用户名: 密码: 验证码:
微波结合碱解预处理改善剩余污泥厌氧消化效能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧消化工艺在处理剩余污泥时由于同时具有资源化、稳定化和无害化的优点,长期以来一直在剩余污泥处理中扮演着重要角色。然而在实际应用中,厌氧消化工艺也存在着对有机物处理效率低和处理速度慢等问题。本研究采用微波结合碱解预处理技术通过破坏剩余污泥(Waste Activated Sludge,WAS)絮体结构和菌体细胞壁而提高WAS中有机物的溶解性和可生化性,从而改善WAS厌氧消化性能。研究具体分为以下三个部分,即微波结合碱解预处理试验、静态高温和中温厌氧消化试验——生物化学甲烷势(Biochemical Methane Potential,BMP)试验和动态高温和中温厌氧消化试验。
     首先,在微波结合碱解预处理试验中利用均匀设计法得到的数据分别建立了以WAS中的COD、SS和VSS溶解率为目标,以微波加热温度、加热时间和氢氧化钠投加量为影响因素的回归方程。在本试验边界条件下,该回归方程预测在加热温度=210℃,加热时间=35min,加碱量=0.2 g-NaOH/g-SS时,WAS最大VSS溶解率可达85%,且与试验结果能很好吻合。
     其次,采用BMP试验研究了12种预处理对WAS静态高温和中温厌氧消化过程中的甲烷累计产量、沼气累计产量、相对甲烷累计产量和甲烷产生速率的影响。利用修正的Gompertz方程求解得到的动力学参数表明:经过预处理后WAS的甲烷累计产量势(P)和最大甲烷产生速率(R)均高于对照。在高温BMP试验中其P和R的峰值分别为333 mL-CH4@STP·g-1-VS投入(mL-CH4 @STP·g-1-VS投入指在BMP试验中投入1g VS的甲烷累计产量在标准状态下的毫升数,其中@代表at,STP(Standard Temperature and Pressure)代表标准状态(0℃和101.325 kPa))和73 mL-CH4@STP·g-1-VS投入·d-(1mL-CH4@STP·g-1-VS投入·d-1指在BMP试验中每天每投入1g VS的甲烷累计产量在标准状态下的毫升数),分别比对照提高41%和28%。在中温BMP试验中其P和R的峰值分别为426 mL-CH4 @STP·g-1-VS投入和56 mL-CH4@STP·g-1-VS投入·d-1,分别比对照提高64%和75%。经综合考虑后确定最佳预处理条件为加热温度=170℃,加热时间=1 min,加碱量=0.05 g-NaOH/g-SS。
     最后,分别以WAS和未经中和处理的微波结合碱解预处理WAS为基质(预处理条件为:加热温度=170℃,加热时间=1 min,加碱量=0.05 g-NaOH/g-SS),研究了在水力停留时间为30 d的工况下,完全混合型的高温和中温厌氧消化反应器的厌氧消化性能及其消化污泥的脱水性能,并采用16S rDNA(ribosomal Deoxyribonucleic Acid,核糖体脱氧核糖核酸)克隆分析技术分别对高温和中温厌氧消化污泥进行了微生物解析。研究表明:WAS经微波结合碱解预处理后与对照相比,高温和中温厌氧消化工艺对WAS中的VS、总化学需氧量、总碳水化合物和总蛋白质的去除率均有不同程度的提高。其中高温和中温厌氧消化工艺对VS的去除率分别相对提高27%和21%,高温和中温厌氧消化污泥中的溶解性COD浓度分别相对提高51%和71%,高温和中温厌氧消化工艺甲烷产率(L-CH4 @STP /g-COD投入)分别相对提高13%和14%,高温和中温厌氧消化工艺所产沼气中甲烷的百分含量相对提高8%。16S rDNA克隆分析技术对高温和中温厌氧消化污泥中微生物种群结构的分析表明:高温和中温厌氧消化污泥的微生物多样性指数分别为53.2和138.0,即中温厌氧消化污泥的微生物多样性大于高温厌氧消化污泥的微生物多样性。高温和中温厌氧消化污泥脱水试验表明:WAS经微波结合碱解预处理后再经厌氧消化处理将使得高温和中温厌氧消化污泥的脱水性能下降。
Anaerobic digestion (AD) plays an important role for its ability to produce energy-rich biogas, to stabilise the waste activated sludge (WAS) and to destroy pathogens. However, AD has several limitations: (a) the treatment efficiency of organic compounds is low, and (b) the processing speed is not high. In this study, a combined microwave/NaOH pretreatment (MNP) process was studied which focused on destruction of floc structures and lysis of microbial cells to release biodegradable organic materials and render them more accessible to AD for improving the anaerobic digestion performances of WAS. The study consisted of three parts: MNP, biochemical methane potential (BMP) tests and semi-continuous anaerobic digestion experiments.
     Firstly, in the MNP tests, uniform design was successfully applied to determine the relationship of WAS solubilization of COD, SS and VSS to environmental conditions (target temperature, microwave holding time, and NaOH dose) and to establish the quadratic model describing the solubilization ratios to changes in these variables. Within the design boundaries, the predicted maximum solubilization ratio of VSS (85%) occurred at target temperature of 210℃, holding time of 35min, and NaOH dose of 0.2g-NaOH/g-SS. The results showed that the predicted values inosculated with the experimental values very well.
     Secondly, thermophilic and mesophilic BMP tests were studied in order to investigate the effects of 12 kinds of MNPs on cumulative methane production, cumulative biogas production, relative cumulative methane production and methane production rate. The kinetic parameters achieved from the modified Gompertz equation showed the cumulative methane production potential (P) and the maximum methane production rate (R) of the pretreated WAS were higher than those of the controls. In the thermophilic BMP tests, compared with the control, the peak values of P and R of the pretreated WAS were 333 mL-CH4 @STP·g-1-VSadded (at the standard temperature and pressure (STP) conditions of 0℃and 101.325 kPa) and 73 mL-CH4@STP·g-1-VSa dded·d-1,respectively, which were improved by 41% and 28%, respectively. In the mesophilic BMP tests, compared with the control, the peak values of P and R of the pretreated WAS were 426 mL-CH4 @STP·g-1-VSa dded和56-CH4 mL@STP·g-1-VSadded·d-1,respectively, which were improved by 64% and 75%, respectively. After we considered various factors comprehensively, 170℃with 1 min holding time and 0.05 g-NaOH/g-SS were suggested for MNP of WAS.
     Thirdly,to evaluate anaerobic digestion performances and the dewatering performances of the anaerobic digested sludges, the continuous stirred thermophilic anaerobic digestion process (TADP) and mesophilic anaerobic digestion process (MADP) were operated at HRT (hydraulic retention time)=30 d to treat raw WAS and pretreated WAS (pretreated at 170℃with 1 min holding time and 0.05 g-NaOH/g-SS), respectively. Then the microbial community structures in the thermophilic and mesophilic anaerobic digested sludges were analyzed with 16S rDNA (ribosomal Deoxyribonucleic Acid) cloning techniques. The results showed, compared with the controls, removal efficiencies of VS, TCOD (total chemical oxygen demand) total carbohydrate and total protein were improved in TADP and MADP treating pretreated WAS. The VS removal efficiencies of TADP and MADP treating preteated WAS increased by 27% and 21% respectively as compared with their controls. Compared to the corresponding controls, the SCOD (soluble COD) levels of thermophilic and mesophilic anaerobic digested sludges were enhanced by 51% and 71%, respectively. The methane production rates (L-CH4 @STP /g-CODadded) of TADP and MADP treating preteated WAS improved 13% and 14% repectively when compared to their controls. Both methane contents in the biogas of TADP and MADP treating preteated WAS increased by approximately 8% compared with those of their controls. The analysis results of the microbial community structures analyzed with 16S rDNA cloning techniques showed, the microbial diversity indexes were 53.2 and 138.0 for thermophilic and mesophilic anaerobic digested sludges, respectively. This meant that the microbial community of TADP had less diversity than that of MADP. The results of dehydration experiments showed, the dewaterabilities of digested sludge from TADP and MADP treating preteated WAS were lower than that from the controls.
引文
[1]池勇志,迟季平,李玉友,等.我国城市污水处理厂污水污泥性质与处理处置概况[A].见:中国给水排水杂志社. 2010年中国城镇污泥处理处置技术与应用高级研讨会论文集[C].天津:中国给水排水杂志社, 2010. 9-17.
    [2] He P J. Anaerobic digestion: An intriguing long history in China[J]. Waste Management. 2010, 30(4): 549-550.
    [3]吴静,姜洁,周红明,等.我国城市污水厂污泥厌氧消化系统的运行现状[J].中国给水排水. 2008, 24(22): 21-24.
    [4]杨向平.污泥处置实践中的技术路线思考[EB/OL]. http://www.chinasludge. com /data/2005/0902/article_36.htm, 2005-9-2.
    [5]环境保护部.城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)[EB/OL]. http://www.mep.gov.cn/pv_obj_cache/pv_obj_id_09C68B1071 22E2706CE0E06E4D143CF9C8130700/filename/W020100310402829058583.pdf, 2010-7-19.
    [6]池勇志,习钰兰,薛彩红,等.厌氧消化技术在日本污水污泥和高浓度有机工业废水处理中的应用状况[A].见:天津市土木工程学会给水排水分科学会.天津市土木工程学会给水排水分科学会第六届第一次年会论文集[C].天津:天津市土木工程学会给水排水分科学会, 2010. 659-666.
    [7] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilisation of sewage sludge through thermal hydrolysis - three years of experience with full scale plant[J]. Water Science and Technology. 2000, 42(9): 89-96.
    [8]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社, 2003.
    [9]李玉友,張岩,野池達也.メタン発酵を用いた下水汚泥の減量化?エネルギー回収システム[J]. Eco Industry. 2004, 9(9): 15-29.
    [10] Lawrence A W, McCarty P L. Kinetics of methane fermentation in anaerobic treatment[J]. Journal of Water Pollution Control Federation. 1969, 41(2): 1-17.
    [11]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998.
    [12] Batstone D J, Keller J, Angelidaki I, et al. The IWA Anaerobic Digestion Model No 1 (ADM1)[J]. Water Science and Technology. 2002, 45(10): 65-73.
    [13] Wett B, Phothilangka P, Eladawy A. Systematic comparison of mechanical and thermal sludge disintegration technologies[J]. Waste Management. 2010, 30(6): 1057-1062.
    [14] Eastman J A, Ferguson J F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion[J]. Journal of Water Pollution Control Federation. 1981, 53(3): 352-366.
    [15] Pavlostathis S G, Giraldo-Gómez E. Kinetics of anaerobic treatment. Anaerobic treatment technology for municipal and industrial wastewater[J]. Water Science and Technology. 1991, 24(8): 35-59.
    [16] Weemaes M P J, Verstraete W H. Evaluation of current wet sludge disintegration techniques[J]. Journal of Chemical Technology and Biotechnology. 1998, 73(2): 83-92.
    [17] Li Y Y, Noike T. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment[J]. Water Science and Technology. 1992, 26(3-4): 857-866.
    [18] Wang F, Lu S, Ji M. Components of released liquid from ultrasonic waste activated sludge disintegration[J]. Ultrasonics Sonochemistry. 2006, 13(4): 334-338.
    [19]杨洁,季民,韩育宏,等.污泥碱解和超声破解预处理的效果研究[J].环境科学. 2008, 29(4): 1002-1006.
    [20] Kobayashi T, Li Y Y, Harada H, et al. Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation[J]. Water Science and Technology. 2009, 59(1): 185-193.
    [21] Yuan H Y, Chen Y G, Zhang H X, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology. 2006, 40(6): 2025-2029.
    [22]张少辉,华玉妹.污泥厌氧消化的强化处理技术[J].环境保护科学. 2004, 30(5): 13-15,27.
    [23] Carballa M, Omil F, Lema J M. Influence of different pretreatments on anaerobically digested sludge characteristics: Suitability for final disposal[J]. Water, Air, and Soil Pollution. 2009, 199(1-4): 311-321.
    [24] Rivard C J, Nagle N J. Pretreatment technology for the beneficial biological reuse of municipal sewage sludges[J]. Applied Biochemistry and Biotechnology. 1996, 57-58(1): 983-991.
    [25]肖本益,阎鸿,魏源送.污泥热处理及其强化污泥厌氧消化的研究进展[J].环境科学学报. 2009, 29(4): 673-682.
    [26] Nah I W, Kang Y W, Hwang K-Y, et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process[J]. Water Research. 2000, 34(8): 2362-2368.
    [27] Muller C D, Abu-Orf M, Novak J T. Application of mechanical shear in an internal-recycle for the enhancement of mesophilic anaerobic digestion[J]. Water Environment Research. 2007, 79(3): 297-304.
    [28] Baier U, Schmidheiny P. Enhanced anaerobic degradation of mechanically disintegrated sludge[J]. Water Science and Technology. 1997, 36(11): 137-143.
    [29]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].上海:同济大学环境科学与工程学院, 2006.
    [30]杨洁,季民,韩育宏,等.碱解预处理对污泥固体的破解及减量化效果[J].中国给水排水. 2007, 23(23): 93-96,100.
    [31]王芬.超声破解对污泥特性的影响机制与零剩余污泥排放工艺研究[D].天津:天津大学环境科学与工程学院, 2006.
    [32]杨洁.碱和超声波预处理技术促进污泥厌氧消化效能及其机理研究[D].天津:天津大学环境科学与工程学院, 2008.
    [33] Zhang P, Zhang G, Wang W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation[J]. Bioresource Technology. 2007, 98(1): 207-210.
    [34] Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials. 2005, 123(1-3): 145-150.
    [35] Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science. 2008, 34(6): 755-781.
    [36] Dewil R, Appels L, Baeyens J, et al. Peroxidation enhances the biogas production in the anaerobic digestion of biosolids[J]. Journal of Hazardous Materials. 2007, 146(3): 577-581.
    [37] Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonized biosolids[J]. Water Research. 2000, 34(8): 2330-2336.
    [38] Goel R, Takutomi T, Yasui H. Anaerobic digestion of excess activated sludge with ozone pretreatment[J]. Water Science and Technology. 2003, 47(12): 207-214.
    [39] Miah M S, Tada C, Sawayama S. Enhancement of biogas production from Sewage sludge with the addition of geobacillus sp. strain AT1 culture[J]. Japanese Journal of Water Treatment Biology. 2004, 40(3): 97-104.
    [40] Ayol A, Filibeli A, Sir D, et al. Aerobic and anaerobic bioprocessing of activated sludge: Floc disintegration by enzymes[J]. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering. 2008, 43(13): 1528-1535.
    [41] Davidsson A, Wawrzynczyk J, Norrlow O, et al. Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge[J]. Journal of Residuals Science & Technology. 2007, 4(1): 1-7.
    [42]郑正,袁守军,张继彪,等.γ-射线辐照预处理加速污泥厌氧消化[J].环境化学. 2006, 25(3): 297-300.
    [43] Wang J, Wang J. Application of radiation technology to sewage sludge processing: A review[J]. Journal of Hazardous Materials. 2007, 143(1-2): 2-7.
    [44] Lafitte-Trouque S, Forster C F. The use of ultrasound and [gamma]-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures[J]. Bioresource Technology. 2002, 84(2): 113-118.
    [45] Martin D I, Margaritescu I, Cirstea E, et al. Application of accelerated electron beam and microwave irradiation to biological waste treatment[J]. Vacuum. 2005, 77(4): 501-506.
    [46] Xie R, Xing Y, Ghani Y A, et al. Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge[J]. Journal of Environmental Engineering and Science. 2007, 6(5): 533-541.
    [47]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备. 2006, 7(5): 78-81.
    [48] Kim D-H, Jeong E, Oh S-E, et al. Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration[J]. Water Research. 2010, 44(10): 3093-3100.
    [49] Neyens E, Baeyens J, Creemers C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials. 2003, 97(1-3): 295-314.
    [50]何玉凤,杨凤林,胡绍伟,等.碱处理促进剩余污泥高温水解的试验研究[J].环境科学. 2008, 29(8): 2260-2265.
    [51]赵春晖,张朝柱.微波技术[M].北京:高等教育出版社, 2007.
    [52] Sobottka S. The image of electromagnetic spectrum[EB/OL]. http://faculty. virginia.edu/consciousness/images/electromagnetic%20spectrum.gif, 2010-4-19.
    [53] Gedye R, Smith F, Westaway K, et al. The use of microwave-ovens for rapid organic-synthesis[J]. Tetrahedron Letters. 1986, 27(3): 279-282.
    [54] Zhao X, Huang K M, Yan L P, et al. A preliminary study on numerical simulation of microwave heating process for chemical reaction and discussion of hotspot and thermal runaway phenomenon[J]. Science in China Series G-Physics Mechanics & Astronomy. 2009, 52(4): 551-562.
    [55] Palav T, Seetharaman K. Impact of microwave heating on the physico-chemical properties of a starch-water model system[J]. Carbohydrate Polymers. 2007, 67(4): 596-604.
    [56]王绍林.微波加热原理及其应用[J].物理. 1997, 26(4): 232-237.
    [57] Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave - a brief review[J]. Bioresource Technology. 2003, 87(2): 155-159.
    [58]王鹏.环境微波化学技术[M].北京:化学工业出版社, 2003.
    [59] Whittaker A G, Mingos D M P. The application of microwave-heating to chemical syntheses[J]. Journal of Microwave Power and Electromagnetic Energy. 1994, 29(4): 195-219.
    [60]李大伟.石油污染土壤的碳材料增强微波热修复研究[D].大连:大连理工大学环境与生命学院, 2008.
    [61]邵明望,张文敏.微波化学与工程[M].合肥:安徽工业大学出版社, 1999.
    [62]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理. 2004, 33(6): 438-442.
    [63]唐相伟.道路微波除冰效率研究[D].西安:长安大学工程机械学院, 2009.
    [64] Osada F, Yoshioka T. Dechlorination of polyvinyl chloride in NaOH/ethylene glycol solution by microwave heating[J]. Journal of Material Cycles and Waste Management. 2009, 11(1): 19-22.
    [65] Chen M, Siochi E J, Ward T C, et al. Basic ideas of microwave processing of polymers[J]. Polymer Engineering & Science. 1993, 33(17): 1092-1109.
    [66]孙晓娟,苏跃增,金风明.微波化学非热效应初探[J].江苏石油化工学院学报. 2000, 12(3): 42-45.
    [67]苟斌,吴菊清,李祥萍,等.微波与物质相互作用过程中非热效应的机理分析[J].上海有色金属. 2001, 22(1): 6-8.
    [68] Huang K M, Yang X Q, Hua W, et al. Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions[J]. New Journal of Chemistry. 2009, 33(7): 1486-1489.
    [69]李姝丽.微波生物效应的应用[J].西安文理学院学报:自然科学版. 2005, 8(4): 87-89.
    [70]李巧玲,李琳,郭祀远,等.微波生物效应研究的现状及应用[J].生命科学. 2001, 13(3): 126-128.
    [71]徐林,曹明贺,刘韩星.微波熔盐法合成片状晶体SrTiO3[J].功能材料. 2007, 38(A02): 919-921.
    [72]陈小兵,李丽,王昭,等.微波催化技术的应用研究进展[J].辽宁石油化工大学学报. 2006, 26(4): 15-17.
    [73]尤鑫,林于廉,龙腾锐,等.微波催化氧化技术在垃圾渗滤液处理中的应用[J].工业水处理. 2009, 29(5): 15-18.
    [74]王禹,孙海涛,王宝辉,等.微波的热效应与非热效应[J].辽宁化工. 2006, 35(3): 167-169.
    [75]任之恭.微波量子物理学[M].北京:科学出版社, 1980.
    [76]王锁柱,毕文辉.微波辐射及其防护[J].海军医学杂志. 2007, 28(4): 377-379.
    [77]庞小峰,张安英.微波的生物热效应的机理和特性研究[J].原子与分子物理学报. 2001, 18(4): 421-425.
    [78]姜东红.微波辐射的生物学效应研究进展[J].中国伤残医学. 2008, 16(6): 130-132.
    [79]姜涛.电磁脉冲与高功率微波对视觉系统损伤机制的研究[R].北京:军事医学科学院(北京), 2003.
    [80] Eskicioglu C, Droste R L, Kennedy K J. Performance of anaerobic waste activated sludge digesters after microwave pretreatment[J]. Water Environment Research. 2007, 79(11): 2265-2273.
    [81]陈卫,杭锋,赵建新,等.微波杀菌过程中大肠杆菌与金黄色葡萄球菌细胞膜通透性的改变[J].微生物学报. 2007, 47(4): 697-701.
    [82] Kakita Y, Kashige N, Murata K, et al. Inactivation of Lactobacillus bacteriophage PL-1 by microwave irradiation[J]. Microbiology and Immunology. 1995, 39(8): 571-576.
    [83] Hong S M, Park J K, Lee Y O. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids[J]. Water Research. 2004, 38(6): 1615-1625.
    [84] Sarkar S, Ali S, Behari J. Effect of low power microwave on the mouse genome: a direct DNA analysis[J]. Mutation Research. 1994, 320(1-2): 141-7.
    [85] Verma M, Dutta S K. Microwave induced alteration in the neuron specific enolase gene expression[J]. Cancer Biochemistry Biophysics. 1993, 13(4): 239-44.
    [86]姜涛,王德文.微波辐射对生物细胞的影响[J].中国预防医学杂志. 2004, 5(1): 69-71.
    [87] Dominguez A, Menendez J A, Inguanzo M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology. 2006, 97(10): 1185-1193.
    [88] Dominguez A, Fernandez Y, Fidalgo B, et al. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J]. Chemosphere. 2008, 70(3): 397-403.
    [89] Dominguez A, Menendez J A, Inguanzo M, et al. Sewage sludge drying using microwave energy and characterization by IRTF[J]. Afinidad. 2004, 61(512): 280-285.
    [90]傅大放,蔡明元.污水厂污泥微波处理试验研究[J].中国给水排水. 1999, 15(6): 56-57.
    [91]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响[J].中国环境科学. 2006, 26(4): 459-463.
    [92] Yu Q, Lei H Y, Yu G W, et al. Influence of microwave irradiation on sludge dewaterability[J]. Chemical Engineering Journal. 2009, 155(1-2): 88-93.
    [93] Hong S M, Park J K, Teeradej N, et al. Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance[J]. Water Environment Research. 2006, 78(1): 76-83.
    [94] Guo L, Li X M, Bo X, et al. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge[J]. Bioresource Technology. 2008, 99(9): 3651-3658.
    [95]傅大放,周涛,钱科.生物固体微波杀菌及机理研究[J].微波学报. 2003, 19(4): 70-72,82.
    [96] Yu Q, Lei H, Li Z, et al. Physical and chemical properties of waste-activated sludge after microwave treatment[J]. Water Research. 2010, 44(9): 2841-2849.
    [97] Tang B, Yu L, Huang S, et al. Energy efficiency of pre-treating excess sewage sludge with microwave irradiation[J]. Bioresource Technology. 2010, 101(14): 5092-5097.
    [98] Qiao W, Wang W, Xun R, et al. Sewage sludge hydrothermal treatment by microwave irradiation combined with alkali addition [J]. Journal of Materials Science. 2008, 43(7): 2431-2436.
    [99] Dogan I, Sanin F D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method[J]. Water Research. 2009, 43(8): 2139-2148.
    [100] Yin G Q, Lo K V, Liao P H. Microwave enhanced advanced oxidation process for sewage sludge treatment: The effects of ozone addition[J]. Journal of Environmental Engineering and Science. 2008, 7(2): 115-122.
    [101]张自杰,林荣忱,金儒霖.排水工程(下册)[M].第4版.北京:中国建筑工业出版社, 2000.
    [102]乔玮,王伟,荀锐,等.高固体污泥微波热水解特性变化[J].环境科学. 2008, 29(6): 1611-1615.
    [103] Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres[J]. Nature. 1976, 260(29): 799-802.
    [104]王鲁嘉.微波灭菌试验及分析[J].云南大学学报:自然科学版. 1998, 20(1): 34-36,40.
    [105] Woo I S, Rhee I K, Park H D. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure[J]. Applied and Environmental Microbiology. 2000, 66(5): 2243-2247.
    [106]乔玮,王伟,黎攀,等.城市污水污泥微波热水解特性研究[J].环境科学. 2008, 29(1): 152-157.
    [107] Penaud V, Delgenes J P, Moletta R. Characterization of soluble molecules from thermochemically pretreated sludge[J]. Journal of Environmental Engineering-Asce. 2000, 126(5): 397-402.
    [108] Dwyer J, Starrenburg D, Tait S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research. 2008, 42(18): 4699-4709.
    [109] Eskicioglu C, Kennedy K J, Droste R L. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment[J]. Water Research. 2006, 40(20): 3725-3736.
    [110]王治军,王伟.剩余污泥的热水解试验[J].中国环境科学. 2005, 25(B06): 56-60.
    [111] Karr P R, Keinath T M. Influence of particle size on sludge dewaterability[J]. Journal of Water Pollution Control Federation. 1978, 50(2): 1911-1930.
    [112] Feng X, Lei H Y, Deng J C, et al. Physical and chemical characteristics of waste activated sludge treated ultrasonically[J]. Chemical Engineering and Processing. 2009, 48(1): 187-194.
    [113]野池達也,佐藤和明,安井英斉,等.メタン発酵[M].東京:技報堂出版株式會社, 2009.
    [114] Liao P H, Wong W T, Lo K V. Release of phosphorus from sewage sludge using microwave technology[J]. Journal of Environmental Engineering and Science. 2005, 4(1): 77-81.
    [115] Lay J J, Li Y Y, Noike T. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes[J]. Water Environment Research. 1998, 70(5): 1075-1082.
    [116] Eskicioglu C, Terzian N, Kennedy K J, et al. Athermal microwave effects for enhancing digestibility of waste activated sludge[J]. Water Research. 2007, 41(11): 2457-2466.
    [117] Pino-Jelcic S A, Hong S M, Park J K. Enhanced anaerobic biodegradability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves[J]. Water Environment Research. 2006, 78(2): 209-216.
    [118] Park B, Ahn J-H, Kim J, et al. Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge[J]. Water Science and Technology. 2004, 50(9): 17-23.
    [119] Park W J, Ahn J H, Hwang S, et al. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation[J]. Bioresource Technology. 2010, 101(Suppl. 1): S13-S16.
    [120]王亚炜,魏源送,肖本益,等.微波-过氧化氢联合作用处理污泥的影响因素[J].环境科学学报. 2009, 29(4): 697-702.
    [121] Van Loey A, Hendrickx M, Ludikhuyze L, et al. Potential Bacillus subtilis alpha-amylase-based time-temperature integrators to evaluate pasteurization processes[J]. Journal of Food Protection. 1996, 59(3): 261-267.
    [122] Toreci I, Kennedy K J, Droste R L. Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment[J]. Water Research. 2009, 43(5): 1273-1284.
    [123]刘佳,孙德栋,薛文平,等.微波辐照与碱联合处理污泥的试验研究[J].环境污染与防治. 2008, 30(12): 63-66.
    [124] Yin G Q, Liao P H, Lo K V. An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2007, 42(8): 1177-1181.
    [125] Yu Y, Lo I W, Chan W W I, et al. Nutrient release from extracted activated sludge cells using the microwave enhanced advanced oxidation process[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2010, 45(9): 1071-1075.
    [126] Eskicioglu C, Prorot A, Marin J, et al. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2 O2 for enhanced anaerobic digestion[J]. Water Research. 2008, 42(18): 4674-4682.
    [127] Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology. 2008, 99(10): 4044-4064.
    [128] Hong J, Hong J, Otaki M, et al. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan[J]. Waste Management. 2009, 29(2): 696-703.
    [129] Graczyk T K, Kacprzak M, Neczaj E, et al. Occurrence of Cryptosporidium and Giardia in sewage sludge and solid waste landfill leachate and quantitative comparative analysis of sanitization treatments on pathogen inactivation[J]. Environmental Research. 2008, 106(1): 27-33.
    [130] Yu Y, Chan W I, Liao P H, et al. Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process[J]. Journal of Hazardous Materials. 2010, 181(1-3): 1143-1147.
    [131]余杰,田宁宁,王凯军.我国污泥处理、处置技术政策探讨[J].中国给水排水. 2005, 21(8): 84-87.
    [132]朱石清,张善发,张辰,等.上海市污泥处理处置专项规划简介[J].中国给水排水. 2005, 21(5): 84-87.
    [133] Harrison E Z, Oakes S R, Hysell M, et al. Organic chemicals in sewage sludges[J]. Science of the Total Environment. 2006, 367(2-3): 481-497.
    [134] Goven J, Langer E R. The potential of public engagement in sustainable waste management: Designing the future for biosolids in New Zealand[J]. Journal of Environmental Management. 2009, 90(2): 921-930.
    [135]陈中颖,许振成,刘永,等.基于常规运行数据的污水处理厂污泥量核算方法[J].中国给水排水. 2008, 24(24): 38-41.
    [136]董誉,汤兵,许奕春,等.微波法处理处置污泥研究进展[J].科技导报. 2010(3): 112-115.(无卷号)
    [137] APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation). Standard Methods for the Examination of Water and Wastewater[M]. 20th Ed. Washington DC: APHA, AWWA, WEF, 1999.
    [138]社団法人日本下水道協会.下水试験方法(上巻)[M].東京:日本下水道協会出版社, 1997.
    [139] DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry. 1956, 28(3): 350-356.
    [140] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry. 1951, 193(1): 265-275.
    [141] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology. 1959, 37(8): 911-917.
    [142] Akutsu Y, Lee D-Y, Chi Y Z, et al. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules[J]. International Journal of Hydrogen Energy. 2009, 34(12): 5061-5071.
    [143]韩芸,李玉友,任勇翔,等.城市污水处理厂预热处理混合污泥的高温厌氧消化特性研究[J].环境科学学报. 2007, 27(7): 1174-1180.
    [144] Kobayashi T, Li Y Y, Harada H. Analysis of microbial community structure and diversity in the thermophilic anaerobic digestion of waste activated sludge[J]. Water Science and Technology. 2008, 57(8): 1199-1205.
    [145]池勇志,张书廷,李玉友.中国における都市下水汚泥の処理現況[J].環境技術. 2009, 38(5): 45-50.
    [146] Turovskiy I S, Mathai P K. Wastewater sludge processing[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006.
    [147] Andreoli C V, Sperling M v, Fernandes F. Sludge Treatment and Disposal[M]. London: IWA Publishing, 2007.
    [148] Rubio-Loza L A, Noyola A. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge[J]. Bioresource Technology. 2010, 101(2): 576-585.
    [149] Kabouris J C, Tezel U, Pavlostathis S G, et al. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease[J]. Water Environment Research. 2009, 81(5): 476-485.
    [150] Suvilampi J, Lehtom?ki A, Rintala J. Comparative study of laboratory-scale thermophilic and mesophilic activated sludge processes[J]. Water Research. 2005, 39(5): 741-750.
    [151] Iranpour R, Alatriste-Mondragon F, Cox H H J, et al. Effects of transient temperature increases on odor production from thermophilic anaerobic digestion[J]. Water Science and Technology. 2005, 52(1-2): 229-235.
    [152] Zhou J P, Parker W, Laha S. Biosolids and sludge management[J]. Water Environment Research. 2007, 79(10): 1496-1527.
    [153] Zabranska J, Dohanyos M, Jenicek P, et al. The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment[J]. Water Science and Technology. 2002, 46(4-5): 447-453.
    [154] Ahring B K, Mladenovska Z, Iranpour R, et al. State of the art and future perspectives of thermophilic anaerobic digestion[J]. Water Science and Technology. 2002, 45(10): 293-298.
    [155] Riau V, de la Rubia M A, Perez M. Temperature-phased anaerobic digestion (TPAD) to obtain Class A biosolids: A discontinuous study[J]. Bioresource Technology. 2010, 101(1): 65-70.
    [156] Speece R E.工业废水的厌氧生物处理技术[M].北京:中国建筑工业出版社, 2001.
    [157] de la Rubia M A, Perez M, Romero L I, et al. Anaerobic mesophilic and thermophilic municipal sludge digestion[J]. Chemical and Biochemical Engineering Quarterly. 2002, 16(3): 119-124.
    [158] Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge[J]. Water Research. 2004, 38(7): 1653-1662.
    [159] Kim M, Ahn Y-H, Speece R E. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic[J]. Water Research. 2002, 36(17): 4369-4385.
    [160] Palatsi J, Gimenez-Lorang A, Ferrer I, et al. Start-up strategies of thermophilic anaerobic digestion of sewage sludge[J]. Water Science and Technology. 2009, 59(9): 1777-1784.
    [161] Novak J T, Sadler M E, Murthy S N. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids[J]. Water Research. 2003, 37(13): 3136-3144.
    [162] Ayol A, Filibeli A, Dentel S. Evaluation of conditioning responses of thermophilic-mesophilic anaerobically and mesophilic aerobically digested biosolids using rheological properties[J]. Water Science and Technology. 2006, 54(5): 23-31.
    [163]茆诗松,周纪芗.概率论与数理统计[M].第2版.北京:中国统计出版社, 2000.
    [164]庄作钦. BOX PLOT——描述统计的一个简便工具[J].统计与预测. 2003(2): 56-57.(无卷号)
    [165]陈幼松,杨位钦.实用数理统计方法及应用题详解[M].北京:北京科学技术出版社, 1988.
    [166] Ghosh S. Improved sludge gasification by two-phase anaerobic digestion[J]. Journal of Environmental Engineering. 1987, 113(6): 1265-1284.
    [167] Morgan J W, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research. 1990, 24(66): 743-750.
    [168] Fang H H P, Chung D W C. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions[J]. Water Science and Technology. 1999, 40(1): 77-84.
    [169] Szilagyi A, Zavodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey[J]. Structure. 2000, 8(5): 493-504.
    [170] Houghton J I, Quarmby J, Stephenson T. The Impact of Digestion on Sludge Dewaterability[J]. Process Safety and Environmental Protection. 2000, 78(2): 153-159.
    [171]岡田稔.高分子凝集剤の進步[J].表面. 1990, 28(11): 26-36.
    [172] Obayashi A W, Gaudy Jr A F. Aerobic digestion of extracellular microbial polysaccharides[J]. Journal of the Water Pollution Control Federation. 1973, 45(7): 1584-1594.
    [173] Munch E V, Greenfield P F. Estimating VFA concentrations in prefermenters by measuring pH[J]. Water Research. 1998, 32(8): 2431-2441.
    [174] Van Haandel A C. Influence of the digested COD concentration on the alkalinity requirement in anaerobic digesters[J]. Water Science and Technology. 1994, 30(8): 23-34.
    [175] Yu H Q, Fang H H P, Gu G W. Comparative performance of mesophilic and thermophilic acidogenic upflow reactors[J]. Process Biochemistry. 2002, 38(3): 447-454.
    [176] Nielsen H B, Uellendahl H, Ahring B K. Regulation and optimization of the biogas process: Propionate as a key parameter[J]. Biomass & Bioenergy. 2007, 31(11-12): 820-830.
    [177] Zhao Q, Kugel G. Thermophilic/mesophilic digestion of sewage sludge and organic wastes[J]. Journal of Environmental Science & Health, Part A: Environmental Science & Engineering & Toxic & Hazardous Substance Control. 1996, A31(9): 2211-2231.
    [178] Lay J J, Li Y Y, Noike T, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology. 1997, 36(6-7): 493-500.
    [179] Eskicioglu C, Kennedy K J, Droste R L. Initial examination of microwave pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion[J]. Water Science and Technology. 2008, 57(3): 311-317.
    [180] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials. 2003, 98(1-3): 51-67.
    [181] Ormeci B, Ahmad A. Measurement of additional shear during sludge conditioning and dewatering[J]. Water Research. 2009, 43(13): 3249-3260.
    [182] Dentel S K, Dursun D. Shear sensitivity of digested sludge: Comparison of methods and application in conditioning and dewatering[J]. Water Research. 2009, 43(18): 4617-4625.
    [183] Haug R T, Stuckey D C, Gossett J M, et al. Effect of thermal pretreatment on digestibility and dewaterability of organic sludges[J]. Journal of Water Pollution Control Federation. 1978, 50(1): 73-85.
    [184]王宗廷,张云山.聚脒的溶液聚合方法研究[J].工业水处理. 2008, 28(10): 65-68.
    [185]五十嵐千秋.し尿汚泥の調質と実際[J].環境創造. 1982, 1(2): 29-33.
    [186] Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research. 2002, 36(14): 3620-3628.
    [187] Shao L M, He P P, Yu G H, et al. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability[J]. Journal of Environmental Sciences. 2009, 21(1): 83-88.
    [188]周群英,高廷耀.环境工程微生物学[M].第2版.北京:高等教育出版社, 2000.
    [189]刘玉学,吴伟祥,朱荫湄,等.胞外聚合物对污泥脱水性能的影响及其提取方法研究[J].科技通报. 2008, 24(4): 565-569.
    [190] Sanin F D, Vesilind P A. Effect of centrifugation on the removal of extracellular polymers and physical properties of activated sludge[J]. Water Science and Technology. 1994, 30(8): 117-127.
    [191]陈银广,杨海真,吴桂标,等.表面活性剂改进活性污泥的脱水性能及其作用机理[J].环境科学. 2000, 21(5): 97-100.
    [192] Herceg Z, Lelas V. The influence of temperature and solid matter content on the viscosity of whey protein concentrates and skim milk powder before and after tribomechanical treatment[J]. Journal of Food Engineering. 2005, 66(4): 433-438.
    [193] Novak J T, Park C, Abu-Orf M M. Conditioning and dewatering of digested waste activated sludges[J]. Journal of Residuals Science & Technology. 2004, 1(1): 45-51.
    [194] Higgins M J, Novak J T. Dewatering and settling of activated sludges:the case for using cation analysis[J]. Water Environment Research. 1997, 69(2): 225-232.
    [195] Sung S W, Liu T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere. 2003, 53(1): 43-52.
    [196]李玉友,西村修.メタン発酵法による廃棄物系バイオマスの循環利用[J].混相流. 2007, 21(1): 29-38.
    [197] Jia X S, Fang H H P, Furumai H. Surface charge and extracellular polymer of sludge in the anaerobic degradation process[J]. Water Science and Technology. 1996, 34(5-6): 309-316.
    [198] Saraboji K, Gromiha M M, Ponnuswamy M N. Importance of main-chain hydrophobic free energy to the stability of thermophilic proteins[J]. International Journal of Biological Macromolecules. 2005, 35(3-4): 211-220.
    [199] Kinjo A R, Nishikawa K. Comparison of energy components of proteins from thermophilic and mesophilic organisms[J]. European Biophysics Journal with Biophysics Letters. 2001, 30(5): 378-384.
    [200] Bivins J L, Novak J T. Changes in dewatering properties between the thermophilic and mesophilic stages in temperature-phased anaerobic digestion systems[J]. Water Environment Research. 2001, 73(4): 444-449.
    [201] Hartonga B H, Abu-Daabesa M, Lea T, et al. Sludge dewatering with cyclodextrins[J]. Water Research. 2007, 41(6): 1201-1206.
    [202]方开泰,马长兴.正交与均匀设计试验设计[M].北京:科学技术出版社, 2001.
    [203] Fang K-T, Ma C-X, Maringer D, et al. Uniform design tables[EB/OL]. http:// www.math.hkbu.edu.hk/UniformDesign/, 2008-12-18.
    [204]何晓群,刘文卿.应用回归分析[M].第2版.北京:中国人民大学大学出版社, 2007.
    [205]洪楠,侯军. MINITAB统计分析教程[M].北京:电子工业出版社, 2007.
    [206]庄楚强.应用数理统计基础[M].第3版.广州:华南理工大学出版社, 2005.
    [207]胡亮,杨大锦. Excel与化学化工试验数据处理[M].北京:化学工业出版社, 2004.
    [208]王斌会,郭祖超.回归诊断中的图示模型及其应用[J].数理医药学杂志. 1997, 10(3): 193-197.
    [209]陈希孺,王松桂.近代回归分析——原理方法及应用[M].合肥:安徽科学技术出版社, 1987.
    [210]张建同,孙昌言.以Excel和SPSS为工具的管理统计[M].北京:清华大学出版社, 2005.
    [211]郭荣华.均匀设计法确定甲醇—碱水溶液萃取脱硫醇的最佳条件[J].石油炼制与化工. 1998, 29(12): 21-24.
    [212]罗巅辉.均匀设计法优化高丽参多糖的提取[J].天然产物研究与开发. 2008, 20(3): 383-387.
    [213]张占梅,郑怀礼,胡鹏,等.响应面法优化低频超声协同H 2 O2降解偶氮染料酸性绿B[J].环境科学研究. 2009(3): 270-276.(无卷号)
    [214] Metcalf-Eddy-Inc. Wastewater engineering:treatment and reuse[M].北京:清华大学出版社, 2003.
    [215] Lin J-G, Ma Y-S, Chao A C, et al. BMP test on chemically pretreated sludge[J]. Bioresource Technology. 1999, 68(2): 187-192.
    [216] Kang H, Heo N H, Park S C, et al. Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste[J]. Water Science and Technology. 2003, 48(8): 211-219.
    [217] Bougrier C, Delgenès J P, Carrère H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering Journal. 2007, 34(1): 20-27.
    [218] Koppar A, Pullammanappallil P. Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp[J]. Bioresource Technology. 2008, 99(8): 2831-2839.
    [219] Zwietering M H, Jongenburger I, Rombouts F M, et al. Modeling of the bacterial growth curve[J]. Applied and Environmental Microbiology. 1990, 56(6): 1875-1881.
    [220] Cho H-Y, Yousef A E, Sastry S K. Growth kinetics of Lactobacillus acidophilus under ohmic heating[J]. Biotechnology and Bioengineering. 1996, 49(3): 334-340.
    [221] Lay J J, Li Y Y, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion[J]. Water Research. 1997, 31(6): 1518-1524.
    [222] Yates G T, Smotzer T. On the lag phase and initial decline of microbial growth curves[J]. Journal of Theoretical Biology. 2007, 244(3): 511-517.
    [223] Jeong T Y, Cha G C, Choi S S, et al. Evaluation of methane production by the thermal pretreatment of waste activated sludge in an anaerobic digester[J]. Journal of Industrial and Engineering Chemistry. 2007, 13(5): 856-863.
    [224]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学. 2005, 26(1): 68-71.
    [225]邢薇,左剑恶,林甲,等. 20℃EGSB反应器中颗粒污泥的微生物种群结构分析[J].环境科学. 2008, 29(9): 2558-2563.
    [226]中国高校工业微生物资源数据平台.巴氏甲烷八叠球菌[EB/OL]. http:// cicim-cu.sytu.edu.cn/View_Fungoid.Asp?id=71&sjk=极端, 2010-7-19.
    [227]中国化工仪器网.嗜热甲烷八叠球菌[EB/OL]. http://www.chem17.com/ Product/Detail/1980985.html, 2010-7-10.
    [228] Sekiguchi Y, Kamagata Y, Syutsubo K, et al. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis[J]. Microbiology. 1998, (144): 2655-2665.
    [229] Santell C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust[J]. Nature. 2008, 453(29): 653-657.
    [230] Nübel U, Garcia-Pichel F, Kühl M, et al. Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina[J]. Hydrobiologia. 1999, 401: 199-206.(无期号)
    [231] Hughes J B, Hellmann J J, Ricketts T H, et al. Counting the uncountable: Statistical approaches to estimating microbial diversity[J]. Applied and Environmental Microbiology. 2001, 67(10): 4399-4406.
    [232] Chao A. Estimating the population size for capture-recapture data with unequal catchability[J]. Biometrics. 1987, 43(4): 783-791.
    [233] Borges P A V, Hortal J, Gabriel R, et al. Would species richness estimators change the observed species area relationship?[J]. Acta Oecologica. 2009, 35(1): 149-156.
    [234] Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut[J]. Applied and Environmental Microbiology. 1999, 65(11): 4799–4807.
    [235] Van Lier J B. Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 1996, 69(1): 1-14.
    [236]余杰,田宁宁,王凯军,等.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报. 2007, 1(1): 82-86.
    [237] CJ/T 249—2007城镇污水处理厂污泥处置混合填埋泥质[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700