用户名: 密码: 验证码:
嗜酸乳酸杆菌S-层蛋白拮抗肠道病原菌粘附或入侵宿主细胞机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
S-层蛋白(S-layer protein)是乳酸杆菌表面的一层蛋白分子,近年来发现该蛋白对肠道病原菌具有拮抗作用。肠道病原菌主要是通过粘附或入侵、诱导细胞骨架重排和信号转导通路、影响细胞凋亡达到入侵宿主上皮细胞的目的。拮抗和阻止病原菌的粘附及入侵作用是保护细胞免受感染的有效方法。本研究旨在探讨乳酸杆菌s-层蛋白拮抗肠道病原菌的作用机制。首先提取和纯化嗜酸乳酸杆菌的S-层蛋白,研究s-层蛋白对肠道病原菌的拮抗作用;然后应用人结肠腺癌细胞系(Caco-2细胞)作为体外模型,检测S-层蛋白拮抗鼠伤寒沙门氏菌粘附及入侵Caco-2细胞的影响,包括细菌的粘附入侵、细胞骨架的变化、信号转导通路和细胞凋亡中几种因子的变化等,以期揭示乳酸杆菌S-层蛋白拮抗肠道病原菌粘附或入侵宿主细胞机制。主要分为以下五个试验:
     试验一:嗜酸乳酸杆菌s-层蛋白的提取纯化
     本试验应用已知具有s-层蛋白的嗜酸乳酸杆菌ATCC4356作为对照,从蛋白和基因两个水平对36株猪十二肠分离得到的乳酸杆菌进行S-层蛋白菌株筛选,然后提取纯化S-层蛋白并制备抗血清。结果显示:36株乳酸杆菌均不存在S-层蛋白。本试验提取纯化得到嗜酸乳酸杆菌的S-层蛋白,应用该S-层蛋白接种新西兰兔,制备得到S-层蛋白抗血清,琼扩效价为1:16。本试验表明乳酸杆菌s-层蛋白只存在于某些菌株中。
     试验二:嗜酸乳酸杆菌S-层蛋白对肠道病原菌粘附或入侵的拮抗作用
     首先应用三种不同的粘附试验:竞争试验(competition assay)、排斥试验(exclusion assay)和置换试验(displacement assay),分别研究s-层蛋白对产肠毒素大肠杆菌K88和鼠伤寒沙门氏菌SL1344粘附或入侵Caco-2细胞的拮抗作用,然后应用Dot-blot方法检测S-层蛋白与两种细菌及Caco-2细胞的结合。结果显示:S-层蛋白能够显著协同产肠毒素大肠杆菌对Caco-2细胞的粘附。排斥试验和竞争试验的相对粘附力分别为452.30%±2.26%(P<0.01)和155.57%±5.81%(P<0.05)。S-层蛋白在排斥试验中,对产肠毒素大肠杆菌的协同粘附高于竞争试验。嗜酸乳酸杆菌也表现出明显的协同产肠毒素大肠杆菌粘附的效应。相反,S-层蛋白则能显著地拮抗鼠伤寒沙门氏菌的粘附及入侵。在竞争、排斥、置换三种粘附试验中,S-层蛋白可显著降低鼠伤寒沙门氏菌的粘附,其相对粘附力分别为1.17%±5.97%、8.71%±1.36%、10.56%±0.92%,差异极显著(P<0.01),其中竞争试验效果最好;并且S-层蛋白对鼠伤寒沙门氏菌粘附拮抗作用极显著高于嗜酸乳酸杆菌(P<0.01);此外,S-层蛋白也能显著拮抗鼠伤寒沙门氏菌入侵。Dot-blot显示,S-层蛋白均可在两种细菌和Caco-2细胞表面自我组装。本试验表明,S-层蛋白协同增加产肠毒素性大肠杆菌对Caco-2细胞的粘附;却可显著拮抗鼠伤寒沙门氏菌对Caco-2细胞的粘附及入侵。S-层蛋白可能通过与鼠伤寒沙门氏菌竞争粘附受体,修饰细菌或Caco-2细胞表面相关结构介导拮抗作用。
     试验三:嗜酸乳酸杆菌S-层蛋白拮抗鼠伤寒沙门氏菌对细胞骨架的研究
     鼠伤寒沙门氏菌粘附或入侵宿主细胞过程中可显著引起细胞骨架变化。在试验二的基础上,本试验首先研究S-层蛋白对鼠伤寒沙门氏菌SL1344感染Caco-2细胞微绒毛和上皮完整性的变化;然后研究S-层蛋白抗感染过程中对Caco-2细胞微丝分布及其微丝相关调节蛋白Racl表达的影响。结果显示:鼠伤寒沙门氏菌感染Caco-2细胞后,可引起上皮细胞微绒毛变短,细胞微丝排列紊乱,细胞跨膜电阻下降。嗜酸乳酸杆菌S-层蛋白则能够拮抗鼠伤寒沙门氏菌对细胞微丝骨架的改变,并可减少鼠伤寒沙门氏菌引起Caco-2细胞跨膜电阻的破坏。鼠伤寒沙门氏菌可使Caco-2细胞Racl蛋白的表达量显著升高(0.39±0.02 VS 0.15±0.01;P<0.001),而S-层蛋白则可极显著上调感染鼠伤寒沙门氏菌后Caco-2细胞Rac1蛋白的表达(0.58±0.01 VS 0.39±0.02;P<0.01)。本试验表明嗜酸乳酸杆菌S-层蛋白可能通过拮抗鼠伤寒沙门氏菌对细胞微绒毛和微丝骨架的破坏;上调Rac1蛋白表达来拮抗鼠伤寒沙门氏菌的粘附及入侵。
     试验四:嗜酸乳酸杆菌S-层蛋白拮抗鼠伤寒沙门氏菌对细胞MAPK信号通路的研究
     丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)信号通路对病原菌的防御发挥重要作用。本试验研究了S-层蛋白拮抗鼠伤寒沙门氏菌SL1344过程中对Caco-2细胞MAPK信号通路三种重要亚族ERK、JNK和p38的影响。结果显示:鼠伤寒沙门氏菌感染Caco-2细胞后,ERK1/2 (0.34±0.02 VS 0.04±0.01; P<0.001)、JNK(1.77±0.19 VS 0.88±0.10;P<0.01)和p38(0.93±0.07 VS 0.72±0.02;P<0.05)的磷酸化水平均显著升高。S-层蛋白可明显增加Caco-2细胞ERK1/2的磷酸化(0.54±0.04;P<0.001),而不影响JNK与p38的活化。当S-层蛋白与鼠伤寒沙门氏菌共孵育后,细胞ERK1/2磷酸化水平(0.12±0.01)极显著低于分别单独作用细胞后的水平(P<0.001),并且S-层蛋白可以显著拮抗鼠伤寒沙门氏菌对Caco-2细胞JNK(0.64±0.05 VS1.77±0.19;P<0.01)和p38(0.61±0.04 VS 0.93±0.07;P<0.05)的磷酸化。本研究表明S-层蛋白可能阻断细菌对MAPK信号通路的活化发挥拮抗鼠伤寒沙门氏菌的作用。
     试验五:嗜酸乳酸杆菌S-层蛋白拮抗鼠伤寒沙门氏菌对细胞凋亡的研究
     病原菌可诱导上皮细胞凋亡,主要表现为推迟凋亡时间,引起凋亡损伤。本试验首先研究鼠伤寒沙门氏菌引起Caco-2细胞凋亡的途径;然后研究嗜酸乳酸杆菌S-层蛋白拮抗鼠伤寒沙门氏菌感染引起细胞凋亡的机理。结果显示:鼠伤寒沙门氏菌显著诱导Caco-2细胞的凋亡造成损伤。鼠伤寒沙门氏菌诱导Caco-2细胞凋亡并不激活Caspase-1,而是显著诱导Caspase-3的活化。S-层蛋白能够拮抗鼠伤寒沙门氏菌对Caco-2细胞凋亡引起的感染损伤。我们发现,S-层蛋白可以抑制Caco-2细胞Caspase-3的活化。本试验表明:鼠伤寒沙门氏菌是通过激活Caspase-3介导Caco-2细胞凋亡。S-层蛋白抑制Caspase-3的活化与试验四中S-层蛋白激活ERK1/2信号通路相符。嗜酸乳酸杆菌S-层蛋白可能通过抑制Caspase-3活性、激活ERK1/2信号通路,共同介导拮抗鼠伤寒沙门氏菌引起的细胞凋亡损伤。
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits present as the outermost component of the cell wall in several Lactobacillus species. In recent years, the S-layer proteins have showed the antagonistic activity on the enteropathogenic bacterias. Pathogens enter and invade host cell by adhesion, cell internalization, cytoskeleton disruption, interference of signalling pathways and cell apoptosis in their hosts. Inhibiting the bacterial pathogens adhesion is effective to protect host cell against infection. This study aims to investigate the possible antimicrobial mechanisms of S-layer proteins. Firstly Lactobacillus acidophilus (L. acidophilus) S-layer proteins were purified, antagonistic activity of L. acidophilus S-layer proteins on the adherence and invasion of enteropathogenic bacterias were detected. Thereafter, the influences of L. acidophilus S-layer proteins in Caco-2 cells (human colon cancer epithelial cells) are measured, including the pathogens adherence and invasion, cytoskeleton, the factors in signalling and apoptotic pathways. The results will reveal the mechanism of antagonistic activity of Lactobacillus S-layer proteins on pathogens. The details were divided into five experiments as follows:
     Experiment one:Purification of the S-layer protein from Lactobacillus acidophilus
     In the present study,36 strains of Lactobacillus from pig duodenum were screened to extract S-layer proteins compared with L. acidophilus ATCC 4356 as associated the S-layer proteins. This screening work involved the two levels'examinations including protein and gene. The S-layer proteins were purified; then the rabbit-specific antiserum against the S-layer proteins was prepared. The results showed that 36 strains of Lactobacillus were not associated the S-layer proteins. To study the mechanism of Lactobacillus S-layer proteins in antimicrobial activity, S-layer proteins were purified from L. acidophilus ATCC 4356. Rabbit-anti-S-layer protein serum was obtained and its AGP (agar gel precipitation) titer was 1:16. The data supported that S-layer proteins only exist in certain lactobacilli.
     Experiment two:Antagonistic activity of S-layer proteins isolated from Lactobacillus acidophilus on the adherence and invasion of enteropathogenic bacterias
     To gain insight into the mechanism of Lactobacillus S-layer proteins in antimicrobial activity, we examined how L. acidophilus S-layer proteins inhibited the adherence and invasion of enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella Typhimurium SL1344 (S. Typhimurium SL1344) in three different adhesive experiments (competition, exclusion, and displacement assays) in Caco-2 cells. Thereafter the binding between S-layer protein and the two pathogens or Caco-2 cells was detected by the Dot-blot. The results of adhesive experiments in Caco-2 cells demonstrated that compared with the control group, the S-layer proteins significantly increased the adherence of ETEC. The ability of adherence to Caco-2 cells was 452.30%±2.26% in the exclusion assay (P<0.01) and 155.57%±5.81% in the competition assay (P<0.05). Although this activity was demonstrated in the competition assay (coincubated with the S-layer proteins), a greater effect for S-layer proteins on ETEC was observed when ETEC was preincubated with the S-layer proteins. Furthermore, L. acidophilus also increased ETEC adherence in Caco-2 cells. In contrast, the S-layer proteins reduced S. Typhimurium association in Caco-2 cells. In the adhesive experiments (competitive, exclusive, displacement), the ability of adherence to Caco-2 cells were 1.17%±5.97%,8.71%±1.36% and 10.56%±0.92%, respectively (P< 0.01). The influence to inhibit the competitive adhesion of S. Typhimurium was optimal. Furthermore, the S-layer proteins showed a stronger effect than L. acidophilus to inhibit S. Typhimurium adhesion on Caco-2 monolayers (P<0.01). Moreover, Invasion of S. Typhimurium to Caco-2 monolayers was also inhibited by the S-layer proteins. Dot-blot showed that S-layer proteins could be bound directly to the Caco-2 cell line or be associated with ETEC and S. Typhimurium surface. The findings indicated that L. acidophilus S-layer proteins could increase the adherence of ETEC and inhibit the adherence and invasion of S. Typhimurium. The data support the antimicrobial mechanisms of L. acidophilus S-layer proteins, which are involved not only in a direct interaction between this protein and S. Typhimurium surface, but also in competition for binding sites on the surface of host epithelial cells.
     Experiment three:Study on Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella Typhimurium-induced reorganization of cytoskeleton in vitro
     During S. Typhimurium adhere and invade to host-cell, reorganization of cytoskeleton is an important characteristic of infections. In the present study, effects of microvillous structure and epithelial cell integrity of S. Typhimurium SL1344-infected Caco-2 cells with S-layer proteins were detected. Thereafter, the influence of L. acidophilus S-layer proteins on Caco-2 cells was measured, including F-actin and the relative factor Racl. The results showed that shortened microvilli, F-actin rearrangement and transepithelial electrical resistance (TER) decrease were observed in Salmonella-infected Caco-2 cells. L. acidophilus S-layer proteins could inhibit these alternations in Caco-2 cells, which included that F-actin rearrangement was reduced and S. Typhimurium-induced microvilli damage was protected. In addition, S. Typhimurium-induced TER decrease was attenuated. The expression of Racl of S. Typhimurium-infected Caco-2 cells (0.39±0.02) was significantly increased compared with the uninfected cells (0.15±0.01; P<0.001). Interestingly, when Caco-2 infected with S. Typhimurium was coincubated with S-layer proteins, the expression of Racl (0.58±0.01) was also increased compared with the infected cells with S. Typhimurium alone (0.39±0.02; P<0.01). The study suggested that L. acidophilus S-layer proteins could be through blocking S. Typhimurium-induced microvilli damage and F-actin rearrangements, and up-regulating the expression of Racl to inhibit S. Typhimurium adherence and invasion in Caco-2 cells.
     Experiment Four:Study on Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella Typhimurium-induced activation of MAPK signaling pathways in vitro
     Mitogen-activated protein kinase (MAPK) signaling pathways are important in defending against pathogens. In this study, the extracellular signal-regulated kinases (ERKs) 1 and 2 (ERK1/2), c-Jun amino-terminal kinase (JNK) and p38 kinase MAPK activation were measured after S. Typhimurium SL1344 infection with L. acidophilus S-layer proteins in Caco-2 cells. The results showed that S. Typhimurium activated ERK1/2 (0.34±0.02 relative band density for infected cells versus 0.04±0.01 relative band density for control uninfected cells, P<0.001), JNK (1.77±0.19VS 0.88±0.10; P<0.01) and p38 (0.93±0.07 VS 0.72±0.02; P<0.05). We found that a significant increase in phospho-ERK1/2 activation after incubation with L. acidophilus S-layer proteins (0.54±0.04) compared with untreated Caco-2 cell monolayers (0.04±0.01; P< 0.001). However, S-layer proteins did not affect the JNK and p38 activation. Strikingly, when S-layer proteins and S. Typhimurium were coincubated with Caco-2 cells, the ERK1/2 phosphorylation (0.12±0.01) was markedly suppressed compared with each treatment alone (P<0.001). In addition, S-layer proteins could significantly suppress S. Typhimurium-induced JNK activation (0.64±0.05 for treated cells with S-layer proteins versus 1.77±0.19 for untreated cells, P<0.01) and p38 phosphorylation (0.61±0.04 for treated cells with S-layer proteins versus 0.93±0.07 for untreated cells, P<0.05). We demonstrated a novel role that L. acidophilus S-layer proteins were able to inhibit S. Typhimurium-induced ERK1/2, JNK and p38 activation.
     Experiment Five:Study on Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella Typhimurium-induced apoptosis in vitro
     Pathogens could induce epithelial cell apoptosis, which is linked to a delayed apoptotic response and cause cell damage. In the present study, firstly S. Typhimurium SL1344-induced apoptosis was detected in Caco-2 cells. Thereafter, the mechanism of L. acidophilus S-layer proteins inhibited against Salmonella-induced apoptosis was studied. The results showed that S. Typhimurium caused cell damage by the apoptotic pathway after infection in Caco-2 cells; and the apoptosis was mediated by activation of caspase-3, but not caspase-1. When S. Typhimurium and S-layer proteins were coincubated simultaneously, Caco-2 cell apoptosis was markedly decreased and the cell damage was modified. Detailed analyses showed that the S-layer proteins inhibited the caspase-3 activity. The results indicated that S. Typhimurium SL1344 induced Caco-2 cell apoptosis by the caspase-3 activation. Furthermore, S-layer protein-induced the inhibition of caspase-3 activation was consist with the results of S-layer protein-induced the ERK1/2 activation in experiment four. The findings support that S-layer proteins protected against Salmonella-induced apoptosis through reduced caspase-3 activation and increased ERK1/2 activation.
引文
[1]Sara M, Sleytr UB. S-Layer proteins[J]. J Bacteriol,2000,182(4):859-68
    [2]Sara M, Sleytr UB. Crystalline bacterial cell surface layers (S-layers):from cell structure to biomimetics[J]. Prog Biophys Mol Biol,1996,65(1-2):83-111
    [3]Sleytr UB, Messner P, Pum D, et al. Crystalline bacterial cell surface layers[J]. Mol Microbiol,1993,10(5):911-916
    [4]Boot HJ, Pouwels PH. Expression, secretion and antigenic variation of bacterial S-layer proteins[J]. Mol Microbiol,1996,21 (6):1117-1123
    [5]Corthesy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system[J]. J Nutr,2007,137(3 Suppl 2):781S-90S
    [6]Lanning DK, Knight KL. Intestinal bacteria and development of the antibody repertoire[J]. Discov Med,2005,5(28):393-398
    [7]Kleerebezem M, Hols P, Bernard E, et al. The extracellular biology of the lactobacilli[J]. FEMS Microbiol Rev,2010,34(2):199-230
    [8]Boot HJ, Kolen CP, van Noort JM, et al. S-layer protein of Lactobacillus acidophilus ATCC 4356:purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene[J]. J Bacteriol,1993,175(19):6089-6096
    [9]Jakava-Viljanen M, Palva A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues [J]. Vet Microbiol,2007,124(3-4):264-273
    [10]Gatti M, Rossetti L, Fornasari ME, et al. Heterogeneity of putative surface layer proteins in Lactobacillus helveticus[J]. Appl Environ Microbiol,2005,71(11):7582-7588
    [11]Sillanpaa J, Martinez B, Antikainen J, et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus[J]. Journal of Bacteriology,2000,182(22):6440-6450
    [12]Hagen KE, Guan LL, Tannock GW, et al. Detection, characterization, and in vitro and in vivo expression of genes encoding S-proteins in Lactobacillus gallinarum strains isolated from chicken crops[J]. Appl Environ Microbiol,2005,71(11):6633-6643
    [13]Toca-Herrera JL, Krastev R, Bosio V, et al. Recrystallization of bacterial S-layers on flat polyelectrolyte surfaces and hollow polyelectrolyte capsules[J]. Small,2005, 1(3):339-348
    [14]Antikainen J, Anton L, Sillanpaa J, et al. Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly [J]. Mol Microbiol,2002,46(2):381-394
    [15]Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis[J]. Int J Food Microbiol,2007, 118(3):264-273
    [16]Sillanpaa J, Martinez B, Antikainen J, et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus[J]. J Bacteriol,2000,182(22):6440-6450
    [17]Hynonen U, Westerlund-Wikstrom B, Palva A, et al. Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis[J]. J Bacteriol,2002,184(12):3360-3367
    [18]Frece J, Kos B, Svetec IK, et al. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92[J]. J Appl Microbiol,2005,98(2):285-292
    [19]Bin Wang HW, Jing Yuan, Qiurong Li, et al. Identification of a Surface Protein from Lactobacillus reuteri JCM1081 That Adheres to Porcine Gastric Mucin and Human Enterocyte-Like HT-29 Cells[J]. Current Microbiology,2008,57(1):33-38
    [20]Moschl A, Schaffer C, Sleytr UB, et al. Characterization of the S-layer glycoproteins of two lactobacilli. In:Advances in Bacterial Paracrystalline Surface Layers (Beveridge, T.J. and Koval, S.F., Eds.).1993:281-284
    [21]Sleytr UB, Pum D, Sara M. Advances in S-layer nanotechnology and biomimetics[J]. Adv Biophys,1997,34:71-79
    [22]Sleytr UB, Sara M. Bacterial and archaeal S-layer proteins:structure-function relationships and their biotechnological applications [J]. Trends Biotechnol,1997,15(1):20-26
    [23]Sleytr UB, Beveridge TJ. Bacterial S-layers[J]. Trends Microbiol,1999,7(6):253-260
    [24]Chen X, Xu J, Shuai J, et al. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium[J]. International Journal of Food Microbiology,2007,115(3):307-312
    [25]Avall-Jaaskelainen S, Palva A. Lactobacillus surface layers and their applications [J]. Fems Microbiology Reviews,2005,29(3):511-529
    [26]Boot HJ, Kolen CP, Pouwels PH. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species[J]. J Bacteriol,1995,177(24):7222-7230
    [27]Jakava-Viljanen M, Avall-Jaaskelainen S, Messner P, et al. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions [J]. J Bacteriol,2002, 184(24):6786-6795
    [28]Kuen B, Koch A, Asenbauer E, et al. Molecular characterization of the Bacillus stearothennophilus PV72 S-layer gene sbsB induced by oxidative stress[J]. J Bacteriol,1997, 179(5):1664-1670
    [29]Fouet A, Mesnage S. Bacillus anthracis cell envelope components[J]. Curr Top Microbiol Immunol,2002,271:87-113
    [30]Avall-Jaaskelainen S, Kyla-Nikkila K, Kahala M, et al. Surface display of foreign epitopes on the Lactobacillus brevis S-layer[J]. Appl Environ Microbiol,2002,68(12):5943-5951
    [31]Boot HJ, Kolen CP, Pouwels PH. Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal slp segment[J]. Mol Microbiol, 1996,21(4):799-809
    [32]Ventura M, Jankovic I, Walker DC, et al. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri[J]. Appl Environ Microbiol, 2002,68(12):6172-6181
    [33]Sleytr UB, Messner P. Crystalline surface layers on bacteria[J]. Annu Rev Microbiol,1983, 37:311-339
    [34]Lindholm A, Smeds A, Palva A. Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis[J]. Appl Environ Microbiol,2004,70(4):2061-2071
    [35]Narita J, Ishida S, Okano K, et al. Improvement of protein production in lactic acid bacteria using 5'-untranslated leader sequence of slpA from Lactobacillus acidophilus. Improvement in protein production using UTLS[J]. Appl Microbiol Biotechnol,2006,73(2):366-373
    [36]Vidgren G, Palva I, Pakkanen R, et al. S-layer protein gene of Lactobacillus brevis:cloning by polymerase chain reaction and determination of the nucleotide sequence[J]. J Bacteriol, 1992,174(22):7419-7427
    [37]Boot HJ, Kolen CP, Andreadaki FJ, et al. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA[J].J Bacteriol,1996,178(18):5388-5394
    [38]Bahl H, Scholz H, Bayan N, et al. Molecular biology of S-layers[J]. FEMS Microbiol Rev, 1997,20(1-2):47-98
    [39]Kahala M, Savijoki K, Palva A. In vivo expression of the Lactobacillus brevis S-layer gene[J]. J Bacteriol,1997,179(1):284-286
    [40]Schar-Zammaretti P, Ubbink J. The Cell Wall of Lactic Acid Bacteria:Surface Constituents and Macromolecular Conformations[J]. Biophysical Journal,2003,85(6):4076-4092
    [41]Smit E, Oling F, Demel R, et al. The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding[J]. J Mol Biol,2001,305(2):245-257
    [42]Avall-Jaaskelainen S, Hynonen U, Ilk N, et al. Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287[J]. BMC Microbiol,2008,8:165
    [43]Smit E, Jager D, Martinez B, et al. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 4356:evidence for protein-protein interaction of two subdomains[J]. J Mol Biol,2002,324(5):953-964
    [44]Smit E, Oling F, Demel R, et al. The S-layer protein of Lactobacillus acidophilus ATCC 4356: Identification and characterisation of domains responsible for S-protein assembly and cell wall binding[J]. Journal of Molecular Biology,2001,305(2):245-257
    [45]Vilen H, Hynonen U, Badelt-Lichtblau H, et al. Surface location of individual residues of SlpA provides insight into the Lactobacillus brevis S-layer[J]. J Bacteriol,2009, 191(10):3339-3349
    [46]Aroutcheva A, Gariti D, Simon M, et al. Defense factors of vaginal lactobacilli[J]. Am J Obstet Gynecol,2001,185(2):375-379
    [47]Lee YK, Puong KY, Ouwehand AC, et al. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli[J]. J Med Microbiol,2003,52(Pt 10):925-930
    [48]Hynonen U, Westerlund-Wikstrom B, Palva A, et al. Binding of the S-layer protein Slpa of Lactobacillus brevis to human intestinal cells[J]. American Journal of Clinical Nutrition, 2001,73(2):489S-490S
    [49]Schneitz C, Nuotio L, Lounatma K. Adhesion of Lactobacillus acidophilus to avian intestinal epithelial cells mediated by the crystalline bacterial cell surface layer (S-layer)[J]. J Appl Bacteriol,1993,74(3):290-294
    [50]Walter J, Chagnaud P, Tannock GW, et al. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut[J]. Appl Environ Microbiol,2005,71(2):979-986
    [51]Mei HCvd, Belt-Gritter Bvd, Pouwels PH, et al. Cell surface hydrophobicity is conveyed by S-layer proteins-a study in recombinant lactobacilli[J]. Colloids and Surfaces B: Biointerfaces,2003,28(2-3):127-134
    [52]Vadillo-Rodriguez V, Busscher HJ, Norde W, et al. Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins[J]. J Bacteriol,2004, 186(19):6647-6650
    [53]Vadillo-Rodriguez V, Busscher HJ, van der Mei HC, et al. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength[J]. Colloids Surf B Biointerfaces,2005,41(1):33-41
    [54]Beveridge TJ, Pouwels PH, Sara M, et al. Functions of S-layers[J]. Ferns Microbiology Reviews,1997,20(1-2):99-149
    [55]Bahl H, Scholz H, Bayan N, et al. Molecular biology of S-layers[J]. Ferns Microbiology Reviews,1997,20(1-2):47-98
    [56]Schuster B, Pum D, Sleytr UB. S-layer stabilized lipid membranes[J]. Biointerphases,2008, 3(2):FA3
    [57]Tang J, Ebner A, Kraxberger B, et al. Mapping short affinity tags on bacterial S-layer with an antibody[J]. Chemphyschem,2010,11(11):2323-2326
    [58]Kahala M, Palva A. The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria[J]. Appl Microbiol Biotechnol, 1999,51(1):71-78
    [59]Morello E, Bennudez-Humaran LG, Llull D, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion[J]. J Mol Microbiol Biotechnol,2008, 14(1-3):48-58
    [60]Scheppler L, Vogel M, Zuercher AW, et al. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle[J]. Vaccine,2002,20(23-24):2913-2920
    [61]Hynonen U, Avall-Jaaskelainen S, Palva A. Characterization and separate activities of the two promoters of the Lactobacillus brevis S-layer protein gene[J]. Appl Microbiol Biotechnol, 2010,87(2):657-668
    [62]Johnson-Henry KC, Hagen KE, Gordonpour M, et al. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells[J]. Cell Microbiol,2007,9(2):356-367
    [63]Horie M, Ishiyama A, Fujihira-Ueki Y, et al. Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer[J]. J Appl Microbiol,2002,92(3):396-403
    [64]Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens[J]. FEMS Microbiol Rev,2004,28(4):405-440
    [65]Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens[J]. Nature,2007,449(7164):827-834
    [66]Cossart P, Sansonetti PJ. Bacterial invasion:the paradigms of enteroinvasive pathogens[J]. Science,2004,304(5668):242-248
    [67]Garcia-Sastre A, Sansonetti PJ. Host-pathogen interactions[J]. Curr Opin Immunol,2010, 22(4):425-427
    [68]Kaisho T, Wagner H. Host-pathogen interactions[J]. Curr Opin Immunol,2008, 20(4):369-370
    [69]Kline KA, Falker S, Dahlberg S, et al. Bacterial adhesins in host-microbe interactions[J]. Cell Host Microbe,2009,5(6):580-592
    [70]Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells[J]. Cell,2006, 124(4):715-727
    [71]Pulendran B, Seder RA. Host-pathogen interactions in the 21st century[J]. Curr Opin Immunol,2005,17(4):335-337
    [72]Wallis TS, Galyov EE. Molecular basis of Salmonella-induced enteritis[J]. Mol Microbiol, 2000,36(5):997-1005
    [73]Galan JE, Bliska JB. Cross-talk between bacterial pathogens and their host cells[J]. Annu Rev Cell Dev Biol,1996,12:221-255
    [74]Hobbie S, Chen LM, Davis RJ, et al. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells[J]. J Immunol,1997,159(11):5550-5559
    [75]Tang P, Sutherland CL, Gold MR, et al. Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway[J]. Infect Immun, 1998,66(3):1106-1112
    [76]Czerucka D, Dahan S, Mograbi B, et al. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection[J]. Infect Immun,2001, 69(3):1298-1305
    [77]Faherty CS, Maurelli AT. Staying alive:bacterial inhibition of apoptosis during infection[J]. Trends Microbiol,2008,16(4):173-180
    [78]Kim JM, Eckmann L, Savidge TC, et al. Apoptosis of human intestinal epithelial cells after bacterial invasion[J]. J Clin Invest,1998,102(10):1815-1823
    [79]Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells[J]. Cell,2006, 124(4):715-727
    [80]Galan JE, Bliska JB. Cross-talk between bacterial pathogens and their host cells[J]. Annual Review of Cell and Developmental Biology,1996,12:221-255
    [81]Goosney DL, Knoechel DG, Finlay BB. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation [J]. Emerg Infect Dis,1999,5(2):216-223
    [82]Dramsi S, Cossart P. Intracellular pathogens and the actin cytoskeleton[J]. Annu Rev Cell Dev Biol,1998,14:137-166
    [83]Caron E, Crepin VF, Simpson N, et al. Subversion of actin dynamics by EPEC and EHEC[J]. Curr Opin Microbiol,2006,9(l):40-45
    [84]Gouin E, Welch MD, Cossart P. Actin-based motility of intracellular pathogens[J]. Curr Opin Microbiol,2005,8(1):35-45
    [85]Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells[J]. Annu Rev Biophys Biomol Struct,2000,29:545-576
    [86]Jacinto A, Baum B. Actin in development[J]. Mech Dev,2003,120(11):1337-1349
    [87]Bernheim-Groswasser A, Prost J, Sykes C. Mechanism of actin-based motility:a dynamic state diagram[J]. Biophys J,2005,89(2):1411-1419
    [88]Pantaloni D, Le Clainche C, Carlier MF. Mechanism of actin-based motility[J]. Science,2001, 292(5521):1502-1506
    [89]Lee KC, Liu AJ. New proposed mechanism of actin-polymerization-driven motility[J]. Biophys J,2008,95(10):4529-4539
    [90]dos Remedios CG, Chhabra D, Kekic M, et al. Actin binding proteins:regulation of cytoskeletal microfilaments[J]. Physiol Rev,2003,83(2):433-473
    [91]Goley ED, Rammohan A, Znameroski EA, et al. An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability[J]. Proc Natl Acad Sci U S A, 2010,107(18):8159-8164
    [92]Goley ED, Ohkawa T, Mancuso J, et al. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein[J]. Science,2006,314(5798):464-467
    [93]Blanchoin L, Pollard TD, Mullins RD. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks[J]. Curr Biol,2000, 10(20):1273-1282
    [94]Welch MD. The world according to Arp:regulation of actin nucleation by the Arp2/3 complex[J]. Trends Cell Biol,1999,9(11):423-427
    [95]Dayel MJ, Holleran EA, Mullins RD. Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments[J]. Proc Natl Acad Sci U S A,2001,98(26):14871-14876
    [96]Mullins RD, Machesky LM. Actin assembly mediated by Arp2/3 complex and WASP family proteins [J]. Methods Enzymol,2000,325:214-237
    [97]Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature,2002, 420(6916):629-635
    [98]Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo[J]. Bioessays,2007,29(4):356-370
    [99]Jaffe AB, Hall A. Rho GTPases:biochemistry and biology[J]. Annu Rev Cell Dev Biol,2005, 21:247-269
    [100]Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton[J]. Nature,2010, 463(7280):485-492
    [101]Mogilner A, Oster G. Cell motility driven by actin polymerization[J]. Biophys J,1996, 71(6):3030-3045
    [102]Ridley AJ, Paterson HF, Johnston CL, et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling[J]. Cell,1992,70(3):401-410
    [103]Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors[J]. Cell,1992,70(3):389-399
    [104]Mainiero F, Pepe A, Wary KK, et al. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes[J].EMBO J,1995,14(18):4470-4481
    [105]Morley SC, Bierer BE. The actin cytoskeleton, membrane lipid microdomains, and T cell signal transduction[J]. Adv Immunol,2001,77:1-43
    [106]Kustermans G, Piette J, Legrand-Poels S. Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction [J]. Biochem Pharmacol,2008, 76(11):1310-1322
    [107]Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular endothelial barrier function[J]. Microvasc Res,2008,76(3):202-207
    [108]Hartsock A, Nelson WJ. Adherens and tight junctions:structure, function and connections to the actin cytoskeleton [J]. Biochim Biophys Acta,2008,1778(3):660-669
    [109]Veiga E, Cossart P. The role of clathrin-dependent endocytosis in bacterial internalization[J]. Trends Cell Biol,2006,16(10):499-504
    [110]Veiga E, Guttman JA, Bonazzi M, et al. Invasive and adherent bacterial pathogens co-Opt host clathrin for infection[J]. Cell Host Microbe,2007,2(5):340-51
    [111]Cossart P, Roy CR. Manipulation of host membrane machinery by bacterial pathogens[J]. Curr Opin Cell Biol,2010,22(4):547-554
    [112]Bulgin R, Arbeloa A, Goulding D, et al. The T3SS effector EspT defines a new category of invasive enteropathogenic E. coli (EPEC) which form intracellular actin pedestals[J]. PLoS Pathog,2009,5(12):e1000683
    [113]Galan JE. Interaction of Salmonella with host cells through the centisome 63 type Ⅲ secretion system[J]. Curr Opin Microbiol,1999,2(1):46-50
    [114]Patel JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella--all in the name of entry[J]. Curr Opin Microbiol,2005,8(1):10-15
    [115]Hueffer K, Galan JE. Salmonella-induced macrophage death:multiple mechanisms, different outcomes[J]. Cell Microbiol,2004,6(11):1019-1025
    [116]Hall A. Rho GTPases and the actin cytoskeleton[J]. Science,1998,279(5350):509-514
    [117]Fu Y, Galan JE. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion[J]. Nature,1999,401(6750):293-297
    [118]Pace J, Hayman MJ, Galan JE. Signal transduction and invasion of epithelial cells by S. typhimurium[J]. Cell,1993,72(4):505-514
    [119]Cossart P, Bierne H. The use of host cell machinery in the pathogenesis of Listeria monocytogenes[J]. Curr Opin Immunol,2001,13(1):96-103
    [120]Lambrechts A, Gevaert K, Cossart P, et al. Listeria comet tails:the actin-based motility machinery at work[J]. Trends Cell Biol,2008,18(5):220-227
    [121]Pizarro-Cerda J, Cossart P. Subversion of cellular functions by Listeria monocytogenes[J]. J Pathol,2006,208(2):215-223
    [122]Skoble J, Portnoy DA, Welch MD. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility[J]. J Cell Biol,2000, 150(3):527-538
    [123]Zalevsky J, Grigorova I, Mullins RD. Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex[J]. J Biol Chem,2001,276(5):3468-3475
    [124]Purdy GE, Fisher CR, Payne SM. IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA[J]. J Bacteriol,2007,189(15):5566-5573
    [125]Stevens JM, Galyov EE, Stevens MP. Actin-dependent movement of bacterial pathogens[J]. Nat Rev Microbiol,2006,4(2):91-101
    [126]Suzuki T, Sasakawa C. N-WASP is an important protein for the actin-based motility of Shigella flexneri in the infected epithelial cells[J]. Jpn J Med Sci Biol,1998,51 Suppl:S63-68
    [127]Suzuki T, Miki H, Takenawa T, et al. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri[J]. EMBO J,1998, 17(10):2767-2776
    [128]Suzuki T, Saga S, Sasakawa C. Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility [J]. J Biol Chem,1996, 271(36):21878-21885
    [129]Loisel TP, Boujemaa R, Pantaloni D, et al. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins[J]. Nature,1999,401(6753):613-616
    [130]Menard R, Prevost MC, Gounon P, et al. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells[J]. Proc Natl Acad Sci U S A,1996,93(3):1254-1258
    [131]Demali KA, Jue AL, Burridge K. IpaA targets betal integrins and rho to promote actin cytoskeleton rearrangements necessary for Shigella entry[J]. J Biol Chem,2006, 281(51):39534-39541
    [132]Veenendaal AK, Sundin C, Blocker AJ. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton[J]. J Bacteriol,2009,191(2):563-570
    [133]Veenendaal AK, Hodgkinson JL, Schwarzer L, et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion[J]. Mol Microbiol,2007, 63(6):1719-1730
    [134]Blocker A, Gounon P, Larquet E, et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes[J]. J Cell Biol,1999,147(3):683-693
    [135]Mounier J, Popoff MR, Enninga J, et al. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells[J]. PLoS Pathog,2009,5(1):e1000271
    [136]Kenny B, DeVinney R, Stein M, et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells[J]. Cell,1997,91(4):511-520
    [137]Campellone KG, Leong JM. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir[J]. Mol Microbiol, 2005,56(2):416-432
    [138]Vlisidou I, Dziva F, La Ragione RM, et al. Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7[J]. Infect Immun,2006,74(1):758-764
    [139]Schuller S, Chong Y, Lewin J, et al. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models[J]. Cell Microbiol,2007, 9(5):1352-1364
    [140]Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli[J]. Nat Rev Microbiol,2004, 2(2):123-140
    [141]Sallee NA, Rivera GM, Dueber JE, et al. The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency[J]. Nature,2008,454(7207):1005-1008
    [142]Bulgin RR, Arbeloa A, Chung JC, et al. EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42[J]. Cell Microbiol,2009, 11(2):217-229
    [143]DeVinney R, Stein M, Reinscheid D, et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated[J]. Infect Immun,1999,67(5):2389-2398
    [144]Campellone KG, Brady MJ, Alamares JG, et al. Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length[J]. Cell Microbiol,2006, 8(9):1488-1503
    [145]Brady MJ, Campellone KG, Ghildiyal M, et al. Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway[J]. Cell Microbiol,2007,9(9):2242-2253
    [146]Vingadassalom D, Kazlauskas A, Skehan B, et al. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation[J]. Proc Natl Acad Sci U S A,2009,106(16):6754-6759
    [147]Weiss SM, Ladwein M, Schmidt D, et al. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation[J]. Cell Host Microbe,2009, 5(3):244-258
    [148]Vingadassalom D, Campellone KG, Brady MJ, et al. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation[J]. PLoS Pathog,2010,6(8)
    [149]Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions[J]. Microbiol Mol Biol Rev,2004,68(2):320-344
    [150]Jones RM, Wu H, Wentworth C, et al. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade[J]. Cell Host Microbe,2008, 3(4):233-244
    [151]Kramer RW, Slagowski NL, Eze NA, et al. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation[J]. PLoS Pathog, 2007,3(2):e21
    [152]Hu L, McDaniel JP, Kopecko DJ. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81-176[J]. Microb Pathog,2006,40(3):91-100
    [153]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev,2001,81(2):807-869
    [154]Chen Z, Gibson TB, Robinson F, et al. MAP kinases[J]. Chem Rev,2001,101(8):2449-2476
    [155]Weston CR, Davis RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol,2007, 19(2):142-149
    [156]Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades[J]. Adv Cancer Res,1998,74:49-139
    [157]Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling[J]. Biochem Pharmacol,2002,64(5-6):755-763
    [158]Squires MS, Nixon PM, Cook SJ. Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1[J]. Biochem J,2002, 366(Pt 2):673-680
    [159]Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway[J]. Proc Natl Acad Sci U S A,1997,94(2):448-452
    [160]Jaeschke A, Rincon M, Doran B, et al. Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes [J]. Proc Natl Acad Sci USA,2005,102(19):6931-6935
    [161]Tran EH, Azuma YT, Chen M, et al. Inactivation of JNK1 enhances innate IL-10 production and dampens autoimmune inflammation in the brain [J]. Proc Natl Acad Sci U S A,2006, 103(36):13451-13456
    [162]Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell,2000, 103(2):239-252
    [163]黄翠萍,张珍祥,徐永健.p38蛋白激酶对大鼠肺泡巨噬细胞活化机制的调控[J].中国病理生理杂志,2003,19(5):661-663
    [164]Ono K, Han J. The p38 signal transduction pathway:activation and function[J]. Cell Signal, 2000,12(1):1-13
    [165]Maa SH, Wang CH, Liu CY, et al. Endogenous nitric oxide downregulates the Bcl-2 expression of eosinophils through mitogen-activated protein kinase in bronchial asthma[J]. J Allergy Clin Immunol,2003,112(4):761-767
    [166]Wang X, Merritt AJ, Seyfried J, et al. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway[J]. Mol Cell Biol,2005,25(1):336-345
    [167]Hayashi M, Kim SW, Imanaka-Yoshida K, et al. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure[J]. J Clin Invest,2004, 113(8):1138-1148
    [168]Arditi M, Zhou J, Torres M, et al. Lipopolysaccharide stimulates the tyrosine phosphorylation of mitogen-activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14-dependent manner. Role of protein tyrosine phosphorylation in lipopolysaccharide-induced stimulation of endothelial cells[J]. J Immunol, 1995,155(8):3994-4003
    [169]Cario E, Rosenberg IM, Brandwein SL, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors[J]. J Immunol,2000,164(2):966-972
    [170]Sun J, Fegan PE, Desai AS, et al. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol,2007,292(3):767-778
    [171]Tallant T, Deb A, Kar N, et al. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells[J]. BMC Microbiol,2004,4:33
    [172]Huang FC, Werne A, Li Q, et al. Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection[J]. Infect Immun,2004,72(9):5052-5062
    [173]Hardt WD, Chen LM, Schuebel KE, et al. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells[J]. Cell,1998, 93(5):815-826
    [174]Nemeth E, Fajdiga S, Malago J, et al. Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli[J]. Int J Food Microbiol,2006,112(3):266-274
    [175]Murli S, Watson RO, Galan JE. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells[J]. Cell Microbiol,2001,3(12):795-810
    [176]Tenor JL, McCormick BA, Ausubel FM, et al. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions[J]. Curr Biol,2004,14(11):1018-1024
    [177]Ogawa M, Handa Y, Ashida H, et al. The versatility of Shigella effectors[J]. Nat Rev Microbiol,2008,6(1):11-16
    [178]Sansonetti PJ, Di Santo JP. Debugging how bacteria manipulate the immune response[J]. Immunity,2007,26(2):149-161
    [179]Mandic-Mulec I, Weiss J, Zychlinsky A. Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed[J]. Infect Immun,1997,65(1):110-115
    [180]Li H, Xu H, Zhou Y, et al. The phosphothreonine lyase activity of a bacterial type III effector family[J]. Science,2007,315(5814):1000-1003
    [181]Arbibe L, Kim DW, Batsche E, et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses[J]. Nat Immunol,2007,8(1):47-56
    [182]Rohde JR, Breitkreutz A, Chenal A, et al. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases[J]. Cell Host Microbe,2007, 1(1):77-83
    [183]Viboud GI, Bliska JB. Yersinia outer proteins:role in modulation of host cell signaling responses and pathogenesis[J]. Annu Rev Microbiol,2005,59:69-89
    [184]Haase R, Richter K, Pfaffinger G, et al. Yersinia outer protein P suppresses TGF-beta-activated kinase-1 activity to impair innate immune signaling in Yersinia enterocolitica-infected cells[J]. J Immunol,2005,175(12):8209-8217
    [185]Sweet CR, Conlon J, Golenbock DT, et al. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction[J]. Cell Microbiol,2007, 9(11):2700-2715
    [186]Palmer LE, Hobbie S, Galan JE, et al. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK[J]. Mol Microbiol,1998,27(5):953-965
    [187]Navarro L, Alto NM, Dixon JE. Functions of the Yersinia effector proteins in inhibiting host immune responses[J]. Curr Opin Microbiol,2005,8(1):21-27
    [188]Wertz IE, O'Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling[J]. Nature,2004,430(7000):694-699
    [189]Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol,2004,4(7):499-511
    [190]Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway[J]. Nat Cell Biol,2005, 7(8):758-765
    [191]Thiefes A, Wolf A, Doerrie A, et al. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway[J]. EMBO Rep,2006,7(8):838-844
    [192]Mukherjee S, Keitany G, Li Y, et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation[J]. Science,2006,312(5777):1211-1214
    [193]Khan MA, Kang J, Steiner TS. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation [J]. Immunology,2004,112(4):651-660
    [194]Khan K, Konar M, Goyal A, et al. Enteroaggregative Escherichia coli infection induces IL-8 production via activation of mitogen-activated protein kinases and the transcription factors NF-kappaB and AP-1 in INT-407 cells[J]. Mol Cell Biochem,2010,337(1-2):17-24
    [195]Diard S, Lievin-Le Moal V, Toribio AL, et al. Norepinephrine-dependently released Dr fimbriae of diffusely adhering Escherichia coli strain IH11128 promotes a mitogen-activated protein kinase ERK1/2-dependent production of pro-inflammatory cytokine, IL-8 in human intestinal Caco-2/TC7 cells[J]. Microbes Infect,2009,11(10-11):886-894
    [196]Dahan S, Busuttil V, Imbert V, et al. Enterohemorrhagic Escherichia coli infection induces interleukin-8 production via activation of mitogen-activated protein kinases and the transcription factors NF-kappaB and AP-1 in T84 cells[J]. Infect Immun,2002, 70(5):2304-2310
    [197]Zhou X, Giron JA, Torres AG, et al. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells[J]. Infect Immun,2003,71(4):2120-2129
    [198]Czerucka D, Dahan S, Mograbi B, et al. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells[J]. Infect Immun,2000,68(10):5998-6004
    [199]Paesold G, Guiney DG, Eckmann L, et al. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells[J]. Cell Microbiol,2002,4(11):771-781
    [200]Boise LH, Collins CM. Salmonella-induced cell death:apoptosis, necrosis or programmed cell death[J]? Trends Microbiol,2001,9(2):64-67
    [201]Philpott DJ, Girardin SE, Sansonetti PJ. Innate immune responses of epithelial cells following infection with bacterial pathogens [J]. Curr Opin Immunol,2001,13(4):410-416
    [202]Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature,1992,358(6382):167-169
    [203]Monack DM, Raupach B, Hromockyj AE, et al. Salmonella typhimurium invasion induces apoptosis in infected macrophages[J]. Proc Natl Acad Sci U S A,1996,93(18):9833-9838
    [204]Mills SD, Boland A, Sory MP, et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein [J]. Proc Natl Acad Sci USA,1997,94(23):12638-12643
    [205]Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:mechanistic description of dead and dying eukaryotic cells[J]. Infect Immun,2005,73(4):1907-1916
    [206]朱力,王恒棵.志贺氏菌Ⅲ型分泌系统及其致病机理[J].微生物学报,2010,50(11):1446-1451
    [207]Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation[J]. Immunity,2000,12(5):581-590
    [208]Boatright KM, Salvesen GS. Mechanisms of caspase activation [J]. Curr Opin Cell Biol, 2003,15(6):725-731
    [209]Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.:controlling host cell signaling, invasion, and death by type III secretion[J]. Clin Microbiol Rev,2008, 21(1):134-156
    [210]Bergsbaken T, Cookson BT. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis[J]. PLoS Pathog,2007,3(11):e161
    [211]Lilo S, Zheng Y, Bliska JB. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ[J]. Infect Immun,2008, 76(9):3911-3923
    [212]Brodsky IE, Medzhitov R. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence[J]. PLoS Pathog,2008,4(5):e1000067
    [213]Hilbi H. Bacterial jailbreak sounds cellular alarm:phagosome membrane remnants trigger signaling[J]. Cell Host Microbe,2009,6(2):102-104
    [214]Miyairi I, Byrne GI. Chlamydia and programmed cell death[J]. Curr Opin Microbiol,2006, 9(1):102-108
    [215]Massari P, King CA, Ho AY, et al. Neisserial PorB is translocated to the mitochondria of HeLa cells infected with Neisseria meningitidis and protects cells from apoptosis[J]. Cellular Microbiology,2003,5(2):99-109
    [216]Joshi SG, Francis CW, Silverman DJ, et al. Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity[J]. Infect Immun,2003,71(7):4127-4136
    [217]Zhong Y, Weininger M, Pirbhai M, et al. Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species[J]. J Infect,2006,53(6):408-414
    [218]Pirbhai M, Dong F, Zhong YM, et al. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells[J]. Journal of Biological Chemistry,2006,281(42):31495-31501
    [219]Rajalingam K, Sharma M, Paland N, et al. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells[J]. PLoS Pathog,2006,2(10):e114
    [220]Clark CS, Maurelli AT. Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells[J]. Infect Immun,2007,75(5):2531-2539
    [221]Faherty CS, Maurelli AT. Spa 15 of Shigella flexneri Is Secreted through the Type III Secretion System and Prevents Staurosporine-Induced Apoptosis[J]. Infect Immun,2009, 77(12):5281-5290
    [222]Pendaries C, Tronchere H, Arbibe L, et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection[J]. EMBO J,2006,25(5):1024-1034
    [223]Knodler LA, Finlay BB, Steele-Mortimer O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt[J]. J Biol Chem,2005, 280(10):9058-9064
    [224]Zhang JZ, Sinha M, Luxon BA, et al. Survival strategy of obligately intracellular Ehrlichia chaffeensis:novel modulation of immune response and host cell cycles[J]. Infect Immun, 2004,72(1):498-507
    [225]Klink BU, Barden S, Heidler TV, et al. Structure of Shigella IpgB2 in complex with human RhoA:implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry[J]. J Biol Chem,2010,285(22):17197-17208
    [226]Vandekerchove DG, Kerr PG, Callebaut AP, et al. Development of a capture ELISA for the detection of antibodies to enteropathogenic Escherichia coli (EPEC) in rabbit flocks using intimin-specific monoclonal antibodies[J]. Vet Microbiol,2002,88(4):351-366
    [227]Larzabal M, Mercado EC, Vilte DA, et al. Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli[J]. PLoS One,2010,5(2):e9046
    [1]Sara M, Sleytr UB. S-Layer proteins[J]. J Bacteriol,2000,182(4):859-868
    [2]Hagen KE, Guan LL, Tannock GW, et al. Detection, characterization, and in vitro and in vivo expression of genes encoding S-proteins in Lactobacillus gallinarum strains isolated from chicken crops[J]. Appl Environ Microbiol,2005,71(11):6633-6643
    [3]Jakava-Vijanen M, Palva A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues[J]. Veterinary Microbiology,2007,124(3-4):264-273
    [4]Jakava-Viljanen M, Palva A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues[J]. Vet Microbiol,2007,124(3-4):264-273
    [5]Bin Wang HW, Jing Yuan, Qiurong Li, et al. Identification of a Surface Protein from Lactobacillus reuteri JCM1081 That Adheres to Porcine Gastric Mucin and Human Enterocyte-Like HT-29 Cells[J]. Current Microbiology,2008,57(1):33-38
    [6]Boot HJ, Kolen CPAM, Vannoort JM, et al. S-Layer Protein of Lactobacillus-Acidophilus Atcc-4356-Purification, Expression in Escherichia-Coli, and Nucleotide-Sequence of the Corresponding Gene[J]. Journal of Bacteriology,1993,175(19):6089-6096
    [7]Avall-Jaaskelainen S, Palva A. Lactobacillus surface layers and their applications [J]. Ferns Microbiology Reviews,2005,29(3):511-529
    [8]Aroutcheva A, Gariti D, Simon M, et al. Defense factors of vaginal lactobacilli[J]. Am J Obstet Gynecol,2001,185(2):375-379
    [9]Lee YK, Puong KY, Ouwehand AC, et al. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli[J]. J Med Microbiol,2003,52(Pt 10):925-930
    [10]Chen X, Xu J, Shuai J, et al. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium[J]. International Journal of Food Microbiology,2007,115(3):307-312
    [11]Chen XY, Xu JJ, Shuai JB, et al. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium[J]. International Journal of Food Microbiology,2007,115(3):307-312
    [12]郭兴华,曹郁生,尔秀珠.益生乳酸细菌:分子生物学及生物技术[M].北京:科学出版社,2008:60
    [1]Jakava-Vijanen M, Palva A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues[J]. Veterinary Microbiology,2007,124(3-4):264-273
    [2]Wang B, Wei H, Yuan J, et al. Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells[J]. Current Microbiology,2008,57(1):33-38
    [3]Johnson-Henry KC, Hagen KE, Gordonpour M, et al. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli 0157:H7 adhesion to epithelial cells[J]. Cellular Microbiology,2007,9(2):356-367
    [4]Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis[J]. International Journal of Food Microbiology,2007,118(3):264-273
    [5]Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens[J]. Nature,2007,449(7164):827-834
    [6]Chantret I, Barbat A, Dussaulx E, et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells:a survey of twenty cell lines[J]. Cancer Res,1988,48(7):1936-1942
    [7]Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens[J]. FEMS Microbiol Rev,2004,28(4):405-440
    [8]Sillanpaa J, Martinez B, Antikainen J, et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus[J]. J Bacteriol,2000,182(22):6440-6450
    [9]Hynonen U, Westerlund-Wikstrom B, Palva A, et al. Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis[J]. J Bacteriol,2002,184(12):3360-3367
    [10]Frece J, Kos B, Svetec IK, et al. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92[J]. J Appl Microbiol,2005,98(2):285-292
    [11]Lee YK, Puong KY, Ouwehand AC, et al. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli[J]. J Med Microbiol,2003,52(10):925-930
    [12]Antikainen J, Anton L, Sillanpaa J, et al. Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly [J]. Mol Microbiol,2002,46(2):381-394
    [13]Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis[J]. Int J Food Microbiol,2007, 118(3):264-273
    [14]Johnson AM, Kaushik RS, Francis DH, et al. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells[J]. J Bacteriol,2009,191(1):178-186
    [15]Horstman AL, Kuehn MJ. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway[J]. Journal of Biological Chemistry,2002,277(36):32538-32545
    [16]Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption [J]. Journal of Controlled Release,2009, 135(2):144-151
    [17]Avall-Jaaskelainen S, Palva A. Lactobacillus surface layers and their applications [J]. Ferns Microbiology Reviews,2005,29(3):511-529
    [1]Kline KA, Falker S, Dahlberg S, et al. Bacterial adhesins in host-microbe interactions [J]. Cell, Host Microbe,2009,5(6):580-592
    [2]Galan JE, Bliska JB. Cross-talk between bacterial pathogens and their host cells[J]. Annu Rev Cell Dev Biol,1996,12:221-255
    [3]Tafazoli F, Magnusson KE, Zheng L. Disruption of epithelial barrier integrity by Salmonella enterica serovar typhimurium requires geranylgeranylated proteins[J]. Infect Immun,2003, 71(2):872-881
    [4]Huang FC, Werne A, Li Q, et al. Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection [J]. Infection and Immunity,2004,72(9):5052-5062
    [5]Nemeth E, Fajdiga S, Malago J, et al. Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli[J]. Int J Food Microbiol,2006,112(3):266-274
    [6]Huang FC, Werne A, Li Q, et al. Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection [J]. Infect Immun,2004,72(9):5052-5062
    [7]Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature,2001,410(6832):1099-1103
    [8]Zeng H, Carlson AQ, Guo Y, et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella[J]. J Immunol,2003,171(7):3668-3674
    [9]Ly KT, Casanova JE. Mechanisms of Salmonella entry into host cells[J]. Cellular Microbiology,2007,9(9):2103-2111
    [10]Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells [J]. Cell,2006, 124(4):715-727
    [11]Hall A. Rho GTPases and the actin cytoskeleton[J]. Science,1998,279(5350):509-514
    [12]Tolias KF, Hartwig JH, Ishihara H, et al. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly[J]. Curr Biol,2000,10(3):153-156
    [13]Patel JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella--all in the name of entry[J]. Curr Opin Microbiol,2005,8(1):10-15
    [1]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev,2001,81(2):807-869
    [2]Chen Z, Gibson TB, Robinson F, et al. MAP kinases[J]. Chem Rev,2001,101(8):2449-2476
    [3]Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions[J]. Microbiol Mol Biol Rev,2004,68(2):320-344
    [4]Weston CR, Davis RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol,2007, 19(2):142-149
    [5]Jones RM, Wu H, Wentworth C, et al. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade[J]. Cell Host Microbe,2008, 3(4):233-244
    [6]Czerucka D, Dahan S, Mograbi B, et al. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection[J]. Infect Immun,2001, 69(3):1298-1305
    [7]Khan MA, Kang J, Steiner TS. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation[J]. Immunology,2004,112(4):651-660
    [8]Huang FC, Werne A, Li Q, et al. Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection[J]. Infect Immun,2004,72(9):5052-5062
    [9]Hobbie S, Chen LM, Davis RJ, et al. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells[J]. J Immunol,1997,159(11):5550-5559
    [10]Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens[J]. Nature,2007,449(7164):827-834
    [11]Arditi M, Zhou J, Torres M, et al. Lipopolysaccharide stimulates the tyrosine phosphorylation of mitogen-activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14-dependent manner. Role of protein tyrosine phosphorylation in lipopolysaccharide-induced stimulation of endothelial cells[J]. J Immunol,1995, 155(8):3994-4003
    [12]Cario E, Rosenberg IM, Brandwein SL, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors [J]. J Immunol,2000, 164(2):966-972
    [13]Sun J, Fegan PE, Desai AS, et al. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol,2007,292(3):767-778
    [14]Tallant T, Deb A, Kar N, et al. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells[J]. BMC Microbiol,2004,4:33
    [15]Hardt WD, Chen LM, Schuebel KE, et al. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells[J]. Cell,1998, 93(5):815-826
    [16]Kleerebezem M, Hols P, Bernard E, et al. The extracellular biology of the lactobacilli[J]. FEMS Microbiol Rev,2010,34(2):199-230
    [17]Parracho H, McCartney AL, Gibson GR. Probiotics and prebiotics in infant nutrition[J]. Proc Nutr Soc,2007,66(3):405-411
    [18]Vizoso Pinto MG, Rodriguez Gomez M, Seifert S, et al. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro[J]. Int J Food Microbiol,2009,133(1-2):86-93
    [19]Ishii KJ, Koyama S, Nakagawa A, et al. Host innate immune receptors and beyond:making sense of microbial infections [J]. Cell Host Microbe,2008,3(6):352-363
    [1]Paesold G, Guiney DG, Eckmann L, et al. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells[J]. Cell Microbiol,2002,4(11):771-781
    [2]Faherty CS, Maurelli AT. Staying alive:bacterial inhibition of apoptosis during infection[J]. Trends Microbiol,2008,16(4):173-180
    [3]Kim JM, Eckmann L, Savidge TC, et al. Apoptosis of human intestinal epithelial cells after bacterial invasion[J]. J Clin Invest,1998,102(10):1815-1823
    [4]Philpott DJ, Girardin SE, Sansonetti PJ. Innate immune responses of epithelial cells following infection with bacterial pathogens[J]. Curr Opin Immunol,2001,13(4):410-416
    [5]Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature,1992,358(6382):167-169
    [6]Monack DM, Raupach B, Hromockyj AE, et al. Salmonella typhimurium invasion induces apoptosis in infected macrophages[J]. Proc Natl Acad Sci U S A,1996,93(18):9833-9838
    [7]Mills SD, Boland A, Sory MP, et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein[J]. Proc Natl Acad Sci U S A,1997, 94(23):12638-12643
    [8]Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:mechanistic description of dead and dying eukaryotic cells[J]. Infect Immun,2005,73(4):1907-1916
    [9]Muller AJ, Hoffmann C, Galle M, et al. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation[J]. Cell Host Microbe,2009, 6(2):125-136
    [10]Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions[J]. Microbiol Mol Biol Rev,2004,68(2):320-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700