用户名: 密码: 验证码:
低温等离子体净化处理挥发性有机气体技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有机挥发物(VOCs)的排放量与地区的工业发展程度呈现出一定的正相关性。2008年我国的年排放总值约为2000万吨,其中包括浙江省在内有7个省的年排放总量超过100万吨。在未来的几年,伴随GDP增长将保持在7-9%的高水平,对有机化工产品的需求将更迫切,VOCs造成的污染也必将更为严重。传统治理技术在处理大风量、低浓度VOCs时费用过高,开发新型的技术势在必行。低温等离子技术具有可同时处理多种VOCs的优势,但要实现深度净化处理仍遇到能耗高和副产物难以控制的双重困难。本文针对低温等离子体技术净化处理VOCs在实际应用中的技术难点及相应亟需解决的关键科学问题,研究了VOCs净化反应引发机理、降解过程,副产物的成因和收集技术基础。
     首先在新建的闭循环实验平台上比较了苯乙烯在正、负直流电晕下的净化过程,旨在研究相同实验条件下不同供电方式的VOCs处理效果。实验结果显示负电晕的伏安特性曲线受湿度和苯乙烯含量干扰较小。当臭氧产量约为80 ppm时,正、负电晕所需的能量密度分别为约38 J/L和200 J/L。对于负电压供电来说,当能量密度为约280 J/L时,在相对湿度20%和72%的空气中放电,臭氧的产生量分别为121 ppm和50 ppm;对于正高压供电来说,当能量密度为约40 J/L时,在相对湿度19%和72%的空气中放电,臭氧的产生量分别为106 ppm和12 ppm。苯乙烯的处理效率在67%附近时,苯乙醛副产物开始影响其净化效果。傅立叶红外光谱和气相色谱的测量结果显示,空气放电降解苯乙烯的产物主要有苯甲醛、苯乙醛、二氧化碳、一氧化碳和N2O。
     接着在闭循环实验平台上研究了新型AC/DC供电系统的放电特性,VOCs净化效果、途径等问题。实验结果显示AC/DC电源的峰值功率和能量传输效率分别可以达到53.6 kW和87.3%,两者均与并联电容有密切关系。当等离子体能量密度在37 J/L时,苯乙烯的处理效率在并联电容值Ca=0 nF和Ca=3.86 nF的情况下分别为约95%和74%。当能量密度在42 J/L时,苯乙烯的处理效率在重复频率f=30 pps和f=120 pps的情况下分别为约93%和83%。苯和甲苯的净化过程在任何湿度下均为一级反应动力学,苯乙烯的处理在高、低湿度下分别为一级反应和零级反应动力学。在不同的气体成分中,臭氧的产量顺序依次为空气>苯>甲苯>>苯乙烯。苯乙烯的净化过程主要是由苯环外的C=C键与O和OH自由基的反应引发的;甲苯的净化过程同时涉及到苯环的开环反应和环外-CH3的氧化反应;而苯的净化主要由苯环的开环反应引起。苯乙烯、苯和甲苯的净化过程均与氧气竞争O自由基,使得臭氧的产生量下降。苯乙烯在秒量级的净化过程中大量消耗臭氧,而苯和甲苯几乎不消耗臭氧。无机产物N2O、CO和CO2的产量均随着能量密度的增加而增多。
     最后研究了固相副产物气溶胶的形成和收集过程。产生的气溶胶粒径主要分布在28-384 nm之间。当能量密度在27-32J/L时,苯乙烯净化过程得到的气溶胶个数浓度约9×105#/cm3,这个值是苯和甲苯净化过程的3-4倍。在成核和初步成长过后,饱和荷电的气溶胶在等离子体系统中的主要行为是静电收集。傅立叶红外谱图显示沉积在低压极板的气溶胶含有-COH和-COOH官能团。在处理苯乙烯时,得到粒径28 nm,55 nm,93 nm和157 nm处的气溶胶收率分别为4×105#/(cm3·ppm),1.1×105#/(cm3·ppm),5×104#/(cm3·ppm)和1×104#/(cm3·ppm)。两段式等离子体系统中,在AC/DC放电功率确定的情况下相对分级收集效率的高低取决于ESP本身的气溶胶产量。最佳的收集效率出现在157 nm处,约75%。采用凝并器可以进一步提高ESP的性能。最佳工况下,粒径在28 nm和264 nm处的相对分级收集效率分别可提升16%和21%。
China's VOC emissions are closely related to the development of local economy. In 2008, the total amount of national emissions is 20,000 kilotonnes, where 7 provinces including Zhejiang emit more than 1,000 kilotonnes. In the next few years, the government aims to maintain 7-9 percent GDP growth rate. It is more urgent for demanding organic chemical products, and it may cause more serious VOCs emissions. The conventional treatment methods costs high for low concentration and high flow rate VOCs emission control. Non-thermal plasma techniques have been considered as promising because of simultaneous treatments of multi-types of VOCs.
     For deep cleaning, however, it is still facing two technical problems:low efficiency and by-products emission. This work aims to study some critical subjects, such as the mechanism of plasma induced VOCs removal, the collection of by-products and VOCs removal process. All experiments are carried out in a novel closed-loop flow system.
     At the first part of investigation, styrene emission control is conducted negative and positive DC power source energization. The results show that for corona of negative polarity, the styrene and humidity has no significant effect on the current/voltage characteristic. In contrast, a pronounced decrease in current intensity is detected in the presence of styrene and high humidity under positive DC energization. In order to produce 80 ppm of ozone, the energy densities for positive and negative corona are 200 J/L and 38 J/L, respectively. When changing relative humidity from 20 to 72%, the ozone concentration various from 121 to 50 ppm at an energy density of 280 J/L for negative corona air discharges. With regard to positive corona discharges, however, the ozone concentration various from 106 to 12 ppm at an energy density of 40 J/L. The by-products phenylacetaldehyde has very high chemical activity. It begins to influence the processing efficiency when styrene removal efficiency is around 67%. FTIR spectrum and GC signal show that phenylacetaldehyde, N2O, CO, CO2 and benzaldehyde are main products.
     At the second part of investigation, we study plasma induced benzene derivatives removal characteristics in air with a home-made AC/DC plasma system. The removal efficiency and reaction kinetics are investigated in terms of source specifications, relative humidity, initial concentrations, by-products and specific plasma energy density. The result shows that more than 50 kW of peak power and 85% of energy transfer efficiency can easily be achieved by present AC/DC power source. At an energy density of 37 J/L, the styrene removal efficiency is about 95% without using the Ca and at Cp=0.70μF. However, it drops to about 74% with Ca=3.86 nF and at Cp=8.25μF. When changing the pulse repetition rates from 120 to 30 pps, the efficiency slightly rises from about 83 to 93% at the energy density of 42 J/L. The humidity has negative effects on benzene derivatives removal. Both benzene and toluene show first-order removal kinetic at various humidity atmospheres. For styrene, however, increasing the humidity leads to the global reaction kinetics changes from non-significant to significant linear radical termination processes. At a certain level of humidity and energy density, the ozone yields decreases in the order of benzene> toluene>> styrene (0) when processing benzene derivatives. For styrene processing, the removal process is mainly initialed from ring-retaining C=C oxidation. For toluene processing, both ring-opening reaction and ring-retaining oxidation (-CH3 oxidation) are important. For benzene, however, only ring-opening reaction is important. The ozone is used as recycled O radicals for styrene removal if the treatment duration lasts several seconds. With regard to benzene and toluene removal, the reaction with ozone is not a significant way.
     The plasma induced aerosols are mainly with a diameter of 28-384 nm. At an energy density of 27-32 J/L, the number concentration of the produced aerosols from styrene is about 9×105#/cm3, which is a factor of 3-4 times more than that observed when processing benzene or toluene. Moreover, the AC/DC corona system can be used as a precipitator for the aerosol collection. Fourier transform infrared spectroscopy indicates that the non-volatile aerosol deposits contain the -COH and -COOH groups. When processing styrene, the aerosol yield with diameter of 28 nm,55 nm,93 nm and 157 nm are 4×105 #/(cm3·ppm), 1.1×105#/(cm3·ppm),5×104#/(cm3·ppm) and 1×104#/(cm3·ppm), respectively. For two stage plasma system, the grade collection efficiency is dependent on the performance of ESP. The maximum collection efficiency is 75%, and it is found in the diameter of 157 nm. The use of pre-charger is helpful for ESP upgrading. At an optimal condition, the grade collection efficiency is enhanced by 16% and 21% for aerosol diameter of 28 nm and 264 nm.
引文
[1]World health organization, http://www.who.int/en/:
    [2]United states environmental protection agency, http://www.epa.gov/iaq/voc.html:
    [3]Environment Canada, http://ec.gc.ca/indicateurs-indicators/default.asp?lang= En&n=0FCE3399-1;
    [4]环境学会2009年工业VOC污染控制技术与管理对策研讨会文集;
    [5]顾巧农.脉冲电晕—吸收法治理有机废气实验研究[硕士论文].浙江:浙江工业大学.2006;
    [6]K. Urashima, J. S. Chang, Removal of VOC from air streams and industrial flue gases[J], IEEE Trans. Dielectr. Electr. Insul.2000,7 (5):602-614;
    [7]Y. S. Mok, V. Demidyuk, J. C. Whitehead, Decomposition of Hydrofluorocarbons in a Dielectric-Packed Plasma Reactor[J], J. Phys. Chem. A.2008,112 (29): 6386-6591;
    [8]S. A. Nair, K. Yan, A.J.M. Pemen, E.J.M. van Heesch, A. A. H. Drinkenburg, Tar removal from biomass-derived fuel gas by pulsed corona discharges. A chemical kinetic study [J], Ind. Eng. Chem. Res.2004,43(7):1649-1658;
    [9]M. Schiorlin, E. Marotta, M. Rea, C. Paradisi, Comparison of toluene removal in air at atmospheric conditions by different corona discharges[J], Environ. Sci. Technol., 2009,43 (24):9386-9392;
    [10]K. Yan, E. J. M. V. Heesch, A. J. M. Pemen and P. A. H. J. Huijbrechts, From chemical kinetics to streamer corona reactor and voltage pulse generator [J], Plasma Chem. Plasma Process.2001,21 (1):107-137;
    [11]B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B.T. Merritt, G. E. Vogtlin, P.H. Wallman, A. Kuthi, C. P. Burkhart, J. R. Bayless, Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams[J], Physics Letters A.1995,209 (1-2):69-77;
    [12]E. Marotta, M. Schiorlin, M. Rea, C. Paradisi, Products and mechanisms of the oxidation of organic compounds in atmospheric air plasmas[J], J. Phys. D:Appl. Phys. 2010,43 (12):40111-10;
    [13]B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B.T. Merritt, G. E. Vogtlin, P.H. Wallman, A. Kuthi, C. P. Burkhart, J. R. Bayless, Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing[J]. Plasma Sources Sci. Technol.1997,6 (3):251-259;
    [14]E. Marotta, A. Callea, X. Ren. M. Rea, C. Paradisi, DC Corona electric discharges for air pollution control,2-ionic intermediates and mechanisms of hydrocarbon processing[J]. Plasma Process. Polym.2008,5 (2):146-154;
    [15]E. Marotta, A. Callea, M. Rea, C. Paradist, DC corona electric discharges for air pollution control. Part I. efficiency and products of hydrocarbon processing [J], Environ. Sci. Technol.2007,41 (16) 5862-5868;
    [16]K. Yan, H. Hui, J. Miao, X. Wu, C. Bao, R. Li, Corona induced non thermal plasma:fundamental study and industrial application[J], J. Electrostat.1998,44 (1-2): 17-39;
    [17]K. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, J. S. Chang, Control of flow stabilized positive corona discharge modes and NO removal characteristics in dry air by CO2 injections [J], J. Electrostat.1999,46 (2):207-217;
    [18]K. Hensel, V. Martisovits, Z. Machala, M. Janda, M. Lsetinsky, P. Tardiveau, A. Mizuno, Electrical and optical properties of AC Microdischarges in porous ceramics[J], Plasma Process. Polym.2007,4 (7-8):682-693;
    [19]S. Sato, K. Hensel, H. Hayashi, K. Takashima, A. Mizuno, Honeycomb discharge for diesel exhaust cleaning[J], J. Electrostat.2009,67 (2-3):77-83;
    [20]E. M. Van Veldhuizen Electrical discharges for environmental purposes: fundamental and applications. Nova Science Publisher, Inc., New York 11743,2000;
    [21]B. M Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, Comparison of electrical discharge techniques for non-thermal plasma processing of NO in N2[J], IEEE Trans. Plasma Sci.1995,23 (4):679-687;
    [22]H. H. Kim, H. Kobara, A. Ogata, S. Futamura, Comparative assessment of different non-thermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene[J], IEEE Trans. Ind. Appl.2005,41 (1): 206-214;
    [23]S. Futamura, H. Einaga, A. H. Zhang, Comparison of reactor performance in the non-thermal plasma chemical processing of hazardous air pollutants [J], IEEE Trans. Ind. Appl.2001,37(4):978-985;
    [24]G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, K. Yan, ADS and CDS streamer generation as function of pulse parameters [J]. IEEE Trans. Plas. Sci. 2008,36 (4):926-927;
    [25]U. Kogelschatz, Dielectric-barrier discharges:their history, discharge physics, and industrial applications[J], Plasma Chem. Plasma Process.2003,23 (1):1-46;
    [26]H. L. Chen, H. M. Lee, M. B. Chang, Enhancement of energy yield for ozone production via packed-bed reactors[J]. Ozone:Sci. Eng.2006,28(2):111-118;
    [27]K. Okazaki, T. Nozaki, Ultrashort pulsed barrier discharges and applications[J], Pure Appl. Chem,2002,74 (3):447-452;
    [28]J. H. Cho, I. G. Koo, M. Y. Choi, W. M. Lee, Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air[J], Appl. Phys. Lett.2008, 92(10):101504-101504-3;
    [29]T. H. P. Ariaans, A. J. M. Pemen, G. J. J. Winands, E. J. M. van Heesch, Z. Liu, AC/DC/Pulsed power modulator for corona plasma generation[J], IEEE Trans. plasma Sci.2009,37 (6):846-851;
    [30]G. J. J. Winands, Efficient streamer plasma generation [Doctor Thesis], Eindhoven:Eindhoven University of Technology.2007;
    [31]G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, K. Yan. Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography[J], J. Phys. D:Appl. Phys.2008,41 (23):4001;
    [32]G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, K. Yan, E. M. van Veldhuizen, Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters [J], J. Phys. D:Appl. Phys.2006,39 (14):3010-3017;
    [33]G. J. J. Winands, K. Yan, S. A. Nair, A. J. M. Pemen, E. J. M. van Heesch. Evaluation of corona plasma techniques for industrial applications:HPPS and DC/AC systems[J]. Plasma Process. Polym.2005,2 (3):232-237;
    [34]N. L. Alien, A. Ghaffar, The conditions required for the propagation of a cathode-directed positive streamer in air[J], J. Phys D:Appl. Phys.1995,28 (2):331-337;
    [35]K. Yan, Corona plasma generation[Ph.D. Thesis]. Eindhoven:Eindhoven University of Technology,2001;
    [36]K. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, J. S. Chang, NO Removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations[J], IEEE Trans. Ind. Appl.2001,37 (5):1449-1504;
    [37]S. Hosokawa, K. Sonoyama, T. Yamamoto, PPCP pilot plant experiments for decomposition of dioxins, proc. of the third Int. Symp. on non-thermal plasma technology for pollution control,2001, Korea,152-158;
    [38]Y. H. Lee, W. S. Jung, Y. R. Choi, J. S. Oh, S. D. Jang, Y. G. Son, M. H. Cho, W. Namkung, D. J. Koh, Y. S. Mok, J.W. Chung, Application of pulsed corona induced plasma chemical process to an industrial incinerator [J], Environ. Sci. Technol.2003, 37 (11):2563-2567;
    [39]X. W. Ren, J. K. Zhao, B. J. Wang, X. S. Liu, Z. F. Zhang, Recent advances on pulsed power source for exhaust gas cleaning, Proc. of the 10th Conf. on electrostatics precipitation and the second Conf. on desulfurization,2003, China,322-326;
    [40]Z. Liu. Multiple-switch pulsed power generation based on a transmission line transformer[Ph.D. Thesis]. Eindhoven:Eindhoven University of Technology,2008;
    [41]G.J.J. Winands, K. Yan, A.J.M. Pemen, S.A. Nair, Z. Liu, E.J.M. van Heesch, An industrial streamer corona plasma system for gas cleaning [J], IEEE Trans on Plasma Sci.2006,34 (5):2426-2433;
    [42]K. Yan, E. J. M. van Heesch, A. J. M. Pemen, P. A. H. J. Huijbrechts, P. C. T. van Laan, A 10 kW high-voltage pulse generator for corona plasma generation[J], Rev. Sci. Instrum.2001,72 (5):2443-2447;
    [43]K. Yan, E.J.M. van Heesch, A.J.M. Pemen, P.A.H.J. Huijbrechts, Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable Development[J], J. Electrostat.2001,51-52:218-224;
    [44]刘振,Heesch E J M, Pemen A J M, Winands G J J,闫克平,新型多开关脉冲功率技术[J],科技导报,2008,26(12):76-83;
    [45]R. Morrow, The theory of positive glow corona[J], J. Phys D:Appl. Phys.1997, 30 (22):3099-3144;
    [46]R. McAdams, Prospects for non-thermal atmospheric plasmas for pollution abatement[J], J. Phys. D:Appl. Phys.2001,34 (18):2810-2821;
    [47]R. Peyrous, The effect of relative humidity on ozone production by corona discharge:In oxygen or air-A numerical simulation-Part 2:air[J], Ozone Sci. Eng. 1990,12(1):41-64;
    [48]S. Yao, A. Nakayama, E. Suzuki, Methane conversion using a high frequency pulsed plasma:important factors[J], AICHE Journal.2001,47 (2):413-418;
    [49]S. Yao, E. Suzuki, N. Meng, A. Nakayama, A high-efficiency reactor for the pulsed plasma conversion of methane[J], Plasma Chem. Plasma Process.2002,22 (2): 225-237;
    [50]E. J. M. van Heesch, G. J. J. Winands, A. J. M. Pemen, Evaluation of pulsed streamer corona experiments to determine the O*radical yield[J], J. Phys. D:Appl. Phys.2008,41 (23):1-5;
    [51]闫克平.气体放电在气体净化领域的应用[J],科技导报.2007,18:69-74;
    [52]B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. Hmmaer. S. Broer, Pulsed corona and dielectric-barrier discharge processing of NO in N2[J], Appl. Phys. Lett.1996,68 (26):3719-3721;
    [53]Y. Kim, W. S. Kang, J. M. Park, S. H. Hong, Y. H. Song, S. J. Kim, Experimental and numerical analysis of streamers in pulsed corona and dielectric barrier discharges[J], IEEE Trans. on Plasma Sci.2004,32 (1):13-24:
    [54]J. M. Williamson, D. Trum, P. Bletzinger, B. N. Ganguly, Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge[J], J. Phys. D., Appl. Phys.2006,39 (20):4400-4406;
    [55]A. Fridman, Plasma chemistry, Cambridge University Press, New York,2008;
    [56]B. Gellert, U. Kogelschatz, Generation of excimer emission in dielectric barrier discharges[J], App. Phys. B.1991,52 (1):14-21;
    [57]E. M. Bazelyan, Y. P. Raizer, Spark discharge, CRC press, New York.1998;
    [58]X. Hu, X. Jiang, K. Yan, R. Li, Streamer corona plasma and NO removal, in Electrostatic Precipitation, edited by Keping Yan, Springer-Verlag GmbH Berlin Heidelberg, ISBN 978-3-540-89250-2, Oct 2008,653-656;
    [59]J. Podlinski, J. Dekoswki, J. Mizeraczyk, D. Brocilo, J. S. Chang. Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency [J], J. Electrostat.2006, 64 (3-4):259-262;
    [60]J. Dekoswki, J. Mizeraczyk, M. Dors, J. Podlinski, S. Kanazawa, T. Okubo, J. S. Chang, Electrohydrodynamic flow and its effect on ozone transport in corona radical shower reactor[J], IEEE Trans. on Plasma Sci.2004,32 (2):370-379;
    [61]Z. Z. Su, K. Ito, K. Takashima, S. Katsura, K. Onda, A. Mizuno, OH radical generation by atmospheric pressure pulsed discharge plasma and its quantitative analysis by monitoring CO oxidation[J], J. Phys. D:Appl. Phys.2002,35 (24): 3192-3198;
    [62]K.Yan, S. Kanazawa, T. Ohkubo, Y. Nomoto, Oxidation and reduction processes during NOx removal with corona-induced non-thermal plasma[J], Plasma Chem. Plasma Process.1999,19 (3):421-443;
    [63]C. Hibert, I. Gaurand, O. Motret, J. M. Pouvesle, [OH(x)] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge[J], J. Appl. Phys.1999,85 (10):7070-7075;
    [64]R. Ono, T. Oda, Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge[J], J. Phys. D:Appl. Phys.2002,35 (17):2133-2138;
    [65]R. Ono, T. Oda, OH Radical measurement in a pulsed arc discharge plasma observed by a LIF method[J], IEEE Trans. Ind. Appl.2001,37 (3):709-714;
    [66]R. Ono, T. Oda, Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy [J], J. Appl. Phys. 2003,93 (10):5876-5882;
    [67]H. H. Kim, Non-thermal plasma processing for air-pollution control:a historical review, current issues, and future prospects[J], Plasma Process. Polym.2004,1 (2): 91-110;
    [68]J. Van Drume, J. Dewulf, C. Leys, H. Van Langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review[J], Appl. Catal. B:Environ.2008,78 (3-4):324-333;
    [69]H. H. Kim, H. Kobara, A. Ogata, Comparative assessment of different non-thermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene[J], IEEE Trans. Ind. Appl.2005,41 (1): 206-214;
    [70]H. H. Kim, A. Ogata, S. Futamura, Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds[J], J. Phys. D:Appl. Phys.2005,38 (8):1292-1300;
    [71]A. M. Harling, V. Demidyuk, S. J. Fischer, J. C. Whitehead, Plasma-catalysis destruction of aromatics for environmental clean-up:Effect of temperature and configuration[J], Appl. Catal. B:Environ.2008,82 (3-4):180-189;
    [72]F. He, C. J. Liu, B. Eliasson, B. Xue, XPS characterization of zeolite catalyst in plasma catalytic methane conversion[J], Surface and Interface Analysis.2001,32 (1): 198-201;
    [73]H. H. Kim, J. H. Kim, A. Ogata, Optimization of single-stage plasma-driven catalyst process for the decomposition of volatile organic compounds, Proceeding of 19th International symposium on plasma chemistry. Germany,2009;
    [74]H. H. Kim, J. H. Kim, A. Ogata, Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles[J], J. Phys. D:Appl. Phys.2009, 42(13):135210(10pp);
    [75]F. Holzer, U. Roland, F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 1. accessibility of the intra-particle volume[J], Appl. Catal. B:Environ.2002,38 (3): 163-181;
    [76]H. H. Kim, S. M. Oh, A. Ogata, S. Futamura, Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst[J], Appl. Catal. B:Environ.2005,56 (3):213-220;
    [77]S. Chavadej, W. Kiatubolpaiboon, P. Rangsunvigit, T. Sreethawong, A combined multistage corona discharge and catalytic system for gaseous benzene removal[J], J. Mol. Catal. A:Chem.2007,263 (1-2) 128-136;
    [78]Y. F. Guo, D. Q. Ye, K. F. Chen, J. C. He, W. L. Chen, Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ[J], J. Mol. Catal. A:Chem.2006,245 (1-2):93-100;
    [79]H. H. Kim, A. Ogata, S. Futamura, Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J], Appl. Catal. B:Environ.2008,79 (4):356-367;
    [80]N. B. Simiand, P. Tardiveau, A. Risacher, F.Jorand, S. Pasquiers, Removal of 2-Heptanone by Dielectric Barrier Discharges-The Effect of a Catalyst Support[J], Plasma Process. Polym.2005,2 (3):256-262;
    [81]T. Sano, N. Negishi, E. Sakai, S. Matsuzawa. Contributions of photocatalytic /catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO[J], J. Mol. Catal. A:Chem.2006,245 (1-2):235-241;
    [82]A. E. Wallis, J. C. Whitehead, K. Zhang, Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2[J], Catal. Lett. 2007,113 (1-2):29-33;
    [83]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li, Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications [J], Environ. Sci. Technol.2009,43 (7):2216-2227;
    [84]N. Q. Yan, Z. Qu, J. P. Jia, X. P. Wang, D. Wu, Removal characteristics of gaseous sulfur-containing compounds by pulsed corona plasma[J], Ind. Eng. Chem. Res.2006,45 (19):6420-6427;
    [85]L. Huang, K. Nakajo, S. Ozawa, H. Matsuda, Decomposition of dichloromethane in a wire-in-tube pulsed corona reactor[J], Environ. Sci. Technol.2001,35 (6): 1276-1281;
    [86]黄立维,林鑫海,顾巧浓.电晕-吸收法治理甲苯废气实验研究[J],环境科学学报.2006,26(1):17-21;
    [87]R. Peyrous, P. Pignolet, B. Held, Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen[J], J. Phy. D:Appl. Phys.1989,22 (11):1658-1667;
    [88]X. Zhang, J. Zhu, X. Li, Z. Liu, X. Ren, K. Yan, Characteristics of Styrene Removal with an AC/DC Streamer Corona Plasma System, IEEE Trans. On Plasma Sci.2011, (in press);
    [89]S. A. Nair, K. Yan, A.J.M. Pemen, E.J.M. van Heesch, K.J. Ptasinski, A.A.H. Drinkenburg, Tar removal from biomass derived fuel gas by pulsed corona discharges: chemical kinetic study Ⅱ[J]. Ind. Eng. Chem. Res.2005,44 (6):1734-1741;
    [90]H. H. Kim, G. Prieto, K. Takashima, S. Katsura, A. Mizuno, Performance evaluation of discharge plasma process for gaseous pollutant removal [J], J. Electrostat. 2002,55(1):25-41;
    [91]N. B. Simiand, F. Jorand, Z. B. Miled, S. Pasquiers, C. Postel, Influence of temperature on the removal of toluene by dielectric barrier discharge [J], IJPEST.2007, 1 (1):64-70;
    [92]M. Hsiao, B. Penetrante. B. Merritt, G. Vogtlin, and P. Wallman, Effect of gas temperature on pulsed corona discharge processing of acetone, benzene and ethylene[J], J. Adv. Oxid. Technol.1997,2 (2):306-311;
    [93]G. K. Anderson, H. Snyder, J. Coogan, Oxidation of styrene in a silent discharge[J], Plasma Chem. Plasma Process.1999,19 (1):131-151;
    [94]J. V. Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van. Langenhove, Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J], Chemosphere.2007,68 (10):1821-1829;
    [95]R. Vertriest, R. Morent, J. Dewulf, C. Leys, H. Van Langenhove, Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air[J], Plasma Sourc. Sci. Tech.2003,12 (3):412-416;
    [96]B. M. Penetrante, M. C. Hsiao. J. N. Bardslry, B. T. Bardsley, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, Electron beam and pulsed corona processing of volatile organic compounds in gas streams[J], Pure Appl. Chem.1996,68 (5):1083-1089;
    [97]Yamamoto T, Jang B W L. Aerosol Generation and Decomposition of CFC-113 by the Ferroelectric Plasma Reactor [J]. IEEE Trans. Ind. Appl.1999,35(4):736-742;
    [98]P. Saiyasitpanich, T. C. Keener, M. Lu, Collection of ultra-fine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators[J], Environ. Sci. Technol.2006,40 (24):7890-7895;
    [99]J. Mizeraczyk, M. Kocik, J. Dekowski, M. Dors, J. Podlinski, T. Ohkubo, S. Kanazawa, T. Kawasaki, Measurements of the velocity filed the flue gas flow in an electrostatic precipitator model using PIV method[J], J. Electrostat.2001,51-52: 272-277;
    [100]J. Podlinski, M. Kocik, R. Barbucha, A. Niewulis, J. Mizeraczyk, A. Mizuno, 3D PIV measurements of the EHD flow patterns in a narrow electrostatic precipitator with wire-plate or wire-flocking electrodes [J], Czechoslovak Journal of Physics,2006, 56(2):Suppl. B1009-1016;
    [101]T. M. P. Briels, J Kos, E. M. van Veldhuizen and U. Ebert, Circuit dependence of the diameter of pulsed positive streamers in air[J], J. Phys. D:Appl. Phys.2006,39 (24):5201-5210;
    [102]R. Ono and T. Oda, Ozone production process in pulsed positive dielectric barrier discharge[J], J. Phys. D:Appl. Phys.2007,40 (1):176-182;
    [103]A. A. Kulikovsky, Production of chemically active species in the air by a single positive streamer in a non-uniform field[J], IEEE Trans on Plasma Sci.1997,25 (3): 439-446;
    [104]I. Orlandini, U. Riedel, Chemical kinetics of NO removal by pulsed corona discharges[J], J. Phys. D:Appl. Phys.2000,33 (19):2467-2474;
    [105]K. Yan, G. J.J. Winands, S.A. Nair, E.J.M. van Heesch, A.J.M. Pemen, and Ⅰ. de Jong, Evaluation of pulsed power sources for plasma generation[J], J. Adv. Oxid. Technol.2004,7 (2):116-122;
    [106]J. Hoard and H. Servati (editor), Plasma exhaust after treatment (SP-1395), ISBN 0-7680-0309-1, USA,1998;
    [107]M.L. Balmer, G. Fisher, and J. Hoard (editor), Non-thermal plasma for exhaust emission control:NOx, HC, and particulates, (SP-1483), ISBN 0-7680-0490-X, USA, 1999;
    [108]K. Yan, R. Li, T. Zhua, H. Zhang, X. Hu, X. Jiang, H. Liang, R. Qiu, Y. Wang, A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale[J], Chem. Eng. J.2006,116 (22):139-147;
    [109]S. Yao, X. Zhang, B. Lu, Influence of plasma reactor structure on methanol oxidation[J], AIChE J.2005,51 (5):1558-1564;
    [110]B. Lu, X. Zhang, X. Yu, et al., Catalytic oxidation of benzene using DBD corona discharges[J], J. Hazard Mater.2006,137 (1):633-637;
    [111]C. R. McLarnon, Mercury Removal in a Multi-Pollutant Control Technology for Utility Boilers, Air Quality Ⅲ, Arlington, VA, September 12,2002;
    [112]唐海珏,闫克平,低温等离子体空气净化器,公开(公告)号CN2205515,申请号:94247975.0,申请日:1994.12.23;
    [113]A. Mizuno, Industrial applications of atmospheric non-thermal plasma in environmental remediation[J], Plasma Phys. Control. Fusion.2007,49 (5A):A1-A15;
    [114]K. Yan, E. J. M. Van Heesch, A. J. M. Pemen, S. A. Nair, Bridging the gap for corona plasma applications:from corona characteristics, chemical kinetics to pulsed power generator and reactor. IEE Pulsed Power,2001;
    [115]A. Mizuno, J. S. Clements, R. H. Davis, A device for the removal of sulfur dioxide from exhaust gas by pulsed energization of free electrons. IEEEE/IAS Annual Meeting,1984.
    [116]W. Tanthapanichakoon, T. Charinpanitkul, S. Chaiyo, N. Dhattavorn, J. Chaichanawong, N. Sano, H. Tamon, Effect of oxygen and water vapor on the removal of styrene and ammonia from nitrogen by non-pulse corona-discharge at elevated temperatures[J], Chem. Eng. J.2004,97 (2-3):213-223;
    [117]K. Parker, Electrical operation of electrostatic precipitators, Published by institution of electrical engineers, London,2003;
    [118]C. Soria, F. Pontiga, A. Castell, Plasma chemical and electrical modeling of a negative DC corona in pure oxygen[J], Plasma Sources Sci. Technol.2004,13 95-107;
    [119]S. Williams, M. F. Campos, A. J. Midey, S. T. Arnold, R. A. Morris, A. A. Viggiano, Negative ion chemistry of ozone in the gas phase[J], J. Phys. Chem. A. 2002,106 (6):997-1003;
    [120]S. A. Nair, K. Yan, A. Safitri, A. J. M. Pemen, E. J. M. Heesch, K. J. Ptasinski, A. A. H. Drinkenburg, Streamer corona plasma for fuel gas cleaning:comparison of energization techniques [J]. J. Electrostat.2005,63 (12):1105-1114;
    [121]Y. Zebboudj. G. Hartmann, Current and electric field measurements in coaxial system during the positive DC corona in humid air[J], J. Eur. Phys.1999,7:167-176;
    [122]http://kinetics.nist.gov/;
    [123]S. L. Hill, H. H. Kim, S. Futamura, J. C. Whitehead, The destruction of atmospheric pressure propane and propene using a surface discharge plasma reactor [J], J. Phys. Chem. A.2008.112 (17):3953-3958;
    [124]J. Zhu, X. Zhang, W. Chen, Y. Shi, K. Yan, Electrostatic precipitation of fine particles with a bipolar pre-charger[J], J. Electrostat.2010,68 (2):174-178;
    [125]T. Hakoda, H. H. Kim, K. Okuyama, T. Kojima, Charged nano-particle formation from humidified gases with and without dilute benzene under electron beam irradiation[J], Aerosol Sci.2007,34 (8):977-991;
    [126]J. P. Borra, Nucleation and aerosol processing in atmospheric pressure electrical discharges:powders production, coatings and filtration[J], J. Phys. D:Appl. Phys. 2006,39(2):R19-R54;
    [127]H. L. Luo, J. Sheng, Y. Z. Wan, Plasma polymerization of styrene with carbon dioxide under glow discharge conditions[J], Appl. Surf. Sci.2007,253 (12):5203-5;
    [128]朱继保.细颗粒的电收集技术[博士论文].杭州:浙江大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700