用户名: 密码: 验证码:
废水中典型EDCs的检测新方法及其降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,内分泌干扰物(EDCs)污染由于人类生产和生活而日益给生态环境带来了巨大的威胁。其被称为第三代环境污染物,即便是低浓度暴露下,也会引起生物体生殖能力降低,并最终导致种群灭绝。EDCs性质稳定,不易降解,通过食物链发生生物富集和生物放大,最终严重危害人类。在我国EDCs亦被发现在很多水域,但相比下国内开展相关的研究还非常不足,其中检测和降解是控制治理EDCs污染的关键环节。开发EDCs的测定技术、掌握EDCs降解特性的研究已经成为摆在我国环境科学工作者面前的重要任务之一。本文在500余种EDCs中,以多环芳烃(PAHs)、阿维菌素(AVMs)、拟除虫菊酯(SPs)和类固醇(Steroids) 4类典型、常见的EDCs物质为目标,分别对其快速、多残留、高精度检测及微生物降解特性展开研究。
     经一系列优化实验,最终采用固相萃取方式,真空旋转蒸发作为提纯方式,流动相流速800μL min-1,柱温30℃,在优化的色谱及检测器程序下,得到的16种PAHs线性方程的相关系数均大于0.9950,方法检出限的范围在0.58~11.27 ng.L-1,高中低3浓度下的加标回收实验表明,方法的回收率在80.32%~120.74%,各物质被平行测定5次的相对标准差在2.02%~8.71%,大大满足美国环保局的加标回收率在70~130%之间,RSD小于30%的要求。在此16种PAHs中,分别选取菲、芘作为低环、稠环芳烃的代表,驯化出优势菌株W1、W2,开展在泥水混合相和单一水相中混合菌株及单一优势菌株的降解性质实验。实验结果表明,更接近于自然状况的泥水相、混合菌群下,降解率优于单一水相及单一菌株的降解,但芘降解实验的各组差异不如菲显著。
     经实验,选择以含0.1%甲酸的水和甲醇作为流动相,在优化后的色谱及质谱参数条件下,峰形良好,分离度佳,其中丙酸睾酮等7种物质产生了基峰质子化的准分子离子峰[M+H]+,另外6种物质分子脱水产生了准分子离子[M+H-H2O]+,各化合物回归方程线性均高于0.9990,方法的检出限0.15~20 ng.mL-1。13种类固醇加标回收率范围83.75%~111.50%,平行测定6次的相对标准偏差2.02%~14.21%。经实际废水样品测定,该方法能较好的满足其监测需要。驯化、分离得到其优势菌株WS1~3,以炔雌醇为代表物对其降解性能开展实验。72h后,得到的4种降解条件下,各水平的对降解的影响曲线及微生物生长曲线。结果显示,当污染物初始浓度为10mgL-1,35℃,pH=9,NaCl、MgCl2、CaCl2、ZnCl2、FeCl3、CuCl2的浓度分别为20、30、10、10、40、10 mg L-1时,其降解率最高。说明不同条件的不同水平,对降解性能均有不同程度的影响。
     对阿维菌素类及拟除虫菊酯类驱虫剂,采用无需衍生化的固相萃取为简单便捷的前处理手段,高效液相色谱-串联四极杆质谱联用技术为高效准确的检测手段,在电喷雾电离正离子模式下,建立了一次进样测定分析两类、7种驱虫剂多残留污染浓度的分析方法,7种化合物定量限范围为0.03~2.47ng mL-1,其校正曲线的相关系数均高于0.9980。从农药底泥中驯化、分离得到1株能同时降解溴氰菊酯、氯氰菊酯和氟氯苯菊酯的高效菌株U1,及能降解阿巴菌素的高效菌株W1,分别以此2株优势降解菌对2类农药化合物进行了降解性能实验。当接种量为OD415nm值0.2,农药浓度为150 mg L-1,25℃,pH=7.0,振荡速率220 rpm时,驯化得到的优势菌株对溴氰菊酯、氯氰菊酯和氟氯苯菊酯3种农药的降解率分别达到最大。在温度为30℃,pH=7.0,污染物初始浓度为100mg L-1,振荡速率300rpm时,其对阿巴菌素的降解率达到峰值。
In recent years, Endocrine Disrupting Chemicals (EDCs) contamination has progressively posed great threat to ecological environment because of the activities of mankind's production and living. It's called the third generation of environmental pollutants, and even under lower exposure concentration, it still can decrease the reproductive capacity of organism and lead to species extinction eventually. The physical and chemical properties of EDCs is stable, it's difficult to degrade,and is absorbed in organism. By food chain, It can also be seriously bioaccumulated and biomagnified, and severely harm human heath finally. In China, EDCs had also been found in many watershed, but the related researchs are very insufficient in contrast, in which determination and degradation are the crucial element for controlling and treating EDCs contamination. For the environmental scientists of our country, the researchs about developing the determination technology of EDCs and mastering degradation characteristics of EDCs have already become one of the most important task. From more than 500 kinds of EDCs, this study selected Polycyclic Aromatic Hydrocarbons (PAHs), Avermectins (AVMs), Synthetic Pyrethroids (SPs) and Steroids 4 types of typical EDCs as research objectives, conducting respectively research about the method of rapid, multi-residue, precision determination and the characteristic of biodegradation.
     Through a series of optimization experiment, finally taking Solid-Phase Extraction (SPE) as enrichment manner, Rotary Vacuum Evaporation as purification manner, the flow rate of mobile phase was 800μL min-1, the column temperature was 30℃, under the optimized procedures of chromatography and detector, the obtained correlations of linear equations of 16 PAHs were all greater than 0.9950, the limit of detection (LOD) of obtained method were 0.58~11.27 ng·L-1, and the recovery rate experiment at high, middle and low 3 concentration indicated that the recovery rates were 80.32%~120.74%, the relative standard deviations(RSD) were 2.02%~8.71% in 5 duplicates, it far exceeded the request of USEPA that the recovery rate should be 70~130% and RSD should be less than 30%. From the refered 16 PAHs, selecting phenanthrene(Phe) and pyrene(Pyr) to represent respectively low and high molecular weight PAHs, acclimating and obtaining dominant bacterial strains W1, W2, the degradation characteristics experiments were performed in slurry phase and aqueous phase, by individual isolate and mixed consortium. The result indicated, since it's more closer to natural conditions, when in slurry phase and by mixed consortium,the degradation rate was more better than it in other conditions, however, for Pyr,the difference of result under each condition wss not as significant as Phe.
     Taking ultrawater and methanol(both of that include 0.1% formic acid) as mobile phases, under optimized parameter conditions of chromatography and mass spectrum, both peak shapes and separation were pretty good. Testosterone propionate etc.7 compounds produced quasi-molecular ion [M+H]+, and other 6 compounds dehydrated to produce quasi-molecular ion [M+H-H2O]+, the corelations of regression equations of each compound were all greater than 0.9990, the LODs were 0.15~20 ng-mL-1, the range of recovery rate of 13 steroid compounds was 83.75%~111.50%, the RSD in 6 duplicates were 2.02%~14.21%. By actual measuring of waste example, the method could better meet the measuring's request. After acclimating, isolating, the dominant bacteria strains of ethynyloestradiol(EE2) WS1-3 were obtained, the degradation experiments of EE2 were carried out. After 72 hours, the curves of degradation effect and microbe growth under each level of 4 conditions were acquired. The result shown that, when the initial concentration of contamination was 10 mgL-1, the experiment temperature was 35℃, the value of pH was 9, the concentrations of NaCl、MgCl2、CaCl2、ZnCl2、FeCl3、CuCl2 were respectively 20、30、10、10、40、10 mg L-1, the degradation rate reached the maximum. It was shown that the different levels of different conditions have effected the degradation performance in varying degree.
     For Avermectins(AVMs) and Synthetic Pyrethroids(SPs) compounds, adopting non-derivatization SPE as simple and convenient pre-treatment method, High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MSMS) as efficient and precise measure manner, in electro-spray ion(ESI) soure and positive mode, the multi-residue analysis method of 2 types of 7 kinds of pesticides's concentration in one injection was developed, the range of limit of quantitation(LOQ) of 7 compounds was from 0.03 to 2.47ng mL-1, the corelation of calibration curve were all greater than 0.9980. The U1, a bacteria strain that could efficiently degrade both deltamethrin(DTM), cypermethrin(CPM) and flumethrin(FM) at the same time was acclimated and isolated from pesticide sediment. And another bacteria strain, W1, which could efficiently degrade abamectin(Aba) was obtained as well. Using this 2 dominant strains respectively, the degradation experiments of that 2 types pesticide compounds were conducted. When the inoculum size OD415 nm was 0.2, the initial concentration of contamination was 150 mg L-1, experiment temperature was 25℃, the value of pH was 7.0, shaker rotation was at 220rpm, the degradation rates of DTM, CPM and FM reached the maximum value respectively. When experiment temperature was 30℃, pH=7.0, the initial concentration of contamination was 100 mg L-1, shaker rotation was at 220rpm, the degradation rate of Aba reached the peak value.
引文
1.章志青.环境激素对人体健康的影响及其防制对策[J],绍兴文理学院学报(自然科学版),2004,24(07):109-112.
    2.俞佳.内分泌干扰化学物质[J],日本医学介绍,2006,27(5):238-239.
    3. Aoki J Y, Nagae M, Takao Y, Hara A, Lee Y D, Yeo I K, Lim B S, Park C B, Soyano K. Survey of contamination by endocrine disrupting chemicals (EDCs) using wild grey mullet in Korea and Japan, and the cloning of estrogen receptor gene as new biomarker for effect evaluation of EDCs[J], Cybium,2008,32(2):253-254.
    4. Chang H S, Choo K H, Lee B, Choi S J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water[J], Journal of Hazardous Materials,2009,172(1):1-12.
    5. King S C, Hassell K L, Nugegoda D. Induction of vitellogenin in barramundi and black bream as a biomarker of exposure to EDCs in Australian waters[J], Environmental Bioindicators,2008,3(1):W17.
    6. Bernet D, Liedtke A, Bittner D, Eggen R I L, Kipfer S, Kung C, Largiader C R, Suter M J F, Wahli T, Segner H. Gonadal malformations in whitefish from Lake Thun:Defining the case and evaluating the role of EDCs[J], Chimia,2008,62(5):383-388.
    7. Chang H-S, Choo K-H, Lee B, Choi S-J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water[J], Journal of Hazardous Materials,2009,172(1):1-12.
    8. Krause H, Schweiger B, Schuhmacher J, Scholl S, Steinfeld U. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water[J], Chemosphere,2009,75(2):163-168.
    9.牛晓荣,付鑫峰,程丽华.环境内分泌干扰物的处理研究现状及前景[J],安全健康和环境,2007(4):2-5.
    10.史熊杰,刘春生,余珂,邓军,余丽琴,周炳升.环境内分泌干扰物毒理学研究[J],化学进展,2009,21(2/3):340-349.
    11. Arslan T, Phelps R P. Production of monosex male black crappie, Pomoxis nigromaculatus, populations by multiple androgen immersion[J], Aquaculture,2004,234(1-4): 561-573.
    12. Angus R A, McNatt H B, Howell W M, Peoples S D. Gonopodium development in normal male and 11-ketotestosterone-treated female mosquitofish (Gambusia affinis):A quantitative study using computer image analysis[J], General and Comparative Endocrinology, 2001,123(2):222-234.
    13. Andersen L, Goto-Kazeto R, Trant J M, Nash J P, Korsgaard B, Bjerregaard P. Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio)[J], Aquatic Toxicology,2006,76(3-4):343-352.
    14.蔡文婷,汝少国.环境内分泌干扰物诱导鱼类产生卵黄原蛋白的研究进展[J],海洋湖沼通报,2009(3):91-97.
    15.卫立,张洪昌,张爱茜,尹大强.环境内分泌干扰物低剂量-效应研究进展[J],生态毒理学报,2007,25(1):25-31.
    16.王杉霖,张剑波.中国环境内分泌干扰物的污染现状分析[J],环境污染与防治,2005,27(3):228-231.
    17.李杰,司纪亮.环境内分泌干扰物质简介[J],环境与健康杂志,2002,19(1):83-84.
    18. Davis K B, Morrison J, Galvez J I. Reproductive characteristics of adult channel catfish treated with trenbolone acetate during the phenocritical period of sex differentiation[J], Aquaculture,2000,189(3-4):351-360.
    19. Danzo B J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins[J], Environmental Health Perspectives,1997,105(3):294-301.
    20. Nakamoto M, Matsuda M, Wang D S, Nagahama Y, Shibata N. Molecular cloning and analysis of gonadal expression of Fox12 in the medaka, Oryzias latipes[J], Biochemical and Biophysical Research Communications,2006,344(1):353-361.
    21. Kavlock R J, Daston G P, DeRosa C, FennerCrisp P, Gray L E, Kaattari S, Lucier G, Luster M, Mac M J, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan D M, Sinks T, Tilson H A. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:A report of the US EPA-sponsored workshop[J], Environmental Health Perspectives,1996,104:715-740.
    22. Liu Z H, Kanjo Y, Mizutani S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation:A review[J], Science of the Total Environment,2009,407(2):731-748.
    23. Pojana G, Gomiero A, Jonkers N, Marcomini A. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon[J], Environment International,2007,33:929-936.
    24. Seok K Y, Min J H, Hong H N, Park J H, Park K S, Gu M B. Analysis of the stress effects of endocrine disrupting chemicals (EDCs) on Escherichia coli[J], Journal of Microbiology and Biotechnology,2007,17(8):1390-1393.
    25.王涛,高志贤.环境内分泌干扰物质的检测[J],中国卫生检验杂志,2004,14(4):390-392.
    26.赵军,韦薇.环境激素对人体健康的影响[J],化学教育,2008(11):1-3.
    27. Nakane Y, Kubo I. Degradation of liposome cluster caused by the interaction with endocrine disrupting chemicals (EDCs)[J], Colloids and Surfaces B-Biointerfaces,2008, 66(1):60-64.
    28. Razak A R A, Ujang Z, Ozaki H. Removal of endocrine disrupting chemicals (EDCs) using low pressure reverse osmosis membrane (LPROM)[J], Water Science and Technology, 2007,56(8):161-168.
    29. Snyder S A. Occurrence, treatment, and toxicological relevance of EDCs and Pharmaceuticals in water[J], Ozone-Science & Engineering,2008,30(1):65-69.
    30.文卫华,刘苹.农药的内分泌干扰效应研究进展[J],环境与职业医学,2005,22(1):67-69.
    31.王鲁梅,刘维屏,马云,林坤德.农药的内分泌干扰研究[J],环境化学,2006,25(3):326-330.
    32.裴雪松,常兵.拟除虫菊酯类农药的内分泌干扰活性研究进展[J],毒理学杂志,2007,21(1):73-75.
    33. Tsuno H, Arakawa K, Kato Y, Nagare H. Advanced sewage treatment with ozone under excess sludge reduction, disinfection and removal of EDCs[J], Ozone-Science & Engineering,2008,30(3):238-245.
    34. Wu T, Wang W Y, Jiang L M, Chu Q C, Delaire J, Ye J N. Determination of natural and synthetic endocrine-disrupting chemicals (EDCs) in sewage based on SPE and MEKC with amperometric detection[J], Chromatographia,2008,68(5-6):339-344.
    35. Zoller U. EDCs/Carcinogenic Micropollutants APEOs/PAHs in Aqueous Environments:Implications for Sustainable Reuse of Wastewater:the Case of Israel[J], Progress in Environmental Science and Technology, Vol Ii, Pts a and B,2009:927-929.
    36.陈一萍.环境内分泌干扰物筛选与控制技术的研究进展[J],环保科技,2007(2):33-40.
    37.梁超,邓慧萍.水中内分泌干扰物质的研究现状及趋势[J],城市公用事业,2005, 19(3):17-19.
    38. Valsamaki V I, Sakkas V A, Albanis T A. Determination of the pesticides considered as endocrine-disrupting compounds (EDCs) by solid-phase extraction followed by gas chromatography with electron capture and mass spectrometric detection[J], Journal of Separation Science,2007,30(12):1936-1946.
    39. Xu J, Wu L S, Chen W P, Jiang P P, Chang A C S. Pharmaceuticals and Personal Care Products (PPCPs), and Endocrine Disrupting Compounds (EDCs) in Runoff from a Potato Field Irrigated with Treated Wastewater in Southern California[J], Journal of Health Science, 2009,55(2):306-310.
    40.任仁,黄俊.哪些物质属于内分泌干扰物(EDCs)[J],安全与环境工程,2004,11(3):7-10.
    41. Liang Y, Fung P K, Tse M F, Hong H C, Wong M H. Sources and seasonal variation of PAHs in the sediments of drinking water reservoirs in Hong Kong and the Dongjiang River (China)[J], Environmental Monitoring and Assessment,2008,146(1-3):41-50.
    42. Marie-Rose S C, Belin T, Mijoin J, Fiani E, Taralunga M, Nicol F, Chaucherie X, Magnoux P. Catalytic combustion of polycyclic aromatic hydrocarbons (PAHs) over zeolite type catalysts:Effect of water and PAHs concentration[J], Applied Catalysis B-Environmental, 2009,90(3-4):489-496.
    43.张雪英,周立祥,崔春红,郑翔翊.江苏省城市亏泥中多环芳烃的含量及其主要影响因素分析[J],环境科学,2008,29(8):2271-2276.
    44.王淑娟,周翔,许宜平,马梅,刘文利,李太山.北方某城市饮用水中多环芳烃的来源及其在水处理过程中的行为研究[J],环境工程学报,2007,1(8):52-56.
    45. Chowdhury K H, Husain T, Veitch B, Hawboldt K. Probabilistic Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Produced Water[J], Human and Ecological Risk Assessment,2009,15(5):1049-1063.
    46. Lohmann R, Gioia R, Jones K C, Nizzetto L, Temme C, Xie Z, Schulz-Bull D, Hand I, Morgan E, Jantunen L. Organochlorine Pesticides and PAHs in the Surface Water and Atmosphere of the North Atlantic and Arctic Ocean[J], Environmental Science & Technology, 2009,43(15):5633-5639.
    47. Arias-Estevez M, Fernandez-Gandara D, Garcia-Falcon M S, Garcia-Rio L, Mejuto J C, Simal-Gandara J. Sorption of PAHs to colloid dispersions of humic substances in water[J], Bulletin of Environmental Contamination and Toxicology,2007,79:251-254.
    48. Georgi A, Reichl A, Trommler U, Kopinke F D. Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of PAHs[J], Environmental Science & Technology,2007,41(20):7003-7009.
    49.罗世霞,朱淮武,张笑一.固相微萃取-气相色谱法联用分析饮用水源水中的16种多环芳烃[J],农业环境科学学报,2008,27(1):395-340.
    50.郭伟,何孟常,杨志峰,林春野,全向春,王浩正.大辽河水系表层水中多环芳烃的污染特征[J],应用生态学报,2007,18(7):1534-1538.
    51. Qiu Y W, Zhang G, Liu G Q, Guo L L, Li X D, Wai O. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China[J], Estuarine Coastal and Shelf Science,2009,83(1):60-66.
    52. Ricci M, Bercaru O, Morabito R, Brunori C, Ipolyi I, Pellegrino C, Sahuquillo A, Ulberth F. Critical evaluation of interlaboratory comparisons for PAHs and pesticides in organic standard solutions in support of the implementation of the Water Framework Directive[J], Trac-Trends in Analytical Chemistry,2007,26:818-827.
    53. Wu B, Zhang X, Zhang Y, Zhao D, Cui Y, Cheng S. Extracellular proteomic analysis for degradation of PAHs in source of drinking water with fusant strains[J], Ecotoxicology, 2009,18(6):736-741.
    54. Karpova T, Preis S, Kallas J. Selective photocatalytic oxidation of steroid estrogens in water treatment:urea as co-pollutant[J], Journal of Hazardous Materials,2007,146(3): 465-471.
    55. Murr A S, Goldman J M. Twenty-week exposures to the drinking water disinfection by-product dibromoacetic acid:reproductive cyclicity and steroid concentrations in the female Sprague-Dawley rat[J], Reproductive Toxicology,2005,20(1):73-80.
    56. Velicu M, Suri R. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas[J], Environmental Monitoring and Assessment, 2009,154(1-4):349-359.
    57.李伟民,尹大强,杨捷,胡继峰,王连生.两种二氯苯胺对鱼类血清性类固醇激素水平的影响[J],环境科学学报,2002,22(6):799-801.
    58.黄斌,潘学军,刘晶靓,方锴,王宇,高建培.类固醇类环境内分泌干扰物羟基衍生化研究[J],分析化学.2009,37(11):1651-1656.
    59. Crooks S.R.H. R P, Thompson C.S., et al. Detection of unwanted residues of ivermectin in bovine milk by dissociation-enhanced lanthanide, fluoroimmunoassay. luminescence,15:371-37,99.
    60.黄卫,宋海燕.环境中类固醇雌激素的转化机制研究进展[J],广东化工,2009, 36(7):71-73.
    61.何焕君,邱丽娜,姚伟芳,弓爱君,宋晓春,刘丽君.阿维菌素的研究进展[J],生物技术,2006,16(6):84-85.
    62.王成菊,邱立红,郑明奇,陶传江,姜辉,张文吉,李学锋.阿维菌素及其混配制剂对蜜蜂的安全性评价[J],农业环境科学学报,2006,25(1):229-231.
    63. Taylor M A. Recent Developments in Ectoparasiticides[J], The Veterinary Journal, 2001,161(3):253-268.
    64. Elbetieha A, Da'as S I. Assessment of antifertility activities of abamectin pesticide in male rats[J], Ecotoxicology and Environmental Safety,2003,55(3):307-313.
    65.杨方,杨守深,林永辉,郑丹萍,卢声宇,黄志强,张莹.超高效液相色谱-电喷雾电离串联质谱联用法检测茶叶中阿维菌素类药物残留[J],色谱,2009,27(2):153-157.
    66.崔新仪,刘波,袁家齐,李重九.阿维菌素在梨贮藏中的降解动态[J],农药,2007,46(2):118-120.
    67.李晶,董丰收,刘新刚,姚建仁,杜传玉,郑永权.高效液相色谱检测梨中阿维菌素残留方法研究[J],农药科学与管理,2008,29(2):17-22.
    68.许玉艳.阿维菌素类药物对玫瑰无须鲃及牙鲆鳃细胞系的毒性效应[D],青岛:中国海洋大学,2006
    69.何继红.阿维菌素类药物多残留分析方法的研究[D],北京:中国农业大学,2005
    70.邴欣,汝少国,周文礼,贾水刚.阿维菌素的环境雌激素活性和生殖毒性评价[J],武汉大学学报(理学版),2008,54(6):745-750.
    71.熊文兰,陈一兵.农药渗透污染地下水的监测及管理[J],西南农业学报,2003,16(S1):43-48.
    72. Spurlock F, Lee M. Synthetic Pyrethroid Use Patterns, Properties, and Environmental Effects[J], Synthetic Pyrethroids,2008,991:3-25.
    73.梅立永,赵智杰,尹璇,付丽,黄钱.拟除虫菊酯类农药环境行为与归趋模拟[J],农业环境科学学报,2007,26(6):2316-2322.
    74.刘尚钟,王敏,陈馥衡.拟除虫菊酯类农药的研究和展望[J],农药,2004,43(7):289-293.
    75. Khan I A T, Riazuddin, Parveen Z, Ahmed M. Multi-residue determination of synthetic pyrethroids and organophosphorus pesticides in whole wheat flour using gas chromatography[J], Bulletin of Environmental Contamination and Toxicology,2007,79: 454-458.
    76. Schulz R, Stehle S. Synthetic Pyrethroids in Agricultural Surface Waters:Exposure, Effects, and Risk Mitigation[J], Synthetic Pyrethroids,2008,991:171-201.
    77. Shamim M T, Hoffmann M D, Melendez J, Ruhman M A. Ecological Risk Characterization for the Synthetic Pyrethroids [J], Synthetic Pyrethroids,2008,991:257-309.
    78.周纯.多环芳烃类环境激素的实时定量免疫PCR检测方法研究[D],上海:东华大学,2008
    79.梁寒.食品中多环芳烃检测方法研究进展[J],监督与选择,2008(5):58-60.
    80.林琳,王海,缪丽娜,费勇.微波提取高效液相色谱法测定土壤中15种痕量多环芳烃[J],中国环境监测,2009,25(2):86-89.
    81.谭文捷,李宗良,丁爱中,王金生.土壤和地下水中多环芳烃生物降解研究进展[J],生态环境,2007,16(4):1310-1317.
    82. Bruno P, Caselli M, de Gennaro G, Tutino M. Determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter collected with low volume samplers (vol 72, pg 1357,2007)[J], Talanta,2008,74(5):1700-1700.
    83.幸苑娜,倪宏刚,曾永平.固相微萃取采样器的开发及其在南海水体多环芳烃检测中的应用[J],分析测试学报,2009,28(6):238-243.
    84.李先国,阎国芳,周晓,虢新运,王岩,刘金燕.固相萃取-高效液相色谱-荧光检测法测定海水中的多环芳烃[J],中国海洋大学学报(自然科学版),2009,30(12):1535.
    85.贾瑞宝.水中痕量多环芳烃(PAHs)类环境污染物检测方法的研究[J],中国环境监测,1999,15(1):40-42.
    86.钱薇,倪进治,骆永明,李秀华,邹德勋.高效液相色谱-荧光检测法测定土壤中的多环芳烃[J],色谱,2007,25(2):221-225.
    87.王爱娟,郭蔷.利用固相萃取技术检测环境水样中多环芳烃的方法[J],四川化工,2008,11(5):36-40.
    88. Wolska L. Determination (monitoring) of PAHs in surface waters:why an operationally defined procedure is needed[J], Analytical and Bioanalytical Chemistry,2008, 391(7):2647-2652.
    89.陈皓,刘颖,刘海玲,袁园,肖乾芬.超高效液相色谱法检测上壤中的多环芳烃[J],色潜,2008,26(6):769-771.
    90. Sack U, Hofrichter M, Fritsche W. Degradation of phenanthrene and pyrene by Nematoloma frowardii[J], Journal of Basic Microbiology,1997,37(4):287-293.
    91. Lee S H, Lee W S, Lee C H, Kim J G. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes[J], Journal of Hazardous Materials,2008,153(1-2): 892-898.
    92. Majcherczyk A, Braun-Lullemann A, Huttermann A. Screening of litter decomposing fungi for degradation of polycyclic aromatic hydrocarbons (PAH) phenanthrene and benzo a pyrene[J], Utilization of Bioremediation to Reduce Soil Contamination:Problems and Solutions,2003,19:373-376.
    93. Coppotelli B M, Del Panno M T, Morelli I S. Natural attenuation and bioaugmentation of PAH degradation and microbial community in soil contaminated with phenanthrene and pyrene[J], International Biodeterioration & Biodegradation,2008,62(1): 9-9.
    94. Guieysse B, Cirne M, Mattiasson B. Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor[J], Applied Microbiology and Biotechnology,2001,56(5-6):796-802.
    95. Li P J, Wang X, Stagnitti F, Li L, Gong Z Q, Zhang H R, Xiong X Z, Austin C. Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp[J], Environmental Engineering Science,2005,22(3):390-399.
    96. Sack U, Heinze T M, Deck J, Cerniglia C E, Martens R, Zadrazil F, Fritsche W. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi[J], Applied and Environmental Microbiology,1997,63(10):3919-3925.
    97.聂麦茜,张志杰,孙先锋,雷萍.特效黄杆菌对蒽菲芘的降解性能研究[J],微生物学通报,2001,28(5):32-36.
    98. Capotorti G, Cesti P, Lombardi A, Guglielmetti G. Formation of sulfate conjugates metabolites in the degradation of phenanthrene, anthracene, pyrene and benzo a pyrene by the ascomycete Aspergillus terreus[J], Polycyclic Aromatic Compounds,2005,25(3):197-213.
    99. Carrillo-Carrion C, Simonet B M, Valcarcel M. Carbon nanotube-quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water[J], Analytica Chimica Acta,2009,652(1-2):278-284.
    100. Cavalcante R M, de Lima D M, Correia L M, Nascimento R F, Silveira E R, Freire G S S, Viana R B. Extraction techniques and clean-up procedures for the determination of PAHs in sediments of the Ceara Coast[J], Quimica Nova,2008,31(6):1371-1377.
    101. Cheema S A, Khan M I, Tang X J, Zhang C K, Shen C F, Malik Z, Ali S, Yang J J, Shen K L, Chen X C, Chen Y X,Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea)[J], Journal of Hazardous Materials,2009, 166(2-3):1226-1231.
    102. Guieysse B, Bernhoft I, Andersson B E, Henrysson T, Olsson S, Mattiasson B. Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor[J], Applied Microbiology and Biotechnology,2000,54(6):826-831.
    103. Kim Y H, Freeman J P, Moody J D, Engesser K H, Cerniglia C E. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1[J], Applied Microbiology and Biotechnology,2005,67(2):275-285.
    104.聂麦茜,张志杰,王晓昌,戴小东.两株假单胞菌对蒽菲芘的降解作用[J],环境科学学报,2002,22(5):630-633.
    105. Chang B V, Chang I T, Yuan S Y. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment[J], Bulletin of Environmental Contamination and Toxicology, 2008,80(2):145-149.
    106. Wang X, Li P, Gong Z, Li B, Ju J, He X, Tai P. Degradation of phenanthrene and pyrene in contaminated soil by immobilized Zoogloea sp. and Fusarium sp[J], Yingyong Shengtai Xuebao,2001,12(4):636-638.
    107. Wang X, Li P, Gong Z, Qu X, Wang B. The degradation of phenanthrene and pyrene contaminated soil with immobilized technique[J], Huanjing Kexue,2002,23(3):84-87.
    108.周庆祥,江桂斌.浅谈环境内分泌干扰物质[J],科技术语研究,2001,3(3):12-14.
    109. Crisp T M, Clegg E D, Cooper R L, Wood W P, Anderson D G, Baetcke K P, Hoffmann J L, Morrow M S, Rodier D J, Schaeffer J E, Touart L W, Zeeman M G, Patel Y M. Environmental endocrine disruption:An effects assessment and analysis[J], Environmental Health Perspectives,1998,106:11-56.
    110.孙卫玲,倪晋仁.双酚A和典型类固醇环境激素迁移转化研究进展[J],环境污染与防治,2006,28(1):44-47.
    111. Pothitou P, Voutsa D. Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece[J], Chemosphere,2008,73(11):1716-1723.
    112. Pelley J. Estrogen knocks out fish in whole-lake experiment[J], Environmental Science & Technology,2003,37(17):313-314.
    113. Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler C R, van Aerle R, Santos E, Brighty G. Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations[J], Environmental Health Perspectives,2006,114:32-39.
    114. Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. Monitoring Natural and Synthetic Estrogens at Activated Sludge Sewage Treatment Plants and in a Receiving River Water[J], Environmental Science & Technology,2000,34(24):5059-5066.
    115. de Alda M J L, Barcelo D. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry[J], Journal of Chromatography A, 2000,892(1-2):391-406.
    116. Vulliet E, Wiest L, Baudot R, Grenier-Loustalot M-F. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J], Journal of Chromatography A,2008,1210(1):84-91.
    117.纪树兰,韩磊,任海燕,崔成武,刘志鹏,张国俊.一株降解甾体雌激素的克雷伯氏菌ZY3[J],北京工业大学学报,2006,32(11):1017-1021.
    118.纪树兰,刘志培,刘志鹏,任海燕.甾体雌激素废水中优势降解菌的分离及特性[J],中国环境科学,2005,25(5):585-588.
    119. Tai S S-C, Welch M J. Development and Evaluation of a Reference Measurement Procedure for the Determination of Total 3,3',5-Triiodothyronine in Human Serum Using Isotope-Dilution Liquid Chromatography- Tandem Mass Spectrometry[J], Analytical Chemistry,2005,77(19):6359-6363.
    120. Xu X, Keefer L K, Ziegler R G, Veenstra T D. A liquid chromatography-mass spectrometry method for the quantitative analysis of urinary endogenous estrogen metabolites[J], Nat. Protocols,2007,2(6):1350-1355.
    121. Nelson R E, Grebe S K, O'Kane D J, Singh R J. Liquid Chromatography-Tandem Mass Spectrometry Assay for Simultaneous Measurement of Estradiol and Estrone in Human Plasma[J], Clinical Chemistry,2004,50(2):373-384.
    122.王贤亲,林丹,李艳霞,林滨LC-APCI-MS/MS同时测定人血浆中的7种苯二氮类药物[J],药物分析杂志,2009,29(3):403-407.
    123.常红,胡建英,邵兵,徐烨,高建峰,董民强.固相萃取-LC-MS法检测水中痕量雌激素[J],环境化学,22(4):400-403.
    124.孙雷,张骊,王树槐,汪霞.超高效液相色谱-串联质谱法检测动物源食品中氯霉素类药物及其代谢物残留[J],中国兽药杂志,2009,43(3):42-45.
    125. Duffy E, Rambaud L, Le Bizec B, O'Keeffe M. Determination of hormonal growth promoters in bovine hair:Comparison of liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry methods for estradiol benzoate and nortestosterone a(?)ca(?)oate[J], Analytica Chimica Acta,2009,637(1-2):165-172.
    126. Ceglarek U, Kortz L, Leichtle A, Fiedler G M, Kratzsch J, Thiery J. Rapid quantification of steroid patterns in human serum by on-line solid phase extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry[J], Clinica Chimica Acta,2009,401(1-2):114-118.
    127. Hauser B, Deschner T, Boesch C. Development of a liquid chromatography-tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine[J], Journal of Chromatography B,2008,862(1-2):100-112.
    128. Schmidt K S, Stachel C S, Gowik P. In-house validation and factorial effect analysis of a liquid chromatography-tandem mass spectrometry method for the determination of steroids in bovine muscle[J], Analytica Chimica Acta,2009,637(1-2):156-164.
    129. Dusi G, Bozzoni E, Assini W, Tognoli N, Gasparini M, Ferretti E. Confirmatory method for the determination of resorcylic acid lactones in urine sample using immunoaffinity cleanup and liquid chromatography-tandem mass spectrometry[J], Analytica Chimica Acta, 2009,637(1-2):47-54.
    130. Guan F, Uboh C E, Soma L R, Luo Y, Rudy J, Tobin T. Detection, quantification and confirmation of anabolic steroids in equine plasma by liquid chromatography and tandem mass spectrometry[J], Journal of Chromatography B,2005,829(1-2):56-68.
    131.秦旸,刘欣,王占良,吴侔天.液相色谱-电喷雾电离质谱法检测尿液中的3种合成类固醇药物[J],色谱,2008,26(4):465-468.
    132. Zhao M, Baker S D, Yan X, Zhao Y, Wright W W, Zirkin B R, Jarow J P. Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry[J], Steroids,2004,69(11-12):721-726.
    133. Chang Y C, Li C M, Li L A, Jong S B, Liao P C, Chang L W. Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay[J], Analyst,2003,128(4):363-368.
    134.赵怀鑫,孙学军,孙志伟,户宝军,刘钦泽,赵新全,尤进茂.新型衍生化试剂雌激素衍生物的大气压化学电离质增敏研究[J],分析化学,2009,37(2):187-193.
    135. Vanderford B J, Pearson R A, Rexing D J, Snyder S A. Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry[J], Analytical Chemistry,2003,75(22): 6265-6274.
    136.王玲.环境中类固醇类内分泌干扰物的检测技术及其降解行为研究[D],济南:山东大学,2007
    137.白刚,李咏梅.温度对17α-乙炔雌二醇在SBR工艺中去除效果的影响[J],环境污染与防治,2009,31(2):27-30.
    138.刘先利,邓南圣,徐栋,邓琳.含鱼腥藻水溶液中17α-乙炔雌二醇光降解[J],重庆环境科学,2003,25(8):21-25.
    139. Pollmeier M, Maier S, Moriarty K, DeMontigny P. High-performance liquid chromatographic assay for the determination of a semisynthetic avermectin analog (eprinomectin) in bovine milk at parts per billion levels-method development and validation[J], Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2002,772(1):99-105.
    140. Valenzuela A I, Popa D S, Redondo M J, Manes J. Comparison of various liquid chromatographic methods for the analysis of avermectin residues in citrus fruits[J], Journal of Chromatography A,2001,918(1):59-65.
    141. Dusi G, Faggionato E, Bertocchi L, Facchetti S, Baiguera M. Determination of Avennectin and Milbemycin residues in milk for human consumption using liquid chromatography with fluorescence detection[J], Industrie Alimentari,2001,40(399):11-14.
    142. Yoshii K, Kaihara A, Tsumura Y, Ishimitsu S, Tonogai Y. Simultaneous determination of residues of emamectin and its metabolites, and milbemectin, ivermectin, and abamectin in crops by liquid chromatography with fluorescence detection[J], Journal of Aoac International,2001,84(3):910-917.
    143. Kolar L, Kuzner J, Erzen N K. Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection[J], Biomedical Chromatography,2004,18(2): 117-124.
    144. Ternes T A, Bonerz M, Herrmann N, Loffler D, Keller E, Lacida B B, Alder A C. Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC/tandem MS and GC/MS[J], Journal of Chromatography A,2005,1067(1-2):213-223.
    145. Berendsen B J A, Mulder P P J, van Rhijn H A. The derivatisation of avermectins and milbemycins in milk:New insights and improvement of the procedure[J], Analytica Chimica Acta,2007,585(1):126-133.
    146. Kinsella B, Lehotay S J, Mastovska K, Lightfield A R, Furey A, Danaher M. New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography-tandem mass spectrometry[J], Analytica Chimica Acta,2009, 637(1-2):196-207.
    147. Martinez D B, Vazquez P P, Galera M M, Garcia M D G. Determination of pyrethroid insecticides in vegetables with liquid chromatography using detection by electrospray mass spectrometry[J], Chromatographia,2006,63(9-10):487-491.
    148. Chen T W, Chen G N. Identification and quantitation of pyrethroid pesticide residues in vegetables by solid-phase extraction and liquid chromatography/electrospray ionization ion trap mass spectrometry[J], Rapid Communications in Mass Spectrometry,2007, 21(12):1848-1854.
    149. Yoshii K, Machida S, Horie K, Itoh M. Photo-probe study of siloxane polymers: low-temperature structural relaxation in siloxane polymers probed by persistent spectral hole burning[J], Journal of Non-Crystalline Solids,2000,272(2-3):75-84.
    150. Rudik I, Cummings M R, Poppenga R H. Isolation and multiresidue detection of macrolide endectocides present in animal matrices[J], Journal of Veterinary Diagnostic Investigation,2002,14(4):295-302.
    151. Danaher M, Howells L C, Crooks S R H, Cerkvenik-Flajs V, O'Keefe M. Review of methodology for the determination of macrocyclic lactone residues in biological matrices[J], Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2006,844(2):175-203.
    152. Martinez D B, Vazquez P P, Galera M M, Garcia M D G. Determination of Pyrethroid Insecticides in Vegetables with Liquid Chromatography Using Detection by Electrospray Mass Spectrometry[J], Chromatographia,2006,63:487-491.
    153.牟定荣,杨明权,董勇,王保兴,杨燕,邹悦.烟草中拟除虫菊酯类杀虫剂残留量的测定[J],烟草科技,2008(8):38-40.
    154.廖敏,张海军,谢晓梅.降解拟除虫菊酯类农药的缺陷假单胞菌的分离、鉴定及降解特性研究[J],环境科学学报,2009,29(7):1388-1394.
    155.王兆守,林淦,尤民生,李秀仙,梁小虾.茶叶上拟除虫菊脂类农药降解菌的分离及其特性[J],生态学报,2005,25(7):1824-1827.
    156. Chang B V, Chiang F, Yuan S Y. Biodegradation of nonylphenol in sewage sludge[J], Chemosphere,2005,60(11):1652-1659.
    157. Lee S, Gan J Y, Kim J S, Kabashima J N, Crowley D E. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J], Environmental Toxicology and Chemistry,2004,23(1):1-6.
    158.丁海涛,李顺鹏,沈标,崔中利.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究[J],土壤学报,2003,40(1):123-129.
    159. Mosca A, Russo F, Miragliotta L, Iodice M A, Miragliotta G. Utility of gas chromatography for rapid identification of mycobacterial species frequently encountered in clinical laboratory[J], Journal of Microbiological Methods,2007,68(2):392-395.
    160. Cui Z L, Li S P, Fu G P. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene[J], Applied and Environmental Microbiology, 2001,67(10):4922-4925.
    161.张卫,虞云龙,吴加伦,李少南,樊德方.阿维菌素高效降解菌的筛选及其降解特性[J],上海交通大学学报(农业科学版),2004,22(2):157-161.
    162.李荣,管晓进,陈荣宗,朱彬,Shinawar W,李顺鹏,蒋建东.阿维菌素降解菌株aw70的分离鉴定及降解特性研究[J],土壤,2009,41(4):607-611.
    163. Diserens H, Henzelin M. Determination of abamectin residues in fruits and vegetables by high-performance liquid chromatography[J], Journal of Chromatography A, 1999,833(1):13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700