1):347-351
    75. Huang T, Gosselin C M, Whitehouse D J, et al. Analytic approach for optimal design of a type of spherical parallel manipulators using dexterous performance indices[J], IMechE Journal of Mechanical Engineering Science, Part C,217(2),2003
    76. Huang T, Li M, Li Z X, et al, Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index[J], IEEE Transactions on Robotics and Automation,2004,20(3):538-542
    77. Gosselin C, Angeles J. The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators[J], Journal of Mechanisms, Transmissions, and Automations in Design,1988,110(1):35-41
    78. Stoughton R, Arai T. A Modified Stewart Platform Manipulator with Improved Dexterity[J], IEEE Trans. On Robotics and Automation, April 1993,9(2):166-173
    79.黄田,汪劲松,Whitehouse D J. Stewart并联机器人位置空间解析[J],中国科学(E辑),1998,28(2):136-145
    80. Bhaskar Dasgupta, Prasun Choudhury. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J], Mechanism and Machine Theory,1999,34:801-824
    81.韩佩富,王常武,孔令富等.改进的6-DOF并联机器人Newton-Euler动力学模型[J],机器人,2000,22(4):315-318
    82.孔令富,张世辉,肖文辉等.基于牛顿-欧拉方法的6-UPS并联机构刚体动力学模型[J],机器人,2004,26(5):395-399
    83.陈文凯,刘平安.3-RSR并联机器人动力学研究[J],机械设计,2006,23(7):44-47
    84. Bhaskar Dasgupta, T. S. Mruthyunjaya. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[J], Mechanism and Macheine Theory,1998, 33(8):1135-1152
    85. Bhaskar Dasgupta, T. S. Mruthyunjaya. Closed-form dynamic equations of the general stewart platform through the Newton-Euler Approach[J], Mechanism and Macheine Theory,1998,33(7):993-1012
    86.郭祖华.并联数控刀具磨床的动力学优化设计[D],北京:北京航空航天大学博士学位论文,2001
    87. L. Beji, M. Pascal. The Kinematics and the Full Minimal Dynamic Model of a 6-DOF Parallel Robot Manipulator[J], Nonlinear Dynamics,1999,18:339-356
    88.刘延斌,韩秀英,薛玉君等3-RRRT并联机器人动力学仿真[J],系统仿真学报,2006,18(7):1962-1965
    89.刘善增,余跃庆,侣国宁等.3自由度并联机器人的运动学与动力学分析[J],机械工程学报,2009,45(8):11-17
    90. Lebret G, Liu K, Lewis F L. Dynamic Analysis and Control of a Stewart Platform Manipulator[J], Journal of Robotic System,1993,10(5):629-655
    91.白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究[J],北京航空航天大学学报,2004,30(1):51-54
    92. Lee K M, Shah D K. Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator[J], IEEE Journal of Robotics and Automation,1988,4(3):361-367
    93. Pendar H, Vakil M, Zohoor H. Efficient dynamic equations of 3-RPS parallel mechanism through Lagrange method[J], Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore,2004:1152-1157
    94.蔡光起,原所先,胡明等.三自由度虚拟轴机床静力学及动力学的若干研究[J],中国机械工程,1999,10(10):1108-1111
    95.王启明,胡明,蔡光起.并联式钢坯修磨机器人动力学及轨迹规划研究[J],机器人,1999,21(1):69-74
    96.赵锡芳.机器人动力学[M],上海:上海交通大学出版社,1992,55-68
    97.李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J],机械科学与技术,1999,18(1):41-43
    98. Min-Jie Liu, Cong-Xin Li, Chong-Ni Li. Dynamics Analysis of the Gough-Stewart Platform Manipulator[J], IEEE,Transactions on Robotics and Automation,2000,16(1): 94-98
    99. Tsai L W. Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work[J], Journal of Mechanical Design,2000,122(1):3-9
    100.刘旭东.一类带有导向装置的并联机构分析与设计方法研究[D],天津大学博士论文,2001
    101.熊有伦,丁汉.机器人学[M],北京:机械工业出版社,1993,4-38
    102.姜虹,王小椿.6自由度并联机器人结构参数的优化[J],机械科学与技术,1999,18(3):432-434
    103.孟祥志.一种新型立卧转换式三杆混联机床的设计研究[D],沈阳:东北大学,2004
    104.Gosselin C. Stiffness mapping for parallel manipulators[J], IEEE Transactions on Robotics and Automation,1990,6(3):377-382
    105.李嘉,陈恳,董怡等.并联柔性铰机器人的静刚度研究[J],清华大学学报,1999,39(8):16-20
    106.高峰,黄玉美,彭中波等.混联式机床的并联机构刚度解析[J],制造技术与机床,2001,6:31-34
    107.EI-Khasawneh B S, Ferreira PM. Computation of stiffness and stiffness bounds for parallel link manipulators[J], International Journal of Machine Tools & Manufacture,1999, 39(2):321-342
    108.徐礼矩,范守文.一种新型并联机床的刚度和固有特性的有限元分析[J],机械设计与制造,2003,(1):102-103
    109.李洋,袁剑雄,马海涛.并联机床单支路静刚度的有限元分析[J],哈尔滨理工大学学报,2003,8(5):41-43
    110.Bhattacharya S, Hatwal H, Ghosh A. On the optimum design of Stewart platform type parallel manipulators[J], Robotica,1995,13(2):133-140
    111.Xin-Jun Liu, Zhen-Lin Jin, Feng Gao. Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices[J], Mechanism and Machine Theory, v35,2000(9):1257-1267
    112.陈吉清,兰凤崇.刚度分析理论在虚拟轴并联机床中的应用研究[J],机械科学与技术,2006,25(4):479-483
    113.David S.Hardage, Gloria J.Wiens. Modal analysis and modeling of a parallel kinematic machine[J], Manufacturing Science and Engineering,1999(10):857-862
    114.李兵,王知行,刘文涛等.新型并联机床的固有特性研究[J],机械设计,1999(9):1-5
    115.Jinwook Kim, F.C.Park, Munsang Kim. Geomtric Design Tools for Stiffness and Vibration Analysis of Robotic Mechanisms[J], Proceedings of the 2000 IEEE International Conference on Robotics & Automation,2000:1942-1947
    116.赵兴玉.3-HSS型并联机床的静刚度预估[D],天津大学博士论文,2001
    117.汪琦,王立平,李育文等.6-UPS型并联机床基于动态特性的设计优化[J],中国机械工程,2003,14(11):908-912
    118.方跃法,黄真.六自由度并联机器人的弹性动力模型[J],机械科学与技术,1990(1):13-16
    119.姚建新,陈永.并联型工业机器人的运动弹性动力学研究[J],机器人,1996(11):24-28
    120.蔡胜利,余跃庆,白师贤.弹性平面并联机器人的KED分析[J],机械科学与技术,1997(3):31-36
    121.蔡胜利,余跃庆,白师贤.空间弹性并联机器人KED建模[J],机械设计,1998(4):25-32
    122.蔡胜利,余跃庆,白师贤.弹性并联机器人消减残余振动的研究[J],机械科学与技术,1999(1):2-6
    123.Lee J D, Albus J S, Dagalakis N G, et al. Computer Simulation of a Parallel Link Manipulator[J], Robotics & Computer-Integrated Manufacturing,1989,5:333-342
    124.王启明.三平移自由度并联机器人力学及相关问题研究[D],沈阳:东北大学,1999
    125.Miao Yu, Ji Zhao; Lei Zhang, et al. Study on dynamic characteristics of virtual axis hybrid polishing machine tool by flexible multibody dynamics. Journal of Engineering Manufacture-Proceeding of the Institution of Mechanical Engineers Part B[J],218(9): 2004,1067-1076
    126.Miao Yu, Ji Zhao, Peixing Zhu, et al. Dynamics Model of Rigid-Flexible Coupling for a Five Degrees of Freedom Virtual Axis Polishing Machine tool. IFTOMM Proceedings of the 11th World Congress in Mechanism and Machine Science[J], Tianjin, China: April 1-4, 2004,652-655
    127.于淼,赵继,张代治等.混联虚拟轴研抛机床的多柔体动力学研究[J],机械科学与技术,2004,23(6):748-751
    128.于淼.虚拟轴混联研抛机床多柔体动力学研究[D],吉林大学博士学位论文,2004
    129.朱春霞.基于虚拟样机的并联机床若干关键技术的研究[D],沈阳:东北大学,2007
    130.L. Molinari-Tosatti, G. Bianchi, L.Fassi, et al. An Integrated Methology for the Design of Parallel Kinematic Machines (PKM), CIRP Annals,1998(46):341-345
    131.刘旭东.并联机床设计方法与集成设计环境开发[D],天津大学硕士论文,1998
    132.黄福林,肖大准Stewart平台机构仿真研究中的实体模型[J],机器人,1999,21(6):426-430
    133.韩海生,黄田.虚拟环境下并联机床建模与仿真[J],制造技术与机床,2000(1):19-20
    134.M. Leonesio, I. Fassi, G. Bianchi, et al. Parallel Mechanisms Design in a Virtual Prototyping Environment[J], Proc. Of 32nd ISR,2001
    135.彭力明.基于虚拟样机技术的虚拟轴机床机构分析研究[D],杭州:浙江大学,2004
    136.王立平,汪劲松,张华.并联机床数字化快速开发平台研究的意义[J],工具技术,2003,37(10):3-7
    137.赵景山.空间并联机构自由度的终端约束分析理论与数学描述方法[D],北京:清华大学,2004
    138.李桥梁.基于并联机构的数控机床基础技术与应用研究[D],南京:南京航空航天大学,1999
    139.刘宝顺.虚轴机床工作空间分析[D],天津:天津大学,1997
    140.曲义远,黄真.空间 6自由度多回路机构位置的三维搜索法[J],机器人,1989(5):5-29
    141.郭建烨,赵亮,刘永贤,蔡光起.并联机床电主轴与铰链点的干涉检查[J],组合机床与自动化加工技术,2008(4):50-52
    142.郭建烨,赵亮,刘永贤,蔡光起.3-UPS并联机床动平台的干涉校验分析[J],制造技术与机床,2008(6):71-74
    143.赵亮,郭建烨,蔡光起3-TPS(RRR)并联机床设计中的干涉分析[J],工具技术,2007,41(1):63-65
    144.郭建烨,刘永贤,赵亮,蔡光起.3-UPS并联机床驱动杆结构参数对工作空间的影响分析[J],2008,46(525):12-15
    145.郭建烨,赵亮,蔡光起.一种并联机床约束机构参数对工作空间的影响分析[J],机械与电子,2008(5):10-13
    146.陈旭,蔡光起.一种新型并联机床结构优化设计方法研究[J],中国科协第二届优秀博士生学术年会论文集,2004:903-907
    147.Oscar Altuzarra, Asier Zubizarreta, Itziar Cabanes, et al. Dynamics of a four degrees-of-freedom parallel manipulator with parallelogram joints[J], Mechatronics 19 (2009):1269-1279
    148.陈纯,黄玉美,韩旭熠.混联机床并联机构的逆动力学分析[J],中国机械工程,2009,20(7):784-788
    149.郝秀清,胡福生,陈建涛.基于牛顿—欧拉法的3PTT并联机构动力学分析与仿真[J],中国机械工程,2009,17卷增刊:32-36
    150.Alexei Sokolov, Paul Xirouchakis. Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure[J], Mechanism and Machine Theory,42 (2007):541-557
    151.Stefan Staicu. Dynamics analysis of the Star parallel manipulator[J], Mechanism and Machine Theory,42 (2007):541-557
    152.徐礼锯,范守文,李辉.基于并行计算的新型并联机床动力学解析模型[J],机械工程学报,2004,40(4):41-43
    153.J. P. Merlet. Parallel robots [M]. Netherland:Kluwer Academic Publishers,2000,183-232
    154.郭祖华,陈五一,陈鼎昌.基于全局动力学性能的并联机床结构参数优化[J],中国机械工程,2003,14(10):861-864
    155.赵永杰.高速轻型并联机械手动态设计理论与方法[D],天津:天津大学博士论文2006,6
    156.荣辉.一种空间三自由度并联机构的震动力平衡[J],机械设计与研究,2002年增刊:209-210
    157.孟祥志,蔡光起,胡明等.三杆混联数控机床的动力学[J],机械工程学报,2006,42(6):112-119
    158.余跃庆,李哲.现代机械动力学[M],北京:北京工业大学出版社,1998,1-2
    159.Wang JG, Gosselin CM. Static balancing of spatial three-degree-of-freedom parallel mechanisms[J], Mechanism and Machine Theory.1999,34(3):563-592
    160.孔宪文.空间连杆机构摆动力与摆动力矩的近似平衡[J],郑州大学学报,2000,32(1):57-60
    161.Andrea Russo, Rosario Sinatra, Fengfeng Xi. Static balancing of parallel robots[J], Mechanism and Machine Theory.2005,40(2):191-202
    162.Jiegao Wang. Kinematic Analysis, Dynamic Analysis and Static Balancing of Planar and Spatial Parallel Mechanisms or Manipulators with Revolute Actuators[D], Ph.D. thesis, Universitity Laval Quebec,1997
    163.Wu Y, Gosselin C. On the dynamic balancing of multi-DOF parallel mechanisms with multiple legs [J], Journal of Mechanical Design,2007,129(2):234-238
    164.杨流.并联机床的静平衡分析[D],沈阳:东北大学硕士论文,2007
    165.Liang Zhao, Yadong Gong and Guangqi Cai. Structural Parameter Optimal Design of a 3-TPS Parallel Grinding Machine Tool Based on Stiffness[J], Key Engineering Materials. 2008,359-360:538-542
    166.Yangmin Li, Qingsong Xu. Stiffness analysis for a 3-PUU parallel kinematic machine[J], Mechanism and Machine Theory,43(2008):186-200
    167.王友渔.一类球坐标型混联机器人静刚度建模理论与方法研究[D],天津大学博士论文,2008
    168.刘悦,汪劲松,王立平.基于单元刚度矩阵的混联机床静刚度研究[J],中国机械工程2008,19(24):2899-2903
    169.D J Sanger, J Q Chen, S J Zhang et al. Ageneral method for the stiffness analysis of manipulator mechanisms [J]. Proc Instn Mech Engrs,2000,214:673-685
    170.李树军,张余,孟巧玲.6-PSS空间并联机构的刚度特性[J],中国机械工程,2009,20(21):2521-2525
    171.L.Zhao, Y.D.Gong and G.Q.Cai. Analysis and Optimal Design for the Static Stiffness of a 2UPS-UPR Parallel Machine Tool[J], Materials Science Forum,2009,626-627:429-434
    172.赵亮,郭建烨,蔡光起.一种3-TPS (RRR)型并联机床伸缩杆的设计[J],机械制造,2006,44(499):15-17
    173.赵松年,张奇鹏.机电一体化机械系统设计[M],北京:机械工业出版社,1996
    174.伍懿.一种3-TPS并联机床的尺度综合及精度设计[D],沈阳:东北大学硕士论文,2004
    175.陈旭.一种3-UPS混联机床动态性能的研究[D],沈阳:东北大学博士论文,2006
    176.丁洪生,付大伟,付铁.BKX-Ⅰ型变轴数控机床结构参数优化[J],北京理工大学学报,2004,24(4):300-302
    177.Piras G.,Cleghorn W L,Mills J K,Dynamic finite-element analysis of a planar high-speed,high-precision parallel manipulator with flexible links[J], Mechanism and Machine Theory,2005,40(7):849-862
    178.Kang B, Mills J K. Dynamic modeling of structurally flexible planar parallel manipulator[J], Robotica,2002,20(3):329-339
    179.李兵,王知行,李建生.新型并联机床动力学研究[J],哈尔滨工业大学学报,1999,31(6):90-93
    180.于淼,赵继,苗忠等.基于多柔体动力学的混联研抛机床仿真分析[J],机床与液压,2005,184(12):40-41
    181.李育文,张华,杨建新等.6-UPS并联机床静刚度的有限元分析和实验研究[J],中国机械工程,2004,15(2):121-125
    182.胡景姝,王亚萍,马海涛.基于ANSYS并联机床结构形式的有限元分析[J],工具技术,2006,40(5):51-53
    183.董旭,高铁红,靳迎波等.基于有限元方法的并联机床模态分析[J],北华航天工业学院学报,2008,18(5):11-14
    184.张策,黄永强,王子良等.弹性连杆机构的分析与设计[M],北京:机械工业出版社,1997
    185.孙新民,张秋玲,丁洪生.现代设计方法实用教程[M],北京:清华大学出版社,2009
    186.罗继曼,蔡光起,孙光复.新型3-TPS并联机器人考虑弹性力学的动力学分析[J],组合机床与自动化加工技术,2005,10:1-3
    187.丁星,王清远MATLAB杆系结构分析[M],北京:科学出版社,2008,11
    188.黄雪梅,赵明扬.工业机器人虚拟样机技术的研究[J],计算机仿真,2003,20(3):11-13
    189.Pratt M J. Virtual prototypes and product models in mechanical engineering[C], In Virtual Prototyping-Virtual Environments and the Product Design Process, London, UK,1995
    190.Gowda S, Jayaram S, Jayaram U. Architectures for Internet-based Collaborative Virtual Prototyping[C], ASME Design Technical Conference and computers in Engineering Conference, Las Vegas, USA,1999
    191.Song P, Krovi V, Mahoney R. Design and Virtual Prototyping of Human-worm Manipulation Devices[C], ASME Design Technical Conference and computers in Engineering Conference, Las Vegas, USA,1999
    192.Antonino G S, Zachmann G. Integrating Virtual Reality for Virtual Prototyping[C], ASEM Design Technical Conference and Computers in Engineering Conference, Atlanta, Georgia, USA,1998
    193.刘兵.机床夹具CAD技术及其数字化设计手册软件的研究[D],成都:四川大学硕士学位论文,2004
    194.陈立平,张云清.机械系统动力学分析及ADAMS应用教程[M],北京:清华大学出版社,2005
    195.赵亮,郭建烨,蔡光起.一种3 TPS (RRR)型并联机床虚拟样机设计[J],机械与电子,2006(11):3-5
    196.Ansys.Inc. Modeling and Meshing Guide, Release 10.0[M],2005,256-268
    197.叶阜,张宝国,张起伟,韩刚华.基于ANSYS Workbench的斗轮堆取料机关键零部件的有限元分析优化[J],起重运输机械,2008(12):83-87
    198.孙常峰.基于ANSYS Workbench的精冲模有限元分析与优化[D],武汉:华中科技大学硕士学位论文,2007
    199.李兵,何正嘉,陈雪峰ANSYS Workbench设计仿真与优化[M],北京:清华大学出版社,2008.8
    200.艾曦锋,巴兴强,王冰.基于ANSYS Workbench的4G1发动机支架模态分析[J],汽车与船舶,2008(9):225-228
    201.付铁,丁洪生,何小妹等.BKX-Ⅰ型变轴机床的伸缩轴刚度实验数据回归分析[J],机械科学与技术,2004,23(2):215-217
    202.何少华,文竹青,娄涛.试验设计与数据处理[M],长沙:国防科技大学,2002
    203.何晓群.实用回归分析[M],北京:高等教育出版社,2008
    204.范培卿,荣辉,付铁等.BKX-Ⅰ型并联运动机床的实验模态分析及灵敏度分析[J],现代制造工程,2006,9:124-127
    205.范培卿,荣辉,付铁等.六自由度并联平台的模态分析方法研究[J],制造技术与机床,2006(6):44-48
    206.韩清凯,于涛,杜戊等.六杆并联机器人模态实验与动力学特性分析[J],振动工程学报,2003,16(9):349-353
    207.周正干,李然,负超等.实验模态技术在机器人动态特性分析中的应用[J],华北工学院学报,2000,21(4):290-295
    208.李德葆,陆秋海.实验模态分析及其应用[M],北京:科学出版社,2001
    209.曹树谦,张文德,萧龙翔.振动结构模态分析-理论、实验与应用[M],天津:天津大学出版社2001
    210.杨斌久.少自由度并联机床约束链的若干问题研究[D],沈阳:东北大学,2006
    211.郭建烨.三杆少自由度混联机床精度分析及相关问题的研究[D],沈阳:东北大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700