用户名: 密码: 验证码:
废弃线路板的资源化及浮选动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子废弃物的资源化既能实现资源的二次利用,又能防止环境污染,具有重要的理论意义和应用价值。本文采用“湿法破碎——浮选”工艺流程来回收废弃线路板中金属成分,对于浮选方法回收废弃电路板中金属的课题,国外近几年开始研究,但是国内尚属空白。
     首先研究了湿法破碎各操作因素之间的关系,借助Design-Expert试验设计软件在理论上推导出各操作因素与-0.5mm粒级产率的预测公式。
     接着对-0.5mm粒级的废弃线路板,进行了自然疏水性浮选试验,借助Design-Expert试验设计软件优化各个试验参数(搅拌速度A、充气量B、温度C、固体浓度D),沉物产率最高为71.6743%;品位最高为28.7950%;回收率90%以上。在理论上推导出沉物产率、品位、回收率和富集比的预测模型。
     然后在自然疏水性浮选基础之上,进一步研究药剂浮选,选用新型捕收剂9858和9883、丁基黑药和丁基黄药四种捕收剂和甲基异丁基甲醇(MIBC)、起泡剂9862、仲辛醇、2#油四种起泡剂,通过验证得出新型捕收剂9858和起泡剂9862搭配使用时,沉物产率为64.757%,达到最高,金属品位为25.377%,回收率98.438%,富集比1.520,综合评价指标,效果非常显著。
     结合传统矿物浮选的四个常用浮选动力学模型,研究了废弃线路板自然疏水性浮选和药剂浮选的浮选动力学模型,并通过试验验证了五个不同条件下建立得动力学模型,为废弃线路板浮选工艺参数的优化、浮选流程的简化奠定了理论基础。
     通过分形对破碎、浮选各环节的产物进行研究,对比研究发现,在浮选过程中粒度分形的变化规律符合多项式方程:
     D= At~5+Bt~4+Ct~3+Dt~2+Et+1.292;
     A、B、C、D、E是常数,t是时间,D代表分形维数。
     应用灰色理论对废弃线路板浮选试验分选结果进行了分析,采用灰色理论中的灰色关联理论对多因素试验分选结果进行了分析,结果表明:对于沉物产率、沉物品位、金属回收率、富集比与各个操作因数的关联度由大至小为:充气量>温度>固体浓度>搅拌速度。即各因素对分选指标的影响程度排序为:充气量、温度、固体浓度、搅拌速度。并最终运用灰色建模理论建立了操作参数与废弃线路板浮选分选效果间的灰色模型。
     对于废弃线路板的浮选处理,研究结果表明,浮选工艺简单有效、分选效果好,为实现电子废弃物的资源化提供了一条新的处理方法,同时也为浮选拓宽了新的应用领域。
     论文共包含85幅图,43个表格,192篇参考文献。
Study on waste electrical and electronic equipment (WEEE) and the reutilization of waste printed circuit boards (PCBs) have the important significance and application values, which can not only achieve recycling of secondary resources, but also prevent environment pollution. The metals in PCBs are recycled with a flowsheet of wet impact crushing——flotation in the dissertation. In China, the subject of PCBs flotation is novel at present.
     Firstly, the relationship among the operational factors of the wet impact crushing was studied. With the Design-Expert software, the predicting equation of the operational factors to the yield in -0.5mm fraction was derivated in theory.
     The natural hydrophobic flotation test on -0.5mm crushed products of the waste PCBs was undertaken, using Design-Expert software to optimize the various experimental parameters (agitation speed, aeration rate, temperature, solid concentration), and the sink yield was up to 71.6743%; the grade was up to 28.7950%; the recovery rate was over 90%. In theory, the predicted models about yield, grade, recovery rate, and enrichment ratio of the sink were deducted. Based on the models, the reagent flotation was studied with selecting four collectors (new type collector 9858, new type collector 9883, butyl dithiophosphate and butyl xanthate) and four frothers (MIBC, new type frother 9862, sec-octyl alcohol, and 2# oil). When the new type collector 9858 and frother 9862 were chosen and mixed to be used in the experiments, the sink yield was up to 64.757%, the metal grade was 25.377%, the recovery rate was 98.438%, and the enrichment ratio was 1.520. Synthesizing the separation indicators, the collector and the frother worked effectivly.
     Using four usual flotation kinetic models of traditional minerals, the flotation kinetic models for waste PCBs flotation depending on the natural hydrophobicity or reagent were studied. The flotation kinetic models which were achieved in five different conditions were conducted through the experiments. The theoretical foundation was built for optimization of the floation process operation, simpliying the flotation flowsheet.
     The crushed and flotation products were studied by the fractal. And the results showed that the variation of size fractal in the floation was fitted in with the polynomial equation:
     D=At~5+Bt~4+Ct~3+Dt~2+Et+1.292
     A、B、C、D、E hereby are constants, t is the processing time, D is represent for the dimension of fractal.
     The sorting results of the flotation of waste PCBs were analyzed by gray theory, and the sorting results of multi-factor test were analyzed by gray relevance theory. The results show that the correlation of sink yield, sink grade, metal recovery and enrichment ratio affected by operation factors from large to small is: aeration rate, temperature, solid concentration, agitation speed. Namely the order of the factors on the influence degree of the sorting index is aeration rate, temperature, solid concentration, agitation speed. A gray model between the operation parameters and the separation effects of the flotation of waste PCBs were established by applying the gray modeling theory.
     For the flotation of waste PCBs, the results of the study show that the flotation process is simple and effective, and the separation effect is better. It provides a new processing method for electronic waste recycling and also broadens a new application for flotation.
     The thesis contains 85 figures, 43 tables and 192 references.
引文
[1]荆维.电子废弃物处置现状及管理对策探讨[J].环境与可持续发展, 2009, 5: 13-16.
    [2]张婷,郁寒梅,徐芳等.电子废弃物的危害及处理现状[J].科技成果管理与研究, 2009, 3: 61-63.
    [3]刘平,彭哓春,杨仁斌等.国外电子废弃物资源化概述[J].再生资源与循环经济, 2010, 3(2): 41-44.
    [4]徐立峰.对电子废弃物管理和回收利用思路探讨[J].科技风, 2010, 7): 234-235.
    [5]Antrekowitsch H, Potesser M, Spruzina W, et al. Metallurgical recycling of electronic scrap; proceedings of the EPD 2006 Congress, 12-16 March 2006, Warrendale, PA, USA, F, 2006 [C]. TMS (The Minerals, Metals & Materials Society).
    [6]梁波,王景伟,徐金球.我国电子废弃物资源化研究[J].环境科学与技术, 2007, 1: 47-52.
    [7]王鹏.电子废弃物的污染防治与资源化[J].中国资源综合利用, 2005, 9: 30-34.
    [8]王建明.废弃电器电子产品回收利用行业发展研究[J].中国科技信息, 2009, 17: 22-24.
    [9]吴峰.电子废弃物的环境管理与处理处置技术初探——国外现状综述[J].中国环保产业, 2001, 1: 35-36.
    [10]魏金秀,汪永辉,李登新.国内外电子废弃物现状及其资源化技术[J].东华大学学报(自然科学版), 2005, 3: 133-138.
    [11]邱定蕃,吴义千,符斌等.我国有色金属资源循环利用[J].有色冶金节能, 2005, 4: 6-13.
    [12]邱定蕃,吴义千,符斌等.我国有色金属资源循环利用(四)[J].有色冶金节能, 2006, 2: 4-8.
    [13]邱定蕃.资源循环利用对有色金属工业发展的影响[J].矿冶, 2003, 4: 34-36.
    [14]陈梦喆.废弃印刷电路板的资源化的意义及方法[J].煤炭技术, 2009, 11: 30-31.
    [15]何亚群.电子废弃物资源化处理[M].北京:化学工业出版社, 2006.
    [16]张志霄,赵新田,马加德.废弃印刷电路板资源化回收利用技术探讨[J].上海环境科学, 2010, 1: 30-34.
    [17]韩增玉,张德华,王晋虎等.电子废弃物回收处理技术现状[J].广州环境科学, 2009, 24(3): 31-34.
    [18]Zhang S, Forssberg E. Intelligent Liberation and classification of electronic scrap [J]. Powder Technology, 1999, 105(1-3): 295-301.
    [19]Zhang S, Forssberg E, Arvidson B, et al. Aluminum recovery from electronic scrap by High-Force-eddy-current separators [J]. Resources, Conservation and Recycling, 1998, 23(4): 225-241.
    [20]Koyanaka S. Micro-manipulation of Small Particles Using The Radiation Pressure of Laser Light [J]. Journal of NIRE, 1997, 6(3): 17-26
    [21]Melchiorre M J R. Electronic scrap recycling [J]. Microelectronics Journal, IEEE, 1996, 28: 8-10.
    [22]Jakob R, Melchiorre M. Method for recycling waste from printed circuit board assemblies from electrical and electronic devices [P]. US: 1997-5683040.
    [23]Murugan R V, Bharat S, Deshpande A P, et al. Milling and separation of the multi-component printed circuit board materials and the analysis of elutriation based on a single particle model [J]. Powder Technology, 2008, 183(2): 169-176.
    [24]Eswaraiah C, Kavitha T, Vidyasagar S, et al. Classification of metals and plastics from printed circuit boards (PCB) using air classifier [J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(4): 565-576.
    [25]Morf L S, Tremp J, Gloor R, et al. Metals, non-metals and PCB in electrical and electronic waste - Actual levels in Switzerland [J]. Waste Management, 2007, 27(10): 1306-1316.
    [26]Nnorom I C, Osibanjo O. Electronic waste (e-waste): Material flows and management practices inNigeria [J]. Waste Management, 2008, 28(8): 1472-1479.
    [27]Yoo J-M, Jeong J, Yoo K, et al. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill [J]. Waste Management, 2009, 29(3): 1132-1137.
    [28]Yang T, Xu Z, Wen J, et al. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans [J]. Hydrometallurgy, 2009, 97(1-2): 29-32.
    [29]Xiu F-R, Zhang F-S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process [J]. Journal of Hazardous Materials, 2009, 165(1-3): 1002-1007.
    [30]孙路石,陆继东,王世杰等.溴化环氧树脂印刷线路板热解产物的分析[J].华中科技大学学报(自然科学版), 2003, 8: 50-52.
    [31]Ping Z, Zeyun F, Jie L, et al. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board [J]. Journal of Hazardous Materials, 2009, 166(2-3): 746-750.
    [32]郑艳红,沈志刚,蔡楚江等.废印刷电路板非金属粉资源化再利用技术研究[J].过程工程学报, 2009, 85-88.
    [33]Zheng Y, Shen Z, Ma S, et al. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards [J]. Journal of Hazardous Materials, 2009, 170(2-3): 978-982.
    [34]顾帼华,戚云峰.废旧印刷电路板的粉碎性能及资源特征[J].中国有色金属学报, 2004, 6: 1037-1041.
    [35]丘克强,顾桁,陈少纯.废弃电路板金属资源特点及其湿法冶金再生技术的发展现状[J].中国有色金属学报, 2008, 18(E01): 381-385.
    [36]Zhou Y, Qiu K. A new technology for recycling materials from waste printed circuit boards [J]. Journal of Hazardous Materials, 2010, 175(1-3): 823-828.
    [37]李金惠,温雪峰等编著.电子废物处理技术[M].北京:中国环境科学出版社, 2006.
    [38]Mou P, Xiang D, Duan G. Products Made from Nonmetallic Materials Reclaimed from Waste Printed Circuit Boards [J]. Tsinghua Science & Technology, 2007, 12(3): 276-283.
    [39]潘君齐,刘志峰,张洪潮等.超临界流体废弃线路板回收工艺[J].合肥工业大学学报(自然科学版), 2007, 10: 1287-1291.
    [40] Guan J, Li Y S, Lu M X. Product characterization of waste printed circuit board by pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(2): 185-189.
    [41]Jiang W, Jia L, Zhen-Ming X. Optimization of key factors of the electrostatic separation for crushed PCB wastes using roll-type separator [J]. Journal of Hazardous Materials, 2008, 154(1-3): 161-167.
    [42]Lu H, Li J, Guo J, et al. Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board [J]. Journal of Materials Processing Technology, 2008, 197(1-3): 101-108.
    [43]Li J, Xu Z, Zhou Y. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards [J]. Journal of Electrostatics, 2007, 65(4): 233-238.
    [44]Xu M, Li G M, He W Z, et al. Metals recovery from waste printed circuit boards using fluidization technique [J]. PROGRESS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, VOL I, 2007, 1410-1414.
    [45]路迈西,周翠红,潘永泰等.用机械方法回收废旧印刷电路板的研究[J].环境污染与防治, 2004, 26(5): 400.
    [46]赵跃民,段晨龙,何亚群著.电子废物的物理分选理论与技术[M].北京:科学出版社, 2009.
    [47]Zhao Y, Wen X, Li B. Recovery of copper from waste printed circuit board [J]. Journal of Minerals & Metallurgical Processing, 2004, 21(2): 99-102.
    [48]He Y, Wang H, Duan C, et al. Airflow fields simulation on passive pulsing air classifiers [J]. Journal of the South African Institute of Mining and Metallurgy, 2005, 105(7): 525-531.
    [49]罗仙平,何丽萍,周晓文等.浮选动力学研究进展[J].金属矿山, 2008, 4: 71-74, 102.
    [50]任天忠.选矿数学模型及模拟[M].长沙:中南工业大学出版社, 1990.
    [51]何丽萍.铜铅锌硫化矿浮选动力学研究[D].南昌;江西理工大学,硕士, 2008.
    [52]尹蒂,李松仁编著.选矿数学模型[M].长沙:中南工业大学出版社, 1993.
    [53]Imaizumi T, Inoue T. Kinetic considerations of froth flotation [C], Proceedings of the 6th International Mineral Processing Symposium, 1963, 581-605.
    [54]Woodburn E T, Loveday B K. The effect of variable residence time on the performance of a flotation system [J]. S AFR INST MINING MET J, 1965, 65(12): 612-628.
    [55]Meftuni Y, Et Al. Effect of the hydrophobic fraction and particle size in thecollectorless column flotation kinetics [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects, 1997,121: 9-13, 1997, 121: 9-13.
    [56]Cilek E C. Estimation of flotation kinetic parameters by considering interactions of the operating variables [J]. Minerals Engineering, 2004, 17(1): 81-85.
    [57]J卡里奥依宁, T奈依蒂,苏奋伟.粗粒浮选动力学基本原理和分级机沉砂浮选实践[J].非金属矿, 1987, 1: 58-61.
    [58]Yuan X M, Palsson B I, Forssberg K S E. Statistical interpretation of flotation kinetics for a complex sulphide ore [J]. Minerals Engineering, 1996, 9(4): 429-442.
    [59]Feng D, Aldrich C. Effect of particle size on flotation performance of complex sulphide ores [J]. Minerals Engineering, 1999, 12(7): 721-731.
    [60]Bayat O, Ucurum M, Poole C. Effects of size distribution on flotation kinetics of Turkish sphalerite [J]. Mineral Processing and Extractive Metallurgy, 2004, 113(1): 53-59.
    [61]Hernainz F, Calero M, Blazquez G. Kinetic considerations in the flotation of phosphate ore [J]. Advanced Powder Technology, 2005, 16(4): 347-361.
    [62]陈子鸣.浮选动力学研究之二浮选速度常数分布密度函数的复原[J].有色金属(冶炼部分), 1978, 11: 27-33.
    [63]刘逸超.浮选动力学物理逻辑模型研究[J].有色金属(选矿部分), 1981, 2: 2-4
    [64]许长连.浮选速度方程[J].有色金属(选矿部分), 1981, 5: 32-37.
    [65]吴亦瑞,吴秀清. KC型实验室浮选机[J].有色金属(选矿部分), 1984, 1: 31-33.
    [66]毛来群,刘慧纳,刘其瑞等.东鞍山铁矿浮选动力学研究[J].金属矿山, 1988, 5: 49-52.
    [67]丁浩.江西金溪石墨矿浮选动力学模型的研究[J].矿产综合利用, 1991, 2: 43-47.
    [68]陶有俊,路迈西,蔡璋等.煤泥浮选动力学模型的研究[J].选煤技术, 1994, 3: 22-26.
    [69]陶有俊,路迈西,蔡璋等.细粒煤浮选动力学特性研究[J].中国矿业大学学报, 2003, 6: 98-101.
    [70]卫玉花,樊民强.屯兰矿小于0.25mm粒级原煤浮选动力学研究[J].洁净煤技术, 2004, 4: 26-29.
    [71]邱显扬,李松平,邓海波等.菱锌矿加温硫化浮选动力学研究[J].有色金属(选矿部分), 2007, 1: 24-26.
    [72]王爱丽,张全有.氯化钠浮选动力学研究[J].化工矿物与加工, 2007, 3: 5-7.
    [73]沈政昌. 160m3浮选机浮选动力学研究[J].有色金属(选矿部分), 2005, 5: 33-35.
    [74]周益辉,曾毅夫,叶明强.废弃电路板的资源特点及回收处理技术[J].资源再生, 2010, 11: 48-51.
    [75]Shuey S A, Vildal E E, Taylor P R. Pyrometallurgical processing of electronic waste [C]; proceedings of the the SME Annual Meeting, St. Louis, MO., F, 2006.
    [76]Sum E Y L. Recovery of metals from electronic scrap [J]. Journal of the Minerals Metals and Materials Society, 1991, 43(4): 53-61.
    [77]Zhang S, Forssberg E. Electronic scrap characterization for materials recycling [J]. Journal of Waste Management and Resource Recovery, 1997, 3: 157-167.
    [78]Zhang S, Forssberg E. Mechanical separation-oriented characterization of electronic scrap [J]. Resources, Conservation and Recycling, 1997, 21(4): 247-269.
    [79]Kim B-S, Lee J-C, Seo S-P, et al. A process for extracting precious metals from spent printed circuit boards and automobile catalysts [J]. JOM Journal of the Minerals, Metals and Materials Society, 56(12): 55-58.
    [80]Iji M, Yokoyama S. Recycling of Printed Wiring Boards with Mounted Electronic Components [J]. Circuit World, 1997, 23(3): 10-15.
    [81]Kogan V. Process for the recovery of precious metals scrap by means of hydrometallurgical technique. 2006, WO.
    [82]Ogunniyi I O, Vermaak M K G. Investigation of froth flotation for beneficiation of printed circuit board comminution fines [J]. Minerals Engineering, 2009, 22(4): 378-385.
    [83]Ogunniyi I O, Vermaak M K G. Improving printed circuit board physical processing–an overview [C]; proceedings of the Proceedings of European Metallurgical Conference, Dusseldorf, Germany, F, 2007.
    [84]Ogunniyi I O, Vermaak M K G. Froth Flotation for Beneficiation of Printed Circuit Boards Comminution Fines: An Overview [J]. Mineral Processing and Extractive Metallurgy Review: An International Journal, 2009, 30(2): 101-121.
    [85]杨建峰.电子废弃物的危害与回收处理[J].产业与科技论坛, 2010, 2: 149-150.
    [86]杨超伦.谁成了世界电子垃圾堆放场[J].生态经济, 2003, 9: 12-15.
    [87]武增华,刘金权,王艳兰等.电子垃圾资源化中管理对策研究[J].环境保护, 2003, 7: 14-17.
    [88]童昕.电子废弃物资源化利用的现状及发展[J].科技导报, 2002, 8: 59-61.
    [89]白庆中,王晖,韩洁等.世界废弃印刷电路板的机械处理技术现状[J].环境污染治理技术与设备, 2001, 1: 84-89.
    [90]任彦斌,夏志东,雷永平等.废弃印刷电路板回收处理技术简析[J].有色金属再生与利用, 2004, 8: 10-12.
    [91]吴彩斌,董仲珍,卜晶晶.废弃线路板干湿式破碎下的破碎行为[J].有色金属, 2010, 2: 83-88.
    [92]徐敏,李光明,殷进.废弃线路板的破碎解离和气流分选研究[J].环境科学与技术, 2007, 5: 72-74.
    [93]温雪峰,李金惠,邹亮等.废印刷线路板的常温粉碎特性研究[J].矿冶, 2005, 4: 57-61, 78.
    [94]温雪峰,李金惠,朱芬芬等.我国废弃线路板的物理处理技术评述[J].矿冶, 2005, 3: 58-63.
    [95]柴晓兰,赵跃民,王春彦.电子废弃物机械回收的研究现状与发展[J].污染防治技术, 2003, 3: 47-50,67.
    [96]李玉文,赵光楠,杨洁.液体浮选法回收废旧电脑线路板中铜的研究[J].环境科学与管理, 2006, 9: 96-98
    [97]温雪峰,范英宏,赵跃民等.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程, 2004, 22(2): 78-80.
    [98]刘昕光.电子废弃物资源化及处理技术[J].中国石油大学胜利学院学报, 2008, 3: 30-33, 49.
    [99]孙朋,于云江,李定龙等.电子垃圾对环境与健康的影响研究进展[J].环境与健康杂志, 2008, 5): 452-455.
    [100]谭瑞淀,王同华,檀素霞等.微波辐照热解废印刷电路板产物的分析研究[J].环境污染与防治, 2007, 8: 599-601.
    [101]毛艳艳.废弃印刷线路板的热解试验研究[D].浙江杭州:浙江大学,硕士, 2008.
    [102]彭科,李水清,陈波等.废旧电路板热解固液产物中溴的分布[J].燃烧科学与技术, 2009, 2: 114-118.
    [103]彭科,奚波,姚强.印刷电路板基材的热解实验研究[J].环境污染治理技术与设备, 2004, 5: 34-37.
    [104]关杰,路迈西,董卫果等.电子废弃物资源化与综合利用途径及实现条件[J].环境科学与技术, 2006, 2: 91-92, 111, 120.
    [105]吴文,宫本涛,袁浩等.印刷电路板生产废水综合治理及回收[J].材料保护, 2001, 11: 51-52.
    [106]魏喆良,唐电.印刷电路板的乙二胺络合浸镀银工艺[J].福州大学学报(自然科学版), 2007, 4: 616-619.
    [107]魏喆良,唐电.一种新的印刷电路板浸银镀速的测定方法[J].福建工程学院学报, 2007, 1: 11-14, 24.
    [108]刘辉,王同华,谭瑞淀.废印刷电路板资源化处理技术研究进展[J].环境科学与技术, 2009, 5: 92-95.
    [109]孙萍,肖波,杨家宽等.微波技术在环境保护领域的应用[J].化工环保, 2002, 2: 71-75.
    [110]邓杰,张德华.微波技术在废物处理中的应用[J].再生资源研究, 2005, 4: 30-33, 40.
    [111]洪蔚.生物技术在环境保护中应用现状[J].环境科学动态, 1991, 1: 23.
    [112]郑永勇,顾正海,郑华均.印刷线路板资源化研究进展[J].浙江化工, 2009, 10: 25-29.
    [113]洪尉.美国发现PCB分解微生物[J].广州环境科学, 1995, 3: 37.
    [114]陈烈强,谢明权.废印刷电路板回收处理技术的研究进展[J].广东化工, 2008, 9: 100-103.
    [115]Goosey M, Kellner R. Recycling technologies for the treatment of end of life printed circuit boards (PCBs) [J]. Circuit World, 2003, 29(3): 33-37.
    [116]Taylor B. Searching for solutions:[recycling electronic scrap [J]. Recycling Today(USA), 2002, 40(6): 56.
    [117]Kongar E, Gupta S M. Disassembly to order system under uncertainty [J]. Omega, 2006, 34(6): 550-561.
    [118]Gold S, Dietz K. VOGT electronic FUBA makes its own rules [J]. CircuiTree, 2003, 16(2): 28-30.
    [119]Yokoyama S, Iji M. Recycling of printed wiring boards with mounted electronic parts [C]; proceedings of the Electronics and the Environment, 1997 ISEE-1997, Proceedings of the 1997 IEEE International Symposium on, F 5-7 May 1997, 1997.
    [120]Yokoyama S, Ikuta Y, Iji M. Recycling system for printed wiring boards with mounted parts [C]; proceedings of the Environmentally Conscious Design and Inverse Manufacturing, 1999 Proceedings EcoDesign '99: First International Symposium On, F 1-3 Feb 1999, 1999.
    [121]陈苏,付娟,陈朝猛.电子废弃物处理现状与管理研究[J].南华大学学报(理工版), 2003, 1: 81-85.
    [122]李金惠,温雪峰,刘彤宙等.我国电子电器废物处理处置政策、技术及设施[J].家电科技, 2005, 1: 31-34.
    [123]何艳明,聂永丰.我国危险废物管理现状及发展趋势[J].环境污染治理技术与设备, 2002, 6: 90-93.
    [124]陈娴,傅江,程洁红等.我国电子废弃物的回收处理现状和管理对策[J].再生资源与循环经济, 2009, 7: 34-38.
    [125]吴培锦,田义文,邵珊珊.我国电子废弃物的回收处理现状及法律对策[J].特区经济, 2010, 4: 233-234.
    [126]Yang J, Lu B, Xu C. WEEE flow and mitigating measures in China [J]. Waste Management, 2008, 28(9): 1589-1597.
    [127]刘宝.电子废弃物回收逆向物流网络设计问题研究[D].哈尔滨:哈尔滨工业大学,硕士, 2006.
    [128]王一宁.电子废弃物回收网络体系的研究[D].上海:东华大学,硕士, 2007.
    [129]刘长霞.电子废弃物逆向物流网络设计研究[D].阜新:辽宁工程技术大学,硕士, 2008.
    [130]周围.基于循环经济的我国电子废弃物回收产业链再造[D].北京:北京工业大学,硕士, 2006.
    [131]钱海琴.面向电子废弃物的逆向物流网络优化研究[D].南京:南京理工大学,硕士, 2007.
    [132]吴培锦.我国电子废弃物管理的法律完善[D].杨陵:西北农林科技大学,硕士, 2010.
    [133]郭思哲.我国电子废物管理法律制度构建研究[D].昆明:昆明理工大学,硕士, 2006.
    [134]王冬梅.循环经济下电子废弃物资源化研究[D].秦皇岛:燕山大学,硕士, 2009.
    [135]张娜.我国电子废弃物管理的立法构建[D].杨陵:西北农林科技大学,硕士, 2009.
    [136]梁媚.我国电子废弃物管理法律制度研究[D].桂林:广西师范大学,硕士, 2010.
    [137]游佳.我国电子废弃物回收处理法律制度研究[D].重庆:西南政法大学,硕士, 2008.
    [138]蒋悦.我国电子废弃物立法研究[D].哈尔滨:东北林业大学,硕士, 2009.
    [139]韦润香.电子垃圾污染防治立法问题研究[D].太原:山西财经大学,硕士, 2007.
    [140]王琳.上海市电子废弃物回收处置管理研究[D].上海:同济大学,硕士, 2006.
    [141]周伶云.厦门市电子废弃物回收处理体系研究[D].厦门:厦门大学,硕士, 2008.
    [142]周翠红.利用机械处理技术回收废旧印刷电路板的研究[D].北京:中国矿业大学,博士, 2003
    [143] Lu M X, Zhou C H. Recovery metals from electronic scrap by dry separation [C]. Dry Separation Science and Technology Xuzhou: China University of Mining and TechnologyPress, 2002, 259-62.
    [144]李学明.回收已废PCB资源——对印制电路板生产全局有重要意义[J].电子电路与贴装, 2003, 11: 12-15.
    [145]吕宗清,康大平.浅谈电脑垃圾处理[J].中国环境管理, 2000, 5: 45-46.
    [146]王成彦,邱定蕃,等.东亚二次资源回收现状及对我国二次资源再生回收的启示[J].中国资源综合利用, 2002, 2: 41-43.
    [147]Zhao Y, Liu C, Fan M, et al. Research on acceleration of elastic flip-flow screen surface [J]. International Journal of Mineral Processing, 2000, 59(4): 267-274.
    [148]Fan M, Chen Q, Zhao Y, et al. Magnetically stabilized fluidized beds for fine coal separation [J]. Powder Technology, 2002, 123(2-3): 208-211.
    [149]段晨龙,何亚群,赵跃民等.阻尼式脉动气流分选装置处理电子废弃物的基础研究[J].环境工程, 2005, 4: 53-55, 4.
    [150]何亚群,赵跃民,段晨龙等.主动脉动气流分选机理及流场模拟[J].中南大学学报(自然科学版), 2009, 5: 1199-1204.
    [151]何亚群,赵跃民,段晨龙等.主动脉动气流分选动力学模型及其数值模拟[J].中国矿业大学学报, 2008, 2: 157-162.
    [152]贺靖峰,何亚群,张洪召等.主动脉动气流分选处理废弃催化剂[J].环境工程, 2008, 241-244.
    [153]王海锋,宋树磊,何亚群等.电子废弃物脉动气流分选的实验研究[J].中国矿业大学学报, 2008, 3: 379-383.
    [154]段晨龙,赵跃民,温雪峰等.废弃电路板破碎中热解气体的研究[J].中国矿业大学学报, 2005, 6: 52-56.
    [155]段晨龙,赵跃民,叶璀玲等.废弃电路板湿法破碎粒度特性研究[J].中国矿业大学学报, 2008, 1: 88-92.
    [156]李根铭.废旧电路板专用破碎设备[P].中国实用新型专利,专利号:02247015.8, 2003.6.25.
    [157]谢广元.选矿学[M].徐州:中国矿业大学出版社, 2001.
    [158]曹亦俊,赵跃民,温雪峰.废弃电子设备的资源化研究发展现状[J].环境污染与防治, 2003, 5: 289-292.
    [159]甘舸,陈烈强,彭绍洪.废旧电子电气设备回收处理的研究进展[J].四川环境, 2005, 3: 89-93.
    [160]段晨龙.废弃电路板破碎机理研究[D].徐州;中国矿业大学,化工学院, 2007.
    [161]李启衡.粉碎理论概要[M].北京:冶金工业出版社, 1993.
    [162]于传敏,王宝奎,石建军等.浅论各种因素对铝土矿选矿浮选效果的影响[J].轻金属, 2007, 8: 5-8.
    [163]刘莉君,刘炯天,商林萍等.搅拌对煤泥浮选过程的影响[J].选煤技术, 2009, 1: 22-25.
    [164]王毓华,胡岳华.物理因素对铝土矿反浮选的影响[J].中国矿业, 2002, 6: 38-40.
    [165]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社. 1987.
    [166]El-Shall H, Abdel-Khalek N A, Svoronos S. Collector-frother interaction in column flotation of Florida phosphate [J]. International Journal of Mineral Processing, 2000, 58(1-4): 187-199.
    [167]Meloy T P, Whaley D A, Williams M C. Flotation tree analysis--reexamined [J]. International Journal of Mineral Processing, 1998, 55(1): 21-39.
    [168]村田逞栓著,朱春笙,龚祯祥译.煤的润湿性研究及其应用[M].北京:煤炭工业出版社, 1992.
    [169]傅贵,张英华,邹得志.煤与纯水间平衡接触角的测量与分析[J].煤炭转化, 1997, 4: 60-62.
    [170]B法.分形对象[M].北京:世界图书出版公司北京公司, 1999.
    [171]Charkaluk E, Bigerelle M, Iost A. Fractals and fracture [J]. Engineering Fracture Mechanics, 1998, 61(1): 119-139.
    [172]田杰,陈杰,张宇河.基于小波变换及分形特征的目标检测与识别[J].北京理工大学学报, 2003, 1: 95-99.
    [173]杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报, 2006, 4: 478-482.
    [174]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报(自然科学版), 2001, 6: 92-95.
    [175]段晨龙,赵跃民,唐利刚等.废弃电路板材料断口的分形表征[J].中南大学学报(自然科学版), 2009, 1: 78-82.
    [176]李贤国,张明旭,李新. MATLAB与选煤/选矿数据处理[M].徐州:中国矿业大学出版社, 2005.
    [177]邓聚龙著.灰色系统基本方法[M].武汉:华中科技大学出版社, 2005.
    [178]余海峰.应用灰色系统理论实现转炉脱磷脱硫同时优化[D].西安:西安建筑科技大学, 2001.
    [179]马乐.灰色理论建模方法研究[D].大连:东北财经大学,硕士, 2005.
    [180]王占岐,朱明,李萍.灰色优势分析在摇床操作参数优化中的应用[J].地质科技情报, 1999, 2: 91-93.
    [181]李荣建,焦五一.影响黄土地基变形因素的灰色关联分析[D].西安:西安建筑科技大学,硕士, 2003.
    [182]蔡熹耀.基于能源消费的湖北省工业行业灰色关联分析[J].武汉理工大学学报, 2005, 6: 113-115.
    [183]虞亚平,王冠中,李大治.广义灰色关联度的简便计算方法[J].南通大学学报(自然科学版), 2008, 2: 85-90.
    [184]张东晨,张明旭,陈清如.煤炭微生物浸出脱硫效果的灰色预测[J].中国矿业大学学报, 2007, 6: 764-767.
    [185]杨萍.浅谈灰色预测法及其应用[J].内江科技, 2006, 3: 116, 124.
    [186]鲁杰,杨大海,杨康等.灰色预测控制器在选煤中的应用[J].煤炭加工与综合利用, 1998, 2: 17-19.
    [187]吴万昌,赵跃民,陈尚龙等. Falcon离心分选机回收废弃电路板金属的灰色模型研究[J].环境污染与防治, 2010, 1: 40-42,46.
    [188]张乔木.灰色模型的优化与改进[D].长春:吉林大学,硕士, 2008.
    [189]王生全.煤层瓦斯含量的主要控制因素分析及回归预测[J].煤炭科学技术, 1997, 9: 45-47.
    [190]胡军,梅炽,李欣峰等.吹炼炉入炉铜锍品位的灰色预测[J].中国有色金属学报, 2000, 5: 736-739.
    [191]戚蓝,崔溦,熊开智等.灰色理论在地应力场分析中的应用[J].岩石力学与工程学报, 2002, 10: 1547-1550.
    [192]张春华,刘泽功.多变量灰色模型及其在钻孔瓦斯流量预测中的应用[J].中国安全科学学报, 2006, 6: 50-54, 145-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700