用户名: 密码: 验证码:
珠江河口红树林生境AMF群落多样性及其环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(AMF)可能是自然界分布最为广泛的一类共生微生物,能与大部分的陆生植物形成共生关系。由于它们在环境、农林等领域展示出的巨大应用前景,对AMF的研究在国际上一直受到较高的关注。在近年来对海洋环境保护、海洋资源开发日益受到重视的背景下,本研究结合传统的生态、环境领域的研究方法以及最新的分子生物学手段,较为系统地研究了AMF在珠江河口红树林生态系统中的多样性、种类组成、群落结构、生态意义及其对环境因子的响应。主要研究内容和结果如下:
     1.调查了华南地区珠江河口两处红树林湿地生境中AMF与主要红树植物的共生状况。结果表明,两处红树林生态系统在不同潮间带分布的红树植物根内普遍存在AMF的侵染。根内AMF的形态结构以菌丝为主,泡囊和丛枝结构也均有发现,但是感染强度相对较低。通过诱导培养之后,在两处生境中一共鉴定出属于球囊霉属(Glomus)和无梗囊霉属(Acaulospora)的六个AMF形态种。在两处生境中,分布于高、中潮间带的红树植物根内AMF的感染强度要显著高于低潮间带的红树植物(p < 0.05)。多元线性回归分析表明,水文状况以及土壤P水平是在两处红树林生态系统中影响AMF与红树植物共生强度的主要环境因子(p < 0.05)。
     2.为了初步探讨AMF在红树林生态系统中潜在的生态功能,通过盆栽试验研究了接种从红树林生境扩繁的AMF菌剂对供试的红树植物无瓣海桑(Sonneratia apetala)的生长发育以及营养元素吸收的影响。结果表明,接种AMF处理显著提高了红树植物的生长:接种AMF的无瓣海桑株高、地径和生物量均显著高于不接种的对照(p < 0.05)。同时,接种AMF处理还显著提高了无瓣海桑对N、P和K的吸收(p < 0.05)。该结果表明,AMF可能在红树林生态系统中具有重要的生态功能。
     3.调查了珠海红树林处于陆缘的四种半红树植物根内的AMF侵染强度,以及根际土壤中AMF孢子的密度和种类。结果表明,所调查的半红树植物根内存在较高的AMF感染率(总感染强度:33.3%~63.7%)。根内AMF的结构以菌丝(27.9%~54.5%)为主,但是泡囊(13.8%~38.2%)和丛枝(14.7%~29.8%)结构也较为丰富。根际土壤中AMF的孢子密度相对较低,介于0.1-1.5个g-1干土之间。采用形态学与分子生物学手段相结合的方法在四种植物根际一共分离到属于球囊霉属(Glomus,5个种系型)和无梗囊霉属(Acaulospora,2个种系型)的七个AMF种系型。在每一种宿主植物根际土壤中一共分离到2-4个AMF的种系型,不同宿主植物根际土壤中AMF孢子的多样性和种系型组成均无明显的规律。相关性分析结果表明,半红树植物群落的土壤有机质含量可能是该处生境中影响AMF侵染半红树植物的主要环境因子。
     4.为了研究淹水强度和宿主植物种类对AMF与宿主植物的共生强度的影响,调查了珠海红树林生境中高、中、低三个潮间带均有分布的三种半红树植物(银叶树、卤蕨和老鼠簕)根内的AMF侵染情况。结果表明,所有调查的半红树植物根内均存在AMF的共生,感染的主要形态是菌丝,囊泡和丛枝结构也很常见。宿主种类对根内AMF的丛枝和泡囊感染强度具有显著的影响(P < 0.05),而对AMF菌丝感染强度的影响不显著(P > 0.05)。淹水强度对所有类型的感染强度均具有极显著的影响(P < 0.01):处于中、高潮间带的植物根内的AMF感染强度大多要显著(p < 0.05)高于分布在低潮间带的植物;分布于中潮间带的红树植物根内各种感染强度也要显著高于分布在高潮间带的红树植物(p < 0.05)。另外,宿主种类和淹水强度的交互作用同样对AMF感染强度具有显著的影响(P < 0.05)。
     5.为了进一步研究红树林生态系统中红树植物根内的AMF多样性及种类组成,并深入探讨淹水强度和宿主种类对AMF多样性和种类组成的影响,采用分子学手段研究了珠海红树林生境中在高、中、低三个潮间带均有分布的三种半红树植物根内的AMF多样性和种类组成。采用“巢式PCR -克隆-测序”的方法,从27个根样中一共获得761条长度约为1500 bp(SSU-ITS-LSU,包含约230 bp的SSU rDNA,480 bp的ITS,约830 bp的LSU rDNA)的AMF序列。
     1)多样性:以SSU-ITS-LSU序列相似性大于97%作为标准,761条AMF序列归于37个序列分类单元(OTU, operational taxonomic unit)。进一步通过邻接法(neighbor-joining)和贝叶斯(MrBayesian)进化分析,它们分属于23个种系型(phylotype)。在每个单独的根样中检测到2-7个AMF种系型。三种半红树植物根内检测到的AMF多样性要远远高于已报道的其它湿地生态系统中的AMF多样性水平,并且也要高于大部分已报道的陆地生态系统中AMF的多样性。这些结果清楚地表明:红树林生态系统中至少含有与大部分陆地生境相当的AMF多样性,湿地生态系统中也可以具有较高的AMF多样性。
     2)种类组成:本研究获得的23个AMF种系型中包含了22个(759条序列)属于Glomus属和1个(2条序列)属于Acaulospora属的种系型。其中,属于11个种系型的367条序列(占序列总量的48%)在GenBank中无法找到较高匹配度的序列,可能为新的类型的AMF序列。剩下12个种系型中有四个可以初步界定到AMF种,分别为G. intraradices、‘G. intraradices DAOM197198’、G. mosseae、G. sinuosum。其中,G. intraradices的序列是首次在美国福罗里达州之外的生境中检测到的真正的G. intraradices的DNA序列。剩下的八个种系型分别与一些尚未鉴定到种水平的AMF序列相匹配。
     3)宿主植物、淹水强度的影响:宿主种类对根内AMF的种系型多度和香浓多样性指数均无显著性影响(P > 0.05),但是显著影响了根内AMF的群落结构(P < 0.05),表明在红树林生态系统中存在AMF与宿主植物之间的偏好性。淹水强度对红树植物根内AMF多样性(基于种系型多度、香浓多样性指数)和群落结构具有极显著的影响(P < 0.01),并且不同的淹水强度对AMF多样性的影响方式不同:相比不淹水条件,高强度的淹水(7~(-1)0 hr day~(-1))显著降低了宿主植物根内AMF的多样性,而适宜强度的淹水(2-4 hr day~(-1))显著提高了宿主植物根内的AMF多样性水平。淹水强度是红树林生境中影响AMF多样性和群落组成最重要的环境因子。
     6.为了解红树林生态系统中的重金属污染水平,调查了存在较高污染风险的深圳红树林生境中表层淤泥以及红树植物不同部位(细根、粗根、茎和叶)中六种重金属(Cu、Pb、Cd、Zn、Cr和Ni)的浓度。结果表明,深圳红树林存在中等程度的重金属污染,Cu和Zn是最主要的重金属污染元素。各种调查的重金属在不同潮间带的污泥中具有相似的分布规律,并且均具有较高的DTPA提取态比例,表明该生境中的重金属可能具有相同的来源。各种重金属在六种红树植物中的分布规律相同:细根部位的浓度要极显著的高于其它部位的浓度(p < 0.01),粗根部位的重金属浓度也大多要高于同一植株的茎和叶部位中的重金属浓度(p < 0.05),表明所调查的红树植物种类均采取了重金属排除策略来应对重金属污染。不同红树植物种类对同一种重金属的富集能力(富集系数)存在极显著差异(p < 0.05);相同种类红树植物对不同重金属的富集能力也同样存在极显著差异(p < 0.01)。
     7.为了评估重金属污染对红树植物的潜在风险,采用盆栽试验的方法研究了不同水平的Cd-Cu复合污染对胚轴和六月龄木榄幼苗的生长和营养元素吸收的影响。结果发现,Cd(c. 1 mg kg~(-1), 3 mg kg~(-1))和Cu(c. 100 mg kg~(-1), 200 mg kg~(-1))的复合污染对0~3月龄和6~9月龄木榄幼苗的生长、营养元素吸收均无显著的负面影响(P > 0.05),表明木榄植株从胚轴阶段就已经具备了较强的重金属耐性。高Cd(约3 mg kg~(-1))处理显著降低了0~3月龄幼苗叶片的叶绿素a含量和叶绿素a/b的比值(p < 0.05),但是对6~9月龄幼苗的叶绿素无显著影响(p < 0.05)。在低Cd(约为1 mg kg~(-1))和高Cd(约3 mg kg~(-1))处理下,0~3月龄木榄植株各个部位(尤其是细根)的重金属浓度要远远高于6~9月龄木榄幼苗对应部位的重金属浓度(p < 0.01),表明6~9月龄的木榄幼苗植株体内排除重金属的机制要比0~3月龄的木榄幼苗更为完善,其重金属耐受性更强。该结果表明,在评价重金属污染对红树林生态系统的潜在风险时有必要研究它们对红树植物幼苗的影响。
     8.为了评估重金属污染对红树林生态系统中AMF与红树植物共生关系的影响,以及AMF在红树植物对重金属污染响应方面的作用,以从红树林湿地扩繁的AMF作为接种菌剂,以菌根敏感型植物玉米(Zea mays L.)作为供试植物,研究了在Cu和Cd复合污染条件下AMF的感染强度、玉米植株体内重金属浓度以及宿主植物的部分生理指标对重金属胁迫的响应。结果表明,Cd处理(c. 1 mg kg~(-1), 3 mg kg~(-1))和Cu处理(c. 100 mg kg~(-1), 200 mg kg~(-1))均显著抑制了AMF对宿主植物的感染(P < 0.05),并显著降低了玉米的株高和生物量(P < 0.05)。AMF侵染显著提高了供试玉米地上部和地下部的Cd和Cu的浓度(p <0.05),但同时通过提高宿主植物体内脯氨酸浓度增强了宿主植物对重金属的耐受性(p < 0.05)。这些结果显示,AMF能够提高宿主植物的重金属耐性,但是重金属污染会抑制AMF与宿主植物的共生,表明重金属污染很可能会抑制红树林生境中AMF与红树植物的共生,进而对红树林生态系统产生潜在的风险。
     9.为了进一步探讨红树林生境中影响AMF与红树植物共生的环境因子,在人工构建的秋茄和桐花树湿地中试系统、小试系统中分别模拟生活污水排放,研究生活污水排放对AMF与红树植物共生以及根际孢子密度的影响。结果表明,生活污水排放对AMF的孢子密度无显著的处理效应(P > 0.05),但是能够明显降低红树植物根内的菌丝、泡囊和丛枝感染强度(p < 0.01),并且其抑制作用随着污水浓度的增加而增强。AMF泡囊和丛枝结构对生活污水的敏感性要高于AMF菌丝结构的敏感性。由于桐花树根系的放氧能力强于秋茄根系,以及可能存在的其它未知因素的共同作用,在相同的处理条件下,桐花树根内AMF的感染强度总是要显著高于秋茄根内的AMF感染强度(p < 0.05),充分证明了宿主植物对AMF共生关系的影响。考虑到AMF在红树林生态系统中可能发挥重要的生态功能,本试验的结果清楚的表明,生活污水的排放会通过抑制甚至是破坏AMF与红树植物的共生关系从而对红树林生态系统产生潜在的风险。
Arbuscular mycorrhizal fungi (AMF) are probably the most widespread symbiotic microbes in the nature ecosystems, which can form symbiosis with most of the terrestrial plants. They have shown great application perspectives in the areas of environment, agriculture and forestry. Therefore, there has been a great concern in the research of these fungi. During these years, there has been an increasing concern on the exploitaion of marine resources and the protection of the marine environment. The present study systematically investigated the AMF species compostion, community structure, diversity level and their responses to environmental factors in the mangrove swamps near by the estuary of the Pearl River, employing both the traditional methods in ecological and environmental research and the cutting-edge methods in molecular biology. The main contents and results from this research are as follows:
     1. The symbiosis between AMF and mangrove plant species was investigated in two mangrove swamps near by the Pearl River estuary in south China. AMF were mostly found in the form of hyphae and were commonly associated with all the mangrove species we investigated. The colonization intensities of vesicle and arbuscule were relatively low, though these structures were detected in most of the investigated mangrove species. Six AMF morphological species belonging to the genera Glomus or Acaulospora were identified after a trap culture procedure. The colonization intensity of AMF was significantly higher in the high and middle tide levels than that in the low tide level (p < 0.05) in both swamps. Multiple step-wise linear regression analyses showed that hydrological conditions and soil P levels in the rhizosphere were the main environmental factors affecting the colonization of mangrove species by AMF.
     2. A greenhouse experiment was conducted to evaluate the effects of AMF inoculation, which is trap-cultured from a manrove swamp, on the growth and nutrient uptake of a true mangrove plant species, Sonneratia apetala B. Ham. The inoculated AMF significantly improved growth, resulting in greater plant height, diameter at ground level and plant biomass (p < 0.05). The AMF colonization also increased the absorption of N, P and K of the host plants (p < 0.05). These findings suggest that AMF play important roles in mangrove ecosystems.
     3. The colonization of AMF to four semi-mangrove species and the AMF spore density and species composition in the rhisosphere soil were investigated in the landward part of the Zhuhai Mangrove forests. A relatively high AMF colonization rate (total colonization rate: 33.3%~63.7%) was detected in the investigated plants. Although vesicle (13.8%~38.2%) and arbuscule (14.7%~29.8%) were also commonly detected, hyphae had the highest colonization intensity (27.9%~54.5%). A relatively low AMF spore density was detected in the rhisosphere (0.1 - 1.5 spores g-1 soil). All the AMF spores were designed to seven phylotypes (five Glomus phylotypes and two Acaulospora phylotypes) according to their morphological features and the phylogenetic analysis based on an 800 bp rDNA sequences. Two to four spore phylotypes were detected from the rhizosphere soil of each semi-mangrove species. No obvious differences were found in the distribution pattern and phylotype diversity of AMF spores from different semi-mangrove species. The results of correlation analysis showed that the soil organic matter content could be the most important environmental factor affecting the symbiosis between AMF and semi-mangrove species.
     4. To evaluate the effects of host plant and tide level on the AMF colonization to mangrove plants in mangrove ecosystems, the colonization intensity of AMF within the roots of three semi-mangrove species (Heritiera littoralis Ait., Acrostichum aureum L. and Acanthus ilicifolius L.), which are located in all of the high, middle and low tide levels in Zhuhai Mangrove forest, were investigated. The AMF structures were detected within the roots of all investigated species. AMF hyphae had the highest colonization intensity, but vesicle and arbuscular structures were also commonly detected. The results of Two-way ANOVA showed that the host plants had significant effects on the vesicle and arbuscular colonization intensity (P < 0.05), but no significant effects on either total or hyphal colonization intensity. The tide level significantly affected all types of AM colonization (P < 0.01): the AMF colonization intensities in the roots from high and middle tide zones are higher than that from the low tide level, and AMF colonization intensity in the roots of middle tide level is generally higher than that at the high tide level. The interactions between plant species and tide level also significantly affected all types of AM colonization (P < 0.05).
     5. To further investigate the diversity and species composition of AMF in mangrove ecosystems, the communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of three semi-mangrove species were characterized along a tidal gradient in ZH Mangrove forest, using a“Nested PCR– Clone– Sequencing”procedure. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU, c. 230 bp), the entire internal transcribed spacer (ITS, c. 480 bp) and part of the large subunit (LSU, c. 830 bp) of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. A total of 761 AMF sequences were obtained.
     1) AMF diversity within the roots: The results of phylogenetic trees based on the neighbor-joining and MrBayesian analyses indicated that the 761 obtained AMF sequences were grouped into 37 operational taxonomic units (OTUs) based on SSU-ITS-LSU sequence similarities of 97-100%, and finally assigned to 23 AMF phylotypes. Two to seven AMF phylotypes were detected from each individual plant sample. The diversity levels of AMF detected from these three species were much higher than that reported from other wetland ecosystems and most terrestrial ecosystems, indicating that the AMF diversities in mangrove ecosystems could at least be comparable to those in most terrestrial ecosystems, and that the AMF diversity level in wetland ecosystem is not necessarily low.
     2) AMF species composition: Twenty-two (759 sequences) of the 23 phylotypes detected in the roots belong to the genus Glomus, only one phylotype (2 sequences) belongs to the genus Acaulospora. Eleven (367 sequences) of the 23 phylotypes detected in this study were novel. Four of the other 12 phylotypes were preliminarily identified to G. intraradices,“G. intraradices DAOM197198”, G. mosseae and G. sinuosum. The G. intraradices sequences detected in this study are the first true record of G. intraradices outside Florida. The other phylotypes were related to the AMF sequences that have not yet been identified to species level.
     3) Effects of host plants and flooding intensity: Plant species had no significant effects on the AMF diversity (based on the phylotype richness and Shannon’s index) (P > 0.05), but significantly affected the AMF phylotype communities within the roots of three semi-mangrove species (P < 0.05), indicating the presence of host preference between AMF and host species. The tide level (flooding) has a highly significant effect (P < 0.01) on AMF diversity and phylotype composition, and the effects are dependent on the degree of flooding: intensive flooding (7~(-1)0 hr day~(-1)) was clearly associated with decreased AMF diversity in the roots of all three mangrove species; while moderate flooding (2-4 hr day~(-1)) showed a promotion effects on the diversity of AMF in any of the three plant species investigated. The hydrologic conditions should be the most important factors affecting the diversity and community structure of AMF in mangrove ecosystems.
     6. To investigate the heavy metal contamination level in Shenzhen mangrove swamp, one of the most vulnerable mangrove ecosystems in China, concentrations of six heavy metals (Cu, Ni, Zn, Cd, Cr and Pb) in sediments, and fine roots, thick roots, branches and leaves of six mangrove plant species collected from this site were measured. The results show that the Shenzhen mangrove sediments are moderately contaminated by heavy metals, Zn and Cu being the main contaminants. All investigated metals showed very similar distributions in the sediments, and had relatively high proportions of DTPA extractable heavy metals, implying that they had the same anthropogenic source(s). High accumulations of the heavy metals were observed in the root tissues, especially the fine roots, and much lower concentrations in the other organs, indicating that the roots strongly immobilize them and (hence) that mangrove plants possess mechanisms that limit the upward transport of heavy metals and exclude them from sensitive tissues. There were significant differences in the accumulation ability of each investigated heavy meatl between different mangrove species (P < 0.05). The accumulation abilities of the same species to different heavy metals were also significantly different (P < 0.01).
     7. To further evaluate the potential risk of heavy metals posed to mangrove ecosystems, the growth performance of propagules and six-month-old seedlings of Bruguiera gymnorhiza in the presence of contaminating Cd (c. 1 mg kg~(-1), 3 mg kg~(-1)) and Cu (c. 100 mg kg~(-1), 200 mg kg~(-1)) was examined. The results show that the heavy metal contamination set in this study showed no significant effects on the growth and nutrient uptake in both 0~3 month seedling and 6~9 month seedling (P > 0.05), indicating that this plant is not sufficiently sensitive to heavy metals after its propagule stage for its regeneration and growth to be significantly affected by the heavy metal contamination in the Shenzhen mangrove ecosystem. However, the high Cd (c. 3 mg kg~(-1)) treatment decreased leaf chlorophyll a contents and chlorophyll a/b ratios in the three-month seedlings (p < 0.05), but not in the nine-month seedlings. In addition, older mangrove seedlings accumulated much higher Cd level in plants in both the low Cd (c. 1 mg kg~(-1)) and high Cd (3 mg kg~(-1)) treatments. These results indicated that the older seedlings are more metal-tolerant than the younger seedlings, due to their more efficient exclusion mechanism. Therefore, it is necessary to assess the effects of metal contamination on young seedlings when evaluating the risks posed by heavy metals in an ecosystem.
     8. A greenhouse experiment was conducted to evaluate the effects of heavy metal contamination on the symbiosis between AMF and mangrove species, and to study the roles of AMF in the responses of mangrove species to heavy metal contaminants, taking the trap cultures of AMF from mangrove swamp as the fungal materials. Instead of the mangrove plants, maize (Zea mays L.), a typical sensitive mycorrhizal plant, was used as the test plant. The results show that both the Cd (c. 1 mg kg~(-1), 3 mg kg~(-1)) and Cu (c. 100 mg kg~(-1), 200 mg kg~(-1)) treatments significantly inhibited the symbiosis between AMF and host species (p < 0.05), and decreased the plant height and biomass of the tested plants (p < 0.05). AMF colonization significantly increased the concentrations of Cu and Cd in the shoots and roots of the maize plants (p < 0.05), and improved the heavy metal resistance of plants, partly by increasing the proline levels in host plant (p < 0.05), resulting in greater plant height and biomass of the host plants (p < 0.05). These results indicate that the mangrove AMF could decrease the potential risks of heavy metal contaminants through improving the heavy metal tolerance of host plants. In mangrove habitat, heavy metal contamination can inhibite the symbiosis between AMF and host species, posing a risk to mangrove ecosystems.
     9. A medium-sized mangrove constructed wetland and a small-scale mangrove constructed wetland were set up for the purpose of evaluating the effects of domestic sewage discharge on the symbiosis between AMF and mangrove plants. The colonization intensity in the roots and spore density from the rhisosphere soil of mangrove species locating within varied distances from the sewage inlet in the medium-sized wetlands were tested after approxiamately three years growth of the plants. The colonization intensity and spore density of AMF from the small-scale wetland were also examined after the treatments of sewage and running water (CK) for nine months. The results show that the sewage discharge had no significant effect on the spore density of AMF in both medium-sized and small-scale mangrove constructed wetlands (P > 0.05). However, it obviously decreased the colonization intensity of the AMF (p < 0.01), and the inhibition effect of sewage is largely depended on the concentration of the sewage. The vesicle and arbuscular structures were more sensitive than the haphal structure to the sewage dischage. Because the Aegiceras corniculatum had a higher radial oxygen loss ability than the Kandelia candel, combined with some other unknown reasons, AMF colonization intensity in the roots of Aegiceras corniculatum were always significantly higher that that of Kandelia candel (p < 0.05) under the same conditions, providing a solid evidence showing the effects of host plants on the symbiosis between AMF and plants. Given that AMF play important roles in the mangrove ecosystems, the results of the presented research show that sewage discharge to mangrove ecosystems could lead a harmful effect to these habitats through destroying or inhibiting the symbiosis between AMF and mangrove plants.
引文
Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology, 2005, 71: 8966-8969.
    Aliasgharzadeh N, Saleh RN, Towfighi H, Alizadeh A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 2001, 11: 119-122.
    Anderson RC, Liberta AE, Dickman LA. Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture gradient. Oecologia, 1984, 64: 111-117.
    Audet P, Charest C. Effects of AM colonization on“wild tobacco”plants grown in zinc-contaminated soil. Mycorrhiza, 2006, 16: 277-283.
    Aziz T, Sylvia DM, Doren RF. Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecological Applications, 1995, 5: 776-784.
    Beck A, Haug I, Oberwinkler F, Kottke I. Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. Mycorrhiza, 2007, 17: 607-625.
    Bever JD. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244: 281-290.
    Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157: 465-473.
    Bever JD, Morton J, Antonovics J, Schultz PA. Host-dependent sporulation and species diversity of mycorrhizal fungi in a mown grassland. Journal of Ecology, 1996, 75: 1965-1977.
    Bever JD, Schultz PA, Pringle A, Morton JB. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience, 2001, 51: 923-931.
    Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 2001, 419, 389-392.
    B?rstler B, Raab PA, Thiéry O, Morton JB, Redecker D. Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytologist, 2008, 180: 452-465.
    B?rstler B, Renker C, Kahmen A, Buscot F. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils, 2006, 42: 286-298.
    Brinson MM. Changes in the functioning of wetlands along environmental gradients. Wetlands, 1993, 13: 65-74.
    Burrows R, Pfleger F. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journalof Botany, 2002, 80: 120-130.
    Chen X, Wu CH, Tang JJ, Hu SJ. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 2005, 60: 665-671.
    Clapp JP, Rodriguez A, Dodd JC. Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytologist, 2001, 149: 539-554.
    Clapp JP, Young JPW, Merryweather JW, Fitter AH. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist, 1995, 130: 259-265.
    Clayton JS, Bagyaraj DJ. Vesicular arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquatic Botany, 1984, 19: 251-262.
    Cooker JC, Butler RH, Madole G. Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils. Mycologia, 1993, 85: 547-550.
    Cornwell WK, Bedford BL, Chapin CT. Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. American Journal of Botany, 2001, 88: 1824-1829.
    Cuenca G, De Andrade Z, Meneses E. The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant and Soil, 2001, 231: 233-241.
    da Silva GA, Trufem SFB, Júnior OJS, Maia LC. Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza, 2004, 15: 47-53.
    Daniell TL, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology, 2001, 36: 203-209.
    De Grandcourt A, Epron D, Montpied P, Louisanna E, Béreau M, Garbaye J, Guehl JM. Contrasting responses to mycorrhizal inoculation and phosphorus availability in seedlings of two tropical rainforest tree species. New Phytologist, 2004, 161: 865-875.
    Diaz G, AzconAguilar C, Honrubia M. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil, 1996, 180: 241-249.
    Dotzler N, Krings M, Taylor TN, Agerer R. Germination shields in Scutellospora (Glomeromycota, Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycological Progress, 2006, 5: 178-184.
    Dunham R, Ray AM, Inouye RS. Growth, physiology and chemistry of mycorrhizal and nonmycorrhizal Typha latifolia seedlings. Wetlands, 2003, 24: 890-896.
    Etherington JR. Wetland Ecology. Southampton: The Camelot Press Ltd. 1983.
    Fitter AH. Darkness visible: reflections on underground ecology. Journal of Ecology, 2005, 93: 231-243.
    Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, Faria SMde, Bouvet JM, Sylla SNd, Dreyfus B, BǎAM. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza, 2007, 17: 159-166.
    Frank AB. Uber die auf Wurzel synbiose beruhende Ernāhrung gewisser Baüme durch unterirdische Pilze. BerDeutch Bot Ges, 1985, 3: 128-145.
    Gao LL, Delp G, Smith SE.) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytologist, 2001, 151, 477-491.
    Gillevet PM, Sikaroodi M, Torzilli AP. Analyzing salt-marsh fungal diversity : comparing ARISA fingerprinting with clone sequencing and pyrosequencing. Fungal Ecology, 2009, 2: 160-167
    G?hre V, Paszkowski U. Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 2006, 223: 1115-1122.
    Gollotte A, van Tuinen D, Atkinson D. Diversity of arbuscular mycorrhizal fungi colonizing roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza, 2004, 14: 111-117.
    González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 2004, 130: 317-323.
    González-Guerrero M, Melville LH, Ferrol N, Azcón-Aguilar C, Peterson RL. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 2008, 54: 103-108.
    Grime JP, Mackey JML, Hillier SH, Read DJ. Floristic diversity in a model system using experimental microcosms. Nature, 1987, 328: 420-422. Hannula SE, de Boer W, van Veen JA. In situ dynamics of soil fungal communities under different genotypes
    of potato, including a genetically modified cultivar. Soil Biology & Biochemistry, 2010, 42: 2211-2223. Harley JL (1989) The significance of mycorrhiza. Mycological Research, 92: 129-139.
    Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology, 2005, 54: 852-859.
    Heckman DS, Geiser DM, Eidell BR, Kardos NL, Hedges SB. Molecular evidence for the early colonization of land by fungi and plants. Science, 2001, 293: 1129-1133.
    Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. Ploughing up the wood-wide web? Nature, 1998, 394: 431.
    Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology, 2002, 90: 371-384.
    Hijri I, Sykorova Z, Oehl F, Ineichen K, M?der P, Wiemken A, Redecker D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 2006, 15: 2277-2289.
    Hildebrandt U, Kaldorf M, Bothe H. The zinc violet and its colonization by arbuscular mycorrhizal fungi, Journal of Plant Physiology. 1999, 154: 709–711.
    Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 2007, 68: 139-146.
    Hoefnagels MH, Broome SW, Shafer SS. Vesicular arbuscular mycorrhizae in salt marshes in North Carolina.Estuaries, 1993, 16: 851-858.
    Husband R, Herre EA, Turner SL, Gallery R, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 2002a, 11: 2669-2678.
    Husband R, Herre EA, Young JPW. Temporal variation in the arbuscular mycorrhizal communities colonizing seedlings in a tropical forest. FEM Microbiology Ecology, 2002b, 42: 131-136.
    Janos DP, Sahley CT, Emmons LH. Rodent dispersal of vesicular arbuscular mycorrhizal fungi in Amazonian Peru. Ecology, 1995, 76: 1852-1858.
    Jayachandran K, Shetty KG. Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquatic Botany, 2003, 76: 281-290.
    Juniper S, Abbott LK. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 2006, 16: 371-379.
    Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracey WF. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science, 2000, 40: 358-364.
    Keeley JE. Endomycorrhizae influence growth of black gum seedlings in flooded soils. American Journal of Botany, 1980, 67: 6-9.
    Kernaghan G. Mycorrhizal diversity: Cause and effect? Pedobiologia, 2005, 49: 511-520.
    Khan AG. The occurrence of mycorrhizas in halophytes and xerophytes and of endogone spores in the adjacent soils. Microbiology, 1974, 81: 7-14.
    Kj?ller R, Rosendahl S. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (Single Stranded Conformation Polymorphism). Plant and Soil, 2000, 226: 189-196.
    Klironomos JN. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84: 2003, 2292-2301.
    Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR. Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biology and Fertility of Soils, 2006, 42: 358-361.
    Kowalchuk A, de Souza FA, van Veen JA. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology, 2002, 11: 571-581.
    Kramadibrata K, Walker C, Schwarzott D, Schü?ler A. A new species of Scutellospora with a coiled germination shield. Annals of Botany, 2000, 86: 21-27.
    Krauss KK, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP. Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 2008, 89: 105-127.
    Krüger M, Stockinger H, Krüger C, Schüβler A. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 2009, 183: 212-223.
    Kumar T, Ghose M. Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to
    tidal inundation and chemical properties of soil. Wetlands Ecology and Management, 2008, 16: 471-483.
    Lanfranco L, Delpero M, Bonfante P. Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Molecular Ecology, 1999, 8: 37-45.
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2008, 65: 339-349.
    Leung HM, Ye ZH, Wong MH. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere, 2007, 66: 907-915.
    Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ. Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Applied and Environmental Microbiology, 2003, 69: 6250-6256.
    Li LF, Li T, Zhang Y, Zhao ZW. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology, 2010, 71: 418-427.
    Li LF, Li T, Zhao ZW. Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza, 2007, 17: 655-665.
    Liberta AE, Anderson RC, Dickman LA. Vesicular-arbuscular mycorrhiza fragments as a means of endophyte identification at hydrophytic sites. Mycologia, 2003, 75: 169-171.
    Linderman RG, Davis EA. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different VA mycorrhizal fungi. American Journal of Enology and Viticulture, 2001, 52:8-12.
    Linderman RG, Davis EA. Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Scientia Horticulturae, 2005, 99: 67-78.
    Liu RJ, Wang FY. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13: 123- 127.
    Lugo AE, Snedaker SC. The ecology of mangroves. Annual Review of Ecology and Systematics, 1974, 5: 39-64.
    Mangan SA, Adler GH. Consumption of arbuscular mycorrhizal fungi by spiny rats (Proechimys semispinosus) in eight isolated populations. Journal of Tropical Ecology, 1999, 15: 779-790.
    Marques APGC, Oliveira RS, Rangel AOSS, Castro PML. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65: 1256-1263.
    Merryweather J, Fitter A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytologist, 1996, 132: 307-311.
    Merryweather J, Fitter A. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytologist, 1998a, 138: 117-129.
    Merryweather J, Fitter A. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta II. Seasonal and spatial patterns of fungal populations. New Phytologist, 1998b, 138: 131-142.
    Miller SP. Arbuscular mycorrhizal colonizationof semi-aquatic grasses along a wide hydrologic gradient. New Phytologist, 2000, 145: 145-155.
    Miller SP, Bever JD. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 1999, 119: 586-592
    Miller SPq, Sharitz RR. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grasses. Functional Ecology, 2000, 14: 738-748.
    Mohankumar V, Mahadevan A.Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Current Science, 1986, 55: 936.
    Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glominae and Gigasporinae, and two families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycologia, 1990, 80: 520-524.
    Morton JB, Bentivenga SP, Bever JD. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal of Botany, 1995, 73: S25-S32.
    Morton JB, Redecker D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, 2001, 93: 181-195
    Mosse B, Stribley DP, LeTacon F. Ecology of mycorrhizas and mycorrhizal fungi. In: Alexander M, ed. Advances in microbial ecology. New York, USA: Plenum Press, 1981, pp: 137-210.
    Mummey DL, Rillig MC. Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. Journal of Microbiological Methods, 2007, 70: 200-204.
    Muthukumar T, Udaiyan K. Arbuscular mycorrhizas in cycads of southern India. Mycorrhiza, 2002, 12: 213-217.
    O’Connor PJ, Smith SE, Smith FA. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154: 209-218.
    Oba H, Shinozaki N, Oyaizu H, Tawaraya K, Wagatsuma T, Barraquio WL, Saito M. Arbuscular mycorrhizal fungal communities associated with some pioneer plants in the lahar area of Mt. Pinatubo, Philippines. Soil Science and Plant Nutration, 2004, 50: 1195-1203.
    Oliveira CA, SáNMH, Gomes EA, Marriel IE, Scotti MR, Guimar?es CT, Schaffert RE, Alves VMC. Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Applied Soil Ecology, 2009, 41: 249-258.
    ?pik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184: 424-437.
    ?pik M, Moora M, Liira J, K?ljalg U, Zobel M, Sen R. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol, 2003, 160:581-593.
    ?pik M, Moora M, Zobel M, Saksü, Wheatley R, Wright F, Daniell T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 2008, 179: 867-876.
    Ouziad F, Hildebrandt U, Schmelzer E, Bothe H. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. Journal of Plant Physiology, 2005, 162: 634-649.
    Polz MF, Cavanaugh CM. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, 64: 3724-3730.
    Ray AM, Inouye RS. Effects of water-level fluctuations on the arbuscular mycorrhizal colonizations of Typha latifolia. Aquatic Botany, 2006, 84: 210-216.
    Redecker D, Morton JB, Bruns TD. Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Sclerocystis coremioides. Mycologia, 2000, 92: 282-285. Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae.
    Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11841-11843.
    Renker C, Heinrichs J, Kaldorf M, Buscot F. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza, 2003, 13:191-198.
    Rickerl DH, Sancho FO, Ananth S. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 1994, 23: 913-916.
    Rodríguez-Echeverría S, Freitas H. Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza, 2006, 16: 543-552.
    Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Applied and Environmental Microbiology, 2005, 71: 6673-6679.
    Rosendahl S, Matzen H. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytologist, 2008, 179: 1154-1161.
    Rosendahl S, Stukenbrock EH. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Molecular Ecology, 2004, 13: 3179-3186.
    Rozema J, Arp W, van Diggelen J, van Esbroek M, Broekman R, Punte H. Occurrence and ecological
    signicance of vesicular arbuscular mycorrhiza in the salt marsh environment. Acta Botanica Neerlandica, 1986, 35: 457-467.
    Santos JC, Finlay RD, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytologist, 2006, 172: 159-168.
    Schechter SP, Bruns TD. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology, 2008, 17: 3198-3210.
    Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA. Nonlegumes, legumes, and root nodules
    harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 2004, 70: 6240-6246.
    Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 2001, 105: 1413-1421.
    Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.
    Sharma MP, Adholeya A. Enhanced growth and productivity following inoculation with indigenous AM fungi in four varieties of onion (Allium cepa L.) in an alfisol. Biological Agriculture & Horticulture, 2000, 18: 1-14.
    Simon L, Lalonde M, Bruns TD. Specific amplification of 18S ribosomal genes from VA endomycorrhizal
    fungi colonizing roots. Applied and Environmental Microbiology, 1992, 58: 291-295.
    Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press. 2008.
    Stevens KJ, Peterson RL. The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife). Mycorrhiza, 1996, 6: 99-104.
    Stockinger H, Krüger M, Schüβler A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist, 2010, 187: 461-476.
    Tang F, White JA, Charvat I. The effect of phosphorus availability on arbuscular mycorrhizal colonization of Typha angustifolia. Mycologia, 2001, 93: 1042-1047.
    Tanner CC, Clayton JS. Effects of vesicular arbuscular mycorrhizas on growth and nutrition of a submerged aquatic plant. Aquatic Botany, 1985, 22: 377-386.
    Thormann MN, Currah RS, Bayley SE. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands, 1999, 19: 438-450.
    Turnau K. Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in southern Poland. Acta Societatis Botanicorum Poloniae, 1998, 67: 105-113.
    Turner SD, Amon JP, Schneble RM, Friese CF. Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands, 2000, 20: 200-204.
    Turner ST, Friese CF. Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen. Restoration Ecology, 1998, 6: 44-51.
    Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends in Ecology and Evolution, 2008, 24: 110-117.
    Valiela I, Bowen JL, York JK. Mangrove forests: one of the world’s threatened major tropical environments. BioScience, 2001, 51: 807-815.
    Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidagogigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 2006, 8: 971-983.
    van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11: 296-310.van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72.
    van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172: 739-752.
    Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11: 1555-1564.
    Vogel-Miku? K, Pongrac P, Kump P, Ne?emer M, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 2006, 139: 362-371.
    Walker C, Blaszkowski J, Schwarzott D, Schüβler A. Gerdemannia gen. nov., a genus separated from Glomus, and Gerdem anniaceae fam. nov. , a new family in the Glomeromycota. Mycological Research, 2004, 108: 707-718.
    Walker C, Schüβler A. Nomenclatural clarifications and new taxa in the Glomeromycota. Mycological Research, 2004, 108: 981-982.
    Walker C, VestbergM, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüβler A. Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycological Research, 2007, 111: 137-153.
    Wang BS, Liang SC, Zhang WY, Zan QJ. Mangrove flora of the world. Acta Botanica Sinica, 2003, 45: 644 -653.
    Weiersbye IM, Straker CJ, Przybylowicz WJ. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nuclear Instruments & Methods in Physics Research Section B - Beam Interactions with Materials and Atoms, 1999, 158: 335-343.
    Weissenhorn I, Glashoff A, Leyval C, Berthelin J. Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores from heavy-metal polluted soils. Plant and Soil, 1994, 167: 189-196.
    Wetzel PR, van der Valk AG. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Canadian Journal of Botany, 1996, 74: 883-890.
    Whitfield L, Richards AJ, Rimmer DL. Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza, 2004, 14: 55–62.
    Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11: 1548-1546.
    Wirsel SGR. Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2004, 48: 129-138.
    Wolfe BE, Weishampel PA, Klironomos JN. Arbuscular mycorrhizal fungi and water table affect wetlandplant community composition. Journal of Ecology, 2006, 94: 905-914.
    Wu BY, Hogetsu T, Isobe K, Ishii R. Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza, 2007, 17: 495-506.
    Wubet T, Weiss M, Kottke I, Oberwinkler F. Morphology and molecular diversity of arbuscular mycorrhizal fungi in wild and cultivated yew (Taxus baccata). Canadian Journal of Botany, 2003, 81: 255-266.
    Zarei M, K?nig S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 2008, 156: 1277-1683.
    Zhu YG, Smith SE, Barritt AR, Smith FA. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil, 2001, 237: 249-255.
    董甜,张慧文,张粤,何兴元.长白山四种赤杨丛枝菌根真菌侵染多样性的巢式PCR-RFLP分析.应用生态学报, 2006, 10(17): 1796-1800.
    范航清.红树林—海岸环保卫士.南宁:广西科学技术出版社, 2000.
    盖京苹,冯固,李晓林.丛枝菌根真菌的生物多样性研究进展.土壤, 2005, 37(3): 236-242.
    郭绍霞,刘润进.不同品种牡丹对丛枝菌根真菌的影响.应用生态学报, 2010, 21(8): 1993-1997.
    黄桂林,何平,侯盟.中国河口湿地研究进展及现状.应用生态学报, 2006, 17(9): 1751-1756.
    李晓林,冯固等.丛枝菌根生理生态.北京:华文出版社, 2001.
    林鹏,傅勤.中国红树林环境生态及经济利用.北京:高等教育出版社, 1995.
    林鹏.红树林的种类及其分布.林业科学, 1987, 23: 481-490.
    刘润进,陈应龙.菌根学.北京:科学出版社, 2007.
    刘润进,焦惠,李岩,李敏,朱新产,丛枝菌根真菌物种多样性研究进展.应用生态学报, 20(9): 2301-2307.
    龙良鲲,姚青,艾云灿,朱红惠.丛枝菌根真菌伴生细菌的研究进展.生态学报, 2007, 27(12): 5445-5351.
    王发园,刘润进.黄河三角洲盐碱土壤中AM真菌的初步调查.生物多样性, 2001, 9(4): 389-392.
    王桂文,李海鹰,孙文波.钦州湾红树林丛枝菌根初步研究.广西植物, 2003, 23(5): 445-449.
    张猛,周仁超,施苏华.寂寞千年的守望.生命世界, 2008, 8: 26-19.
    张忠华,胡刚,梁士楚.我国红树林的分布现状、保护及生态价值.生态学通报, 2006, 41(4): 9-12.
    Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J. Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biology & Biochemistry, 2006, 38: 1008-1014.
    Allaway WG, Curran M, Hollington LM, Ricketts MC, Skelton NJ. Gas space and oxygen exchange in roots of Avicennia marina (Forssk.) Vierh. var. australasica (Walp.) Moldenke ex NC Duke, the grey mangrove. Wetlands Ecology and Management, 2001, 9: 211-218.
    An ZQ, Hendrix JW, Hershman DE, Henson GT. Evaluation of the most probable number (MPN) and wet sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia, 1990, 82: 516-518.
    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science, 2003, 165: 1137-1145.
    Azcón R, Gomez-Ortega M, Barea JM. Comparative effects of foliar- or soil-applied nitrate on vesicular-arbuscular mycorrhizal infection in maize. New Phytologist, 1982, 92: 553-559.
    Brundrett M, Jasper DA, Ashwath N. Glomalean mycorrhizal fungi from tropical Australia II. The effect of nutrient levels and host species on the isolation of fungi. Mycorrhiza, 1999, 8: 315-321.
    Brundrett M, Melville L, Peterson L (eds.). Practical Methods in Mycorrhiza Research. Guelph: Mycologue Publications. 1994.
    Carvalho, LM, Correia, PM, Martins-Loucao A. Arbuscular mycorrhizal fungal propagules in a salt mash. Mycorrhiza, 2004, 14: 165-170.
    Chambers CA, Smith SE, Smith FA. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytologist, 1980a, 85: 47-62.
    Chambers CA, Smith SE, Smith FA. Symbiosis of Trifolium subterraneum with mycorrhizal fungi and Rhizobium trifolii as affected by ammonium sulphate and nitrification inhibitors. Soil Biology andBiochemistry, 1980b, 12: 93-100.
    Chen Y, Yuan JG, Yang ZY, Xin GR, Fan L. Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China. Plant and Soil, 2008, 304: 257-266.
    Daniell TL, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology, 2001, 36: 203-209.
    Dunham RM, Ray AM, Inouye RS. Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizal Typha latifolia seedlings. Wetlands, 2003, 23: 890-896.
    Eom AH, Hartnett DC, Wilson GWT, Figge DAH. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. American Midland Naturalist, 1999, 142: 55-70.
    Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, Faria SMde, Bouvet JM, Sylla SNd, Dreyfus B, BǎAM. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza, 2007, 17: 159-166.
    Gavito ME and Miller MH. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant and Soil, 1998, 199: 177 - 186.
    Gryndler M, Jansa J, Hr?elováH, ChvátalováI, Vosátka M. Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Applied Soil Ecology, 2003, 22: 283-287.
    Haselwandter K. Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angewandte Botanic, 1987, 61: 107-114.
    Haselwandter K, Read DJ. Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia, 1980, 45: 57–62.
    Ipsilantis I, Sylvia DM. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Applied Soil Ecology, 2007, 35: 261-271.
    Janos DP. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology, 1980, 61: 151-162.
    Jayachandran K, Shetty KG. Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquatic Botany, 2003, 76: 281-290.
    Kelly EB, Carl FF, James PA. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza, 2004, 14: 329-337.
    Koide RT. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 1991, 117: 365- 386.
    Koide RT, Li MG. On host regulation of the Vesicular-arbuscular mycorrhizal symbiosis. New Phytologist, 1990, 114: 59-74.
    Koske RE, Tessier B. A convenient, permanent slide mounting medium. Mycological Society of America Newsletter, 1983, 4: 59.
    Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR. Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biology andFertility of Soils, 2006, 42: 358-361.
    Kumar T, Ghose M. Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil. Wetlands Ecology and Management, 2008, 16: 471-483.
    Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 2002, 12: 199-211.
    Lekberg Y, Koide RT, Rohr JR, Lauraaldrich-Wolfe L, Morton JB. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 2007, 95: 95-105.
    Lugo AE, Snedaker SC. The ecology of mangroves. Annual Review of Ecology and Systematics, 1974, 5: 39-64.
    Mandyam K, Jumpponen A. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza, 2008, 18: 145-155.
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JL. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 1990, 115: 495-501.
    Miller SP. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytologist, 2000, 145: 145-155. Miller SP, Bever JD. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum
    hemitomon along a wide hydrologic gradient. Oecologia, 1999, 119: 586-592.
    Miller SP, Sharitz RR. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semi-aquatic grasses. Functional Ecology, 2000, 14: 738-748.
    Mohankumar V, Mahadevan A. Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Current Science, 1986, 55: 936.
    Moreira M, Nogueira MA, Tsai SM, Gomes-da-Cosda SM, Cardoso EJBN. Sporulation and diversity of arbuscular mycorrhizal fungi in Brazil Pine in the field and in the greenhouse. Mycorrhiza, 2007, 17: 519-526.
    Muthukumar T, Udaiyan K. Arbuscular mycorrhizas of plants growing in the Western Ghats region, southern India. Mycorrhiza, 2000, 9: 297-313.
    Page AL, Miller RH, Keeney DR (eds.) Methods of Soil Analysis. ASA and SSSA, Madison, Wisconsin. 1982.
    Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society, 1970, 55: 158-161.
    Read DJ, Birch CPD. The effects and implications of disturbance of mycorrhizal mycelial systems. Proceedings of the Royal Society of Edinburgh, 1988, 94: 13-24.
    Ren H, Jian SG, Lu HF, Zhang QM, Shen WJ, Han WD, Yin ZY, Guo QF. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecological Research, 2008, 23: 401-407.
    Ronnback P. The ecological basis for economic value of Seafood production supported by mangroveecosystems. Ecological Economics, 1999, 29: 235-252.
    Sáinz MJ, Taboada-Castro MT, VilarinóA. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes. Plant and Soil, 1998, 205: 85-92.
    Sannazzaro A, Ruiz O, AlbertóE, Menéndez A. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil, 2006, 285: 279-287.
    Sannazzaro A, Ruiz O, AlbertóE, Menéndez A. Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin. Mycorrhiza, 2004, 14: 139-142.
    Schenck NC, Peréz Y. Manual for the Identification of VA Mycorrhizal Fungi, 3rd edn. Gainesville, Florida: Synergistic Publications. 1990.
    Schwarzott D, Walker C, Schü?ler A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Molecular Phylogenetics Evolution, 2001, 21: 190-197.
    Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.
    Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza, 2006, 16: 81-87.
    Smith FA, Smith SE. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytologist, 1997, 137: 373-388.
    Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press. 2008.
    Stevens KJ, Spender SW, Peterson RL. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza, 2002, 12: 277-283.
    Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F. Arbuscular mycorrhizal fungal communities in sub Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza, 2008, 18: 181-195.
    Thorne ME, Zamora BA, Kennedy AC. Sewage sludge and mycorrhizal effects on secar bluebunch wheatgrass in mine spoil. Journal of Environmental Quality, 1998, 27: 1228-1233.
    Tilman D. Monographs in Population Biology In: Plant strategies and the dynamics and structure of plant communities. NewJersey: Princeton University Press. 1988.
    Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letter, 2003, 6: 388-391.
    van der Heijden MGA. Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds.) Mycorrhizal Ecology. Springer, Berlin, 2002, pp 243-265.
    Wetzel PR, van der Valk AG. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Canadian Journal of Botany, 1996, 74: 883-890.
    Wolfe BE, Weishampel PA, Klironomos JN. Arbuscular mycorrhizal fungi and water table affect wetland plantcommunity composition. Journal of Ecology, 2006, 94: 905-914.
    鲍士旦.土壤农化分析(第三版).北京:中国农业出版社, 2000.
    李晓林,冯固等.丛枝菌根生理生态.北京:华文出版社, 2001.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社, 2000.
    王发园,刘润进,林先贵,周健民.几种生态环境中AM真菌多样性比较研究.生态学报, 2003, 23(12): 2666-2671.
    王桂文,李海鹰,孙文波.钦州湾红树林丛枝菌根初步研究.广西植物, 2003, 23(5): 445-449.
    夏冬明.土壤肥料学.上海:上海交通大学出版社, 2007.
    中国科学院南京土壤研究所.土壤理化分析手册.上海:上海科学技术出版社, 1978.
    Alguacil MM, Lumini E, Roldan A, Bonfante P, Bianciotto V. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecological Applications, 2008, 18: 527-536.Aliasgharzadeh N, Saleh RN, Towfighi H, Alizadeh A. Occurrence of arbuscularmycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 2001, 11: 119-122.
    Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microbial Ecology, 2008, 56: 649-659.
    Arnot, DE, Roper C, Bayoumi RAL. Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates. Molecular and Biochemical Parasitology, 1993, 61: 15-24.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Applied and Environmental Microbiology, 2006, 72: 5734-5741.
    Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320: 37-77.
    Chen Y, Yuan JG, Yang ZY, Xin GR. Associations between arbuscular mycorrhizal fungi and Rhynchrely rumrepens in abandoned quarries in southern China. Plant and Soil, 2008, 304: 257-266.
    Cooker JC, Butler RH, Madole G. Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of saltmarsh grasses growing in saturated soils. Mycologia, 1993, 85: 547-550.
    Floyd, R, Abebe E, Papert A, Blaxter M. Molecular barcodes for soil nematode identification. Molecular Ecology, 2002, 11: 839-850.
    He XL, Mouratov S, Steinberger Y. Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes. Aridland Research and Management, 2002, 16: 149-160.
    Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology, 2005, 54: 852-859.
    Hebert, PDN, Ratnasingham S, Waard JR. Barcoding animal life: cytochrome coxidase subunit divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 2003, 270: S96-S99. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. Ploughing up the wood-wide web? Nature, 1998, 394: 431-431.
    Husband R, Herre A, Turner SL, Gallery E, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 2002, 11: 2669-2678.
    Ileana VG, Rodoffo EM. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza, 2007, 17: 167-174.
    Kowalchuk A, de Souza FA, van Veen JA. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology, 2002, 11: 571-581.
    Kowalchuk GA, De Souza FA, Van Veen JA. Community analysis of arbuscular mycorrhizal fungi associatedwith Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology, 2002, 11, 571-581.
    Kress, WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy Sciences of the United State of America, 2005, 102: 8369-8374.
    Kumar T, Ghose M. Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical p roperties of soil. Wetlands Ecology and Management, 2008, 16: 471-483.
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2008, 65: 339-349.
    Lekberg Y, Koide RT, Rohr JR, Lauraaldrich-Wolfe L, Morton JB. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 2007, 95: 95-105.
    Liu RJ, Wang FY. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13: 123-127.
    Lugo MA, Ferrero M , Menoyo E, Estévez MC, Si?eriz F, Anton A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south American puna grassland. Microbial Ecology, 2008, 55: 705-713.
    McGuire KL, Henkel TW, de la Cerda IG, Villa G, Edmund F, Andrew C. Dual mycorrhizal colonization of forest dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza, 2008, 18: 217-222.
    Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae. Mycotaxon, 1990, 37: 471-491.
    Muleta D, Assefa F, Nemomissa S, Granhall U. Distribution of arbuscular mycorrhizal fungi spores in soils of small holder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils, 2008, 44: 653-659.
    Oliveira RS, Vosatka M, Dodd JC, Castro PML. Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza, 2005, 16: 23-31.
    ?pik M, Moora M, Liira J, Koljal U, Zobel M, Sem R. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New phytologist, 2003, 160: 581-593.
    Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society, 1970, 55: 158-161.
    Pond EC, Menge JA. Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 1984, 76: 74-84.
    Rosendahl S, Matzen HB. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytologist, 2008, 179: 1154-1161.
    Santos JC, Finlay RD, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytologist, 2006, 172: 159-168.
    Santos-González JC, Finlay RD, Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Applied and Environmental Microbiology, 2007, 73: 5613-5623.
    Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 2001, 105: 1413-1421.
    Schwarzott D, Walker C, Schü?ler A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Molecular Phylogenetics Evolution, 2001, 21: 190-197.
    Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.
    Shannon CE, Weaver W. The mathematical theory of communication. Urbana, USA: The University of Illinois Press. 1949.
    Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza, 2006, 16: 81-87.
    Simon L, Lalonde M, Bruns TD. Specific amplification of 18S ribosomal genes from VA endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 1992, 58: 291-295.
    Singh S, Pandey A, Chaurasia B, Palni LMS. Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in‘natural’and‘cultivated’ecosites. Biology and Fertility of Soils, 2008, 44: 491-500.
    Stockinger H, Krüger M, Schüβler A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist, 2010, 187: 461-476.
    Sykorova Z, Wiemken A, Redecker D. Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 2007, 73: 5426-5434.
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24: 1596-1599.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876-4882.
    Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends in Ecology and Evolution, 2008, 24: 110-117.
    Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11: 1555-1564.
    Wagg C, Pautler M, Massicotte HB, Massicotte HB, Peterson RL. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza, 2008, 18: 103-110.
    Wang YY, VestbergM, Walker C, Hurme T, Zhang XP, Lindstr?m K. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza, 2008, 18:59-68.
    Whitcomb S, Stutz JC. Assessing diversity of arbuscular mycorrhizal fungi in a local community: Role of samp ling effort and spatial heterogeneity. Mycorrhiza, 2007, 17: 429-437.
    Wolfe BE, Mummey DL, RilligMC, Klironomos JN. Small scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza, 2007, 17: 175-183.
    蔡晓布,彭岳林,冯固,钱成.西藏高原草地植物AM真菌多样性及其环境影响因子研究.土壤学报, 2005, 42(4) : 641-650.
    方燕,唐明,孙学广,屈庆秋.不同气候条件下AM真菌资源与土壤理化性质的关系.西北农林科技大学学报(自然科学版), 2010, 38(10): 76-82.
    盖京苹,冯固,李晓林.丛枝菌根真菌的生物多样性研究进展.土壤, 2005, 37(3): 236-242.
    郭绍霞,张玉刚,李敏,刘润进.我国洛阳与菏泽牡丹主栽园区AM真菌多样性研究.生物多样性, 2007, 15(4) : 425- 431.
    李凌飞,杨安娜,赵之伟.丛枝菌根真菌种群的孢子季相动态研究.生态学杂志, 2005, 24(10): 1155-1158.
    刘润进,焦惠,李岩,李敏,朱新产,丛枝菌根真菌物种多样性研究进展.应用生态学报, 20(9): 2301-2307.
    刘润进,刘鹏起,徐坤,吕志范.中国盐碱土壤中AM真菌的生态分布.应用生态学报, 1999, 10(6): 721-724.
    申连英,毛永民,鹿金颖,彭士琪,李晓林,张福锁.丛枝菌根对酸枣实生苗耐盐性的影响.土壤学报, 2004, 41(3): 426-433.
    盛敏,唐明,张峰峰,黄艳辉,杨保伟.土壤因子对西北盐碱土中VA菌根真菌的影响.土壤学报, 2008, 25(4): 758-763.
    石兆勇,陈志超,张立运,冯固,田长彦,李晓林.天山北坡丛枝菌根真菌多样性及地带分布.中国科学D辑, 2006: 36(增刊II): 126-132.
    唐明,黄艳辉,盛敏,张峰峰,肖文发.内蒙古盐碱土中AM真菌的多样性与分布.土壤学报, 2007, 44(6): 1104-1110.
    唐明. VA菌根提高植物抗盐碱和抗重金属能力的研究进展.土壤, 1998, 30(5): 251-254.
    王发园,刘润进,林先贵,周健民.几种生态环境中AM真菌多样性比较研究.生态学报, 2003, 23(12): 2666-2671.
    张海涵,唐明,陈辉.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义.环境科学, 2009, 30(8): 2432-2437.
    张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究.植物生态学报, 2003, 27(4): 537-544.
    赵金莉,贺学礼.毛乌素沙地油蒿根际AM真菌空间分布研究.河北农业大学学报, 2007, 30(2): 74-78.
    钟凯,袁玉清,赵洪海,王淼焱,刘润进.泰山丛枝菌根真菌群落结构特征,菌物学报, 2010, 29(1): 44-50.
    Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology, 2005, 71: 8966-8969.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Applied and Environmental Microbiology, 2006, 72: 5734-5741.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Short protocols in molecular biology. New York, USA: John Wiley and Sons. 1999.
    Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157: 465-473.
    Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 2002, 419, 389-392.
    Borowicz VA. Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology, 82: 3057-3068.
    Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell and Environment, 2001, 26: 17-36.
    Daniell TJ, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology, 2001, 36: 203-209.
    de la Pe?a E, Echeverría SR, van der Putten WH, Freitas H, Moens M. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New phytologist, 2006, 169: 829-840.
    Fitter AH. Darkness visible: reflections on underground ecology. Journal of Ecology, 2005, 93: 231-243.
    Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology, 2005, 54: 852-859.
    Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. Ploughing up the wood-wide web? Nature, 1998, 394: 431-431.
    Helgason T, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology, 1999, 8: 659-666.
    Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 2006, 15: 2277-2289.
    Husband R, Herre A, Turner SL, Gallery E, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 2002, 11: 2669-2678.
    Janos DP, Sahley CT, Emmons LH. Rodent dispersal of vesicular arbuscular mycorrhizal fungi in Amazonian Peru. Ecology, 1995, 76: 1852-1858.
    Juniper S, Abbott LK. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 2006, 16: 371-379.
    Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 1987, 106: 465-495.
    Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, 1999, 537: 39-64.
    Klironomos JN. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84: 2292-2301.
    Kozlowski TT. Responses of woody plants to flooding. In: Kozlowski TT ed. Flooding and plant growth. Orlando, USA: Academic, 1984, pp 129-163.
    Krüger M, Stockinger H, Krüger C, Schüβler A. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 2009, 183: 212-223.
    Kuhn G, Hijri M, Sanders IR. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature, 2001, 414: 745-748.
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2008, 65: 339-349.
    Li LF, Li T, Zhang Y, Zhao ZW. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology, 2010, 71: 418-427.
    Lugo AE, Snedaker SC. The ecology of mangroves. Annual Review of Ecology and Systematics, 1974, 5: 39-64.
    Mangan SA, Adler GH. Consumption of arbuscular mycorrhizal fungi by spiny rats (Proechimys semispinosus) in eight isolated populations. Journal of Tropical Ecology, 1999, 15: 779-790.
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JL. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 1990, 115:495-501.
    Merryweather J, Fitter A. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. I. Diversity of fungal taxa. New Phytologist, 1998, 138: 117-129.
    Miller SP. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytologist, 2000, 145: 145-155.
    Nielsen KB, Kj?ller R, Olsson PA, Schweiger P, Andersen F?, Rosendahl S. Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycological Research, 2004, 108: 616-625.
    Nottingham AT, Turner BL, Winter K, van der Heijden MGA, Tanner EVJ. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytologist, 2010, 186: 957-967.
    ?pik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184: 424-437.
    ?pik M, Moora M, Liira J, K?ljalg U, Zobel M, Sen R. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New phytologist, 2003, 160: 581-593.
    ?pik M, Moora M, Zobel M, Saksü, Wheatley R, Wright F, Daniell T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 2008, 179: 867-876.
    Page AL, Miller RH, Keeney DR (eds.). Methods of soil analysis. ASA and SSSA, Madison, Wisconsin. 1982.
    Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 2008, 6: 763-775.
    Pi N, Tam NFY, Wu Y, Wong MH. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquatic Botany, 2009, 90: 222-230.
    Polz MF, Cavanaugh CM. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, 64: 3724-3730.
    Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817-818. R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2010, ISBN 3-900051-07-0, URL http://www.R-project.org/. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572-1574.
    Rosendahl S, Matzen HB. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytologist, 2003, 179: 1154-1161.
    Sanders IR. Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends in Plant Science, 2003, 8: 143-145.
    Santos JC, Finlay RD, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytologist, 2003, 172: 159-168.
    Schechter SP, Bruns TD. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology, 2008, 17: 3198-3210.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hatmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75: 7537-7541.
    Schüβler A, Gehrig H, Schwarzott D, Walker C. Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycological Research, 2001, 105: 5-15.
    Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.
    Shannon CE, Weaver W. The mathematical theory of communication. Urbana, USA: The University of Illinois Press. 1949.
    Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press. 2008.
    Stamatakis A, Hoover P. A rapid bootstrap algorithm for the RAXML web-servers. Systematic Biology, 2008, 75: 758-771.
    Stockinger H, Krüger M, Schüβler A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist, 2010, 187: 461-476.
    Stockinger H, Walker C, Schüβler A.‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytologist, 2009, 183: 1176-1187.
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24: 1596-1599.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876-4882.
    Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends in Ecology and Evolution, 2008, 24: 110-117.
    van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11: 296-310.
    van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72.
    Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11: 1555-1564.
    Wang YT, Qiu Q, Yang ZY, Hu ZJ, Tam NFY, Xin GR. Arbuscular mycorrhizal fungi in two mangroves in South China. Plant and Soil, 2010, 331: 181-191.
    Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11: 1548-1546.
    Wirsel SGR. Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2004, 48: 129-138.
    Wubet T, Wei? M, Kottke I, Teketay D, Oberwinkler F. Molecular diversity of arbuscular mycorrhizal fungi in Prunus afriana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytologist, 2003, 161: 517-528.
    Ypsilantis I, Sylvia DM. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Applied Soil Ecology, 2007, 35: 261-271.
    李晓林,冯固.丛枝菌根生理生态.北京:华文出版社, 2001.
    Agely AA, Sylvia DM, Ma LQ. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese Brake Fern (Pteris vittata L.). Journal of Environmental Quality, 2005, 34: 2181-2186.
    Ahonen-Jonnarth U, Finlay RD. Effect of elevated nickel and cadmim on growth and nutrient uptake of mycorrhizal and nonmycorrhizal Pinus silvestris seedlings. Plant and Soil, 2001, 236: 128-138.
    Alberts JJ, Price MY, Kania M. Metal concentrations in tissues of Spartina alterniflora (Loisel) and sediments of Georgia salt marshes. Estuarine, Coastal and Shelf Science, 1990, 30: 47-58.
    Alia, Saradhi PP, Mohanty P. Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. Journal of Photochemistry and Photob iology, 1997, 38: 253-257.
    Andrade SAL, Grat?o PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere, 2009, 75: 1363-1370.
    Arao T, Ae N, Sugiyama M, Takahashi M. Genotypic differences in cadmium uptake and distribution in soybeans, Plant and soil, 2003, 251: 247-253.
    Basak UC, Das AB, Das P. Chlorophylls, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangrove. Bulletin of Marine Science, 1996, 58: 654-659.
    Boonsong K, Piyatiratitivorakul S, Patanaponpaiboon P. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment. Water Science and Technology, 2003, 48: 257-266.
    Cairney JWG, Meharg AA. Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution, 1999, 106: 169-182.
    Chen GZ, Miao SY, Tam NFY, Wong YS, Li SH, Lan CY. Effect of synthetic wastewater on young Kandelia candel plants growing under greenhouse conditions. Hydrobiologia, 1995, 295: 263-273.
    Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazard Material, 2006, 134: 74-79.
    Chen X, Wu CH, Tang JJ, Hu SJ. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 2005, 60: 665-671.
    Cheng H, Liu Y, Tam NFY, Wang X, Li SY, Chen GZ, Ye ZH. The role of radical oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environmental Pollution, 2010, 158: 1189-1196.
    Cuong DT, Bayen S, Wurl O, Subramanian K, Wong KKS, Sivasothi N, Obbard JP. Heavy metal contamination in mangrove habitats of Singapore. Marine Pollution Bulletin, 2005, 50: 1713-1738.
    Dahmani-Muller H, van Oort F, Gélie B, Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 2000, 109: 231-238.
    De Filippis LF, Pallaghy CK. Heavy metals: sources and biological effects. In: Rai LC, Caur JP, Soeder CJ (eds.) Algae and Water Pollution: Advances in Limnology Series, Schweizerbart, Stuttgart, 1994, 42: 32-77.
    De Lacerda LD. Trace metals in mangrove plants: why such low concentrations?. In: De Lacerda LD, Diop HS (Eds.), Mangrove Ecosystem Studies in Latin America and Africa. UNESCO, 1998, pp 171-178.
    Defew LH, Mair JM, Guzman HM. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Marine Pollution Bulletin, 2005, 50: 547-552.
    Deng H, Ye ZH, Wong MH. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 2004, 132: 29-40.
    González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 2004, 130: 317-323.
    Harbison P. Mangrove muds a sink and source for trace metals. Marine Pollution Bulletin, 1986, 17, 246-250.
    Harty C. Mangroves in New South Wales and Victoria. Melborne: Vista Publications. 1997.
    Hepper CM, Smith GA. Observations on the germination of Endogone spores. Transactions of the British Mycological Society, 1976, 66: 189-194.
    Inskeep WP, Bloom PR. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiology, 1985, 77: 483-485.
    Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 2008, 55: 45-53.
    Janou?kováM, PavlíkováD, Vosátka M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere, 2006, 65: 1959-1965.
    Joner EJ, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolim subterraneum mycorrhiza from soil amended with high and low concentration of cadmium. New Phytologist, 1997, 135:353-360.
    Lefèvre I, Marchal G, Corréal E, Zanuzzi A, Lutts S. Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regulation, 2009, 59: 1-11.
    Leung HM, Ye ZH, Wong MH. Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environmental Pollution, 2006, 139: 1-8.
    Lindsay WL, Norvell WA. Equilibrium relationships of Zn2+, Fe2+, Ca2+ and H+ with EDTA and DTPA in soils. Proceedings of the Soil Science Society of America, 1969, 33: 62-68.
    Liu XL, Zhang SZ, Shan XQ, Zhu YG. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere, 2005, 61: 293-301.
    Liu Y, Tam NFY, Yang JX, Pi N, Wong MH, Ye ZH. Mixed heavy metals tolerance and radical oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 2009, 58: 1843-1849.
    Lutts S, Kinet JM, Bouharmont J. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 1995, 46: 1843-1852.
    MacFarlane GR. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Marine Pollution Bulletin, 2002, 44: 244-256.
    Macfarlane GR, Burchett MD. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 2000, 54: 65-84.
    Macfarlane GR, Burchett MD. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 2001, 42: 233-240.
    Macfarlane GR, Koller CE, Blomberg SP. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere, 2007, 69: 1454-1464.
    Machade W, Silva-Filho EV, Oliveira EV, Lacerda LD. Trace metal retention in mangrove ecosystems in Guanabara bay, SE Brazil. Marine Pollution Bulletin, 2002b, 44: 1277-1280.
    Machado W, Moscatelli M, Rezende LG, Lacerda LD. Mercury, zinc and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environmental Pollution, 2002a, 120: 455-461.
    Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P. Heavy metals distribution in mangrove
    sediments along the mobile coastline of French Guiana. Marine Chemistry, 2006, 98: 1-17.
    Marques APGC, Oliveira RS, Rangel AOSS, Castro PML. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65: 1256-1263.
    Marques APGC, Oliveira RS, Rangel AOSS, Castro PML. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65: 1256-1263.
    McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N. Soil testing for heavy metals. Communications in Soil Sciences and Plant Analysis, 2000, 31: 1661-1700.
    Meharg AA. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 2003, 107: 1253-1265.
    Munns R. Genes and salt tolerance: bringing them together. New Phytologist, 2005, 167: 645-663.
    Page AL, Miller RH, Keeney DR (eds.). Methods of soil analysis. ASA and SSSA, Madison, Wisconsin. 1982.
    Pawlowska TE, Charvat I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 2004, 70: 6643-6649.
    Pekey H. The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 2006, 52: 1197-1208.
    Peter EC, Gassman NJ, Firman JC, Richmond RH, Power EA. Ecotoxicology of tropical marine ecosystems. Environmental Toxicology and Chemistry, 1997, 16: 12-40.
    Ren H, Jian SG, Lu HF, Zhang QM, Shen WJ, Han WD, Yin ZY, Guo QF. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecological Research, 2008, 23: 401-407.
    Ross IS. Effect of copper, cadmium and zinc on germination and mycelial growth in Candida albicans. Transactions of the British Mycological Society, 1982, 78: 543-545.
    Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with pretreated mycorrhizal fungi. Journal of Plant Physiology, 2007, 164: 1144-1151.
    Tam NFY, Li SH, Lan CY, Chen GZ, Li MS, Wong YS. Nutrients and heavy metal contamination of plants and sediments in Futian mangrove forest. Hydrobiologia, 2005, 295: 149-158.
    Tam NFY, Wong YS. Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia, 1995a, 296: 231-242.
    Tam NFY, Wong YS. Spatial and temporal variations of heavy metals contamination in sediments of a mangrove swamp in Hong Kong. Marine Pollution Bulletin, 1995b, 31: 254-261.
    Tam NFY, Wong YS. Retention and distribution of heavy meals in mangrove soils receiving wastewater. Environmental Pollution, 1996, 94: 283-291.
    Van Assche FV, Cllijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environment, 1990, 13: 195-206.
    Vangronsveld J, Clijsters H. Toxic effects of metals. In: Farago ME (ed.) Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity, VCH, Weinheim. 1994, pp 149-177.
    Wang YT, Qiu Q, Yang ZY, Hu ZJ, Tam NFY, Xin GR. Arbuscular mycorrhizal fungi in two mangroves in South China. Plant and Soil, 2010, 331: 181-191.
    Wellburn AL. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1984, 144: 307-313.
    Yan ZZ, Ke L, Tam NFY. Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquatic Botany, 2010, 92: 112-118.
    Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Lan CY, Shin PKS Cheung SG. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin, 2008, 57: 735-743.
    Zhang J, Liu J, Ouyang Y, Liao B, Zhao B. Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecological Engineering, 2010, 36: 807-12.
    杨慧,肖家欣,杨安娜,申燕,张绍铃,安静,吴雪俊.五种丛枝菌根真菌对枳实生苗耐锌污染的影响.生态学杂志, 2010,30(1): 93-97.
    杨丽,蔡立哲,童玉贵,高阳.深圳湾福田潮滩重金属含量及对大型底栖动物的影响.台湾海峡, 2005, 25(4): 157-164.
    昝启杰,王勇军,王伯荪.深圳福田红树林无瓣海桑和海桑群落重金属的累积和循环.环境科学, 2002, 23(4): 81-88.
    赵平娟,安锋,唐明.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报, 2007, 27(2): 396-399.
    Abd-Alla MH, Omar SA, Karanxha S. The impact of pesticides on arbuscular mycorrhizal and nitrogen fixing symbioses in leg umes. Applied Soil Ecology, 2000, 14: 191-200.
    Ames BN, Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science, 2003, 165: 1137-1145.
    Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant and Soil, 1974, 39: 205- 207.
    Boonsong K, Piyatiratitivorakul S, Patanaponpaiboon P. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment. Water Science and Technology, 2003, 48: 257-266.
    Brown G, Maher W. The occurrence, distribution and sources of polycyclic aromatic hydrocarbons in the sediments of the Georges River estuary Australia. Organic Geochemistry, 1992, 18: 657-668.
    Brundrett M, Jasper DA, Ashwath N. Glomalean mycorrhizal fungi from tropical Australia II. The effect of nutrient levels and host species on the isolation of fungi. Mycorrhiza, 1999, 8: 315-321.
    Cannicci S, Bartolini F, Dahdouh-Guebas F, Fratini S, Litulo C, Macia A, Mrabu EJ, Penha-Lopes G, Paula J. Effects of urban wastewater on crab and mollusk assemblages in equatorial and subtropical mangroves of East Africa. Estuarine, Coastal and Shelf Science, 2009, 84: 305-317.
    Cavalcante RM, Sousa FW, Nascimento RF, Silveira ER, Freire SS. The impact of urbanization on tropical mangroves (Fortaleza, Brazil): Evidence from PAH distribution in sediments. Journal of Environmental Management, 2009, 91: 328-335.
    Chaineau CH, Morel JL, Oudot J. Phytotoxicity and plant uptake of fuel oil hydrocarbons. Journal of Environmental Quality, 1997, 26: 1478-1483.
    Chander K, Brookes PC. Effects of heavymetals from past applications of sewage sludge onmicrobial biomass and organic matter accumulation in a sandy loam soil and silty loam U. K. soil. Soil Biology and Biochemistry, 1991, 23: 927- 932.
    Chatterjee M, Canário J, Sarkar SK, Branco V, Bhattacharya AK, Satpathy KK. Mercury enrichments in core sediments in Hugli–Matla–Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environmental Geology, 2009, 57: 1125-1134.
    Chen JL, Wong YS Tam NFY. Static and dynamic sorption of phenanthrene in mangrove sediment slurry. Journal of Hazardous Materials, 2009, 168: 1422-1429.
    Chen X, Wu CH, Tang JJ, Hu SJ. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 2005, 60: 665-671.
    Cheng H, Liu Y, Tam NFY, Wang X, Li SY, Chen GZ, Ye ZH. The role of radical oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environmental Pollution, 2010, 158: 1189-1196.
    Corkidi L, Diane L, Rowland, Johnson NC, Allen EB. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240: 299-310.
    Cornejo P, Borie F, Rubio R, Azcón R. Influence of nitrogen source on the viability, functionality and persistence of Glomus etunicatum fungal propagules in an Andisol. Applied Soil Ecology, 2007, 35: 423 - 431.
    Essien JP, Essien V, Olajire AA. Heavy metal burdens in patches of asphyxiated swamp areas within the Qua Iboe estuary mangrove ecosystem. Environmental Research, 2009, 109: 690-696.
    Frías-Espericueta MG, Osuna-López I, Ba?uelos-Vargas I, López-López G, Muy-Rangel MD, Izaguirre-Fierro G, Rubio-Carrasco W, Meza-Guerrero PC, Voltolina D. Cadmium, Copper, Lead and Zinc Contents of the Mangrove Oyster, Crassostrea corteziensis, of Seven Coastal Lagoons of NW Mexico. Bulletin of Environmental Contamination and Toxicology, 2009, 83: 595-599.
    Fricse CF, Koske RE. The spatial distributeon of spores of Vesicular Arbucular mycorrhizal fungi in a sand dune: microscale patterns associated with the root architecture of American beachgrass. Mycological Research, 1991, 95: 952-957.
    Gaspare L, Machiwa JF, Mdachi SJM Streck G, Brack W. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dares Salaam, Tanzania. Environmental Pollution, 2009, 157: 24-34.
    Graham JH, Linderman RG, Menge JA. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycrorrhiza formation. Plant Physiology, 1981, 68: 549-552.
    Johnson AC, Larsen PF. The distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Penobscot Bay (Maine USA) in relation to possible sources and to other sites worldwide. MarineEnvironmental Research, 1985, 15: 1-16.
    Joner EJ, Leyval C. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil sp iked with polycyclic aromatic hydrocarbons. Mycorrhiza, 2001, 11: 155-159.
    Kate B, Rhae A D, Jean K. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscularmycorrhizal fungi. Soil Biology & Biochemistry, 2006, 38: 1583-1595.
    Ke L, Yu KSH, Wong YS, Tam NFY. Spatial and vertical distribution of PAHs in mangrove sediments. Science of the Total Environment, 2005, 340: 177-187.
    Khaled FN , Daniel C, Ghaby K, Beliaeff B. Brachidontes variabilis and Patella sp. as quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. Environmental Pollution, 2006, 142: 73-82.
    Leita LMD, Enobili G, Muhlbachova C. Bioavailabil ity and effect s of heavy metals on soil microbial biomass survival during laboratory incubation. Biology Fertility of Soils, 1996, 19: 103-108.
    Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ. Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Applied and Environmental Microbiology, 2003, 69: 6250-6256.
    Leyval C, Binet P. Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. Journal of Environmental Quality, 1998, 27: 402-407.
    Liu Y, Tam NFY, Yang JX, Pi N, Wong MH, Ye ZH. Mixed heavy metals tolerance and radical oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 2009, 58: 1843-1849.
    Lu ZQ, Zheng WJ, Ma L. Bioconcentration of polycyclic aromatic hydrocarbons in roots of three mangrove species in Jiulong River Estuary. Journal of Environmental Sciences, 2005, 17: 285-289.
    Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 2006, 98: 1-17.
    Marques APGC, Oliveira RS, Rangel AOSS, Castro PML. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65: 1256-1263.
    Merryweather J, Fitter AH. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytologist, 1996, 132: 307-311.
    Mostafa AR, Wade TL, Sweet ST. Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen. Journal of Marine System, 2009, 78: 1-8.
    Mukherjee D, Mukherjee A, Kumar B. Chemical fractionation of metals in freshly deposited marine estuarine sediments of sundarban ecosystem, India. Environmental Geology, 2009, 58: 1757-1767.
    Navalker SN. Sewage treatment and discharge into tropical coastal waters. Search, 1974, 5: 187-190.
    Nelson CE, Bolgiano NC, Furutani SC, Safir GR, Zandstra B. The effect of soil phosphorus levels on mycorrhizal infection of field-grown onion plants and on mycorrhizal reproduction. Journal of American Society for Horticultural Science, 1981, 106: 781-788.
    Robin WK, Bobby R , Huang XQ, Brantley DD. A comparison of bacterial indicators and methods in rural surfacewaters. Environmental Monitoring and Assessment, 2006, 121: 275-287.
    Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Applied and Environmental Microbiology, 2005, 71: 6673-6679.
    Tam NFY. Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils. Environmental Pollution, 1998, 102: 233-242.
    Tam NFY, Wong YS. Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia, 1995, 295: 231-241.
    Valentine AJ, Osborne BA, MitchellD T. Form of inorganic nitrogen influencesmycorrhizal colonization and photosynthesis of cucumber. Scientia Horticulturae, 2002, 92: 229-239.
    Wang SG, Lin XG, Yin R, Hou YL. Effect of inoculation with arbuscular mycorrhizal fungi on the degradation of DEHP in soil. Journal of Environmental Sciencess, 2004, 16: 458-461.
    Wong YS, Tam NFY, Chen GZ, Ma H. Response of Aegiceras corniculatum to synthetic sewage under simulated tidal conditions. Hydrobiologia, 1997, 352 (1/3): 89-96.
    Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian-microsome mutagenicity test. Mutation Research, 1975, 31: 347-364.
    Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Lan CY, Shin PKS Cheung SG. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin, 2008, 57: 735-743.
    Zhang J, Liu J, Ouyang Y, Liao B, Zhao B. Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecological Engineering, 2010, 36: 807-12.
    Zhao ZW, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH. Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rainforest of Xishuangbanna, southwest China. Mycorrhiza, 2001, 11: 159-162.
    董昌金,赵斌.几种玉米大田除草剂对AM真菌侵染及其酶活性的影响.土壤学报, 2004, 41: 750-755.
    董昌金,赵斌.影响丛枝菌根真菌孢子萌发的几种因素研究.植物营养与肥料学报, 2003, 9(4): 489-494.
    房辉, Damodaran PN,曹敏.西双版纳热带次生林中的丛枝菌根调查.生态学报, 2006, 26(12): 4179-4185.
    环境保护工作全书编委会.环境保护工作全书.北京:中国环境科学出版社, 1997.
    李典友,程仁法.指示生物蚯蚓对生态环境质量的指示作用.安徽农业科学, 2006, 34(18): 4637-4638. 李江平,李雯.指示生物及其在环境保护中的应用.云南环境科学, 2001, 20(1): 51-54.
    李晓林,冯固等.丛枝菌根生理生态.北京:华文出版社, 2001.
    刘润进,陈应龙.菌根学.北京:科学出版社, 2007.
    陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布.厦门:厦门大学出版社, 2002: 65-68.
    孙娟,郑文教,陈文田.红树林湿地多环芳烃污染研究进展.生态学杂志, 2005, 24(10): 1211-1214.
    王伯荪,廖宝文,王勇军,昝启杰.深圳湾红树林生态系统及其持续发展.北京:科学出版社, 2002.
    王曙光,冯兆忠,王效科.环境污染物对丛枝菌根( AM)形成及功能的影响.应用生态学报,2006, 17(7): 1321-1325.
    王秀丽,徐建民,姚槐应,谢正苗.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报, 2003, 23(1): 22-27.
    杨琼.红树林人工湿地对生活污水的净化效率及基质微生物结构与功能多样性研究.中山大学博士学位论文.广州:中山大学出版社, 2008.
    杨小玲,杨瑞强,江桂斌.用贻贝、牡蛎作为生物指示物监测渤海近岸水体中的丁基锡污染物.环境化学, 2006, 25(1): 88-91.
    赵之伟,李习武,王国华,程立忠,沙涛,杨玲,任立成.西双版纳热带雨林中丛枝菌根真菌的初步研究.菌物系统, 2001, 20(3): 316-323.
    赵之伟.四种蕨类植物根际土壤中VA菌根真菌孢子种群组成和季相变化.云南植物研究, 1999, 21(4): 437- 441.
    Al-Karaki GN, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 2001, 11: 43-7.
    Amir H, Jasper DA, Abbott LK. Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza, 2008, 19: 1-6.
    Bago, B. Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y.Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology, 2003, 131: 1496-1507.
    Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 2002, 419: 389-392.
    Chaineau CH, Morel JL, Oudot J. Phytotoxicity and plant uptake of fuel oil hydrocarbons. Journal of Environmental Quality, 1997, 26: 1478-1483.
    Chatterjee M, Canário J, Sarkar SK, Branco V, Bhattacharya AK, Satpathy KK. Mercury enrichments in core sediments in Hugli–Matla–Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environmental Geology, 2009, 57: 1125-1134.
    Clapp JP, Young JPW, Merryweather JW, Fitter AH. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist, 1995, 130: 259-265.
    Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell and Environment, 2003, 26: 17-36.
    Daniell TJ, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology, 2001, 36: 203-209.
    Finlay RD. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 2008, 59: 1115-1126.
    Fitter AH. Darkness visible: reflections on underground ecology. Journal of Ecology, 2005, 93: 231-243.
    Frías-Espericueta MG, Osuna-López I, Ba?uelos-Vargas I, López-López G, Muy-Rangel MD, Izaguirre-Fierro G, Rubio-Carrasco W, Meza-Guerrero PC, Voltolina D. Cadmium, copper, lead and zinc contents of the mangrove oyster, Crassostrea corteziensis, of seven coastal lagoons of NW Mexico. Bulletin of Environmental Contamination and Toxicology, 2009, 83: 595-599.
    Ghazi N, Al-Karaki GN. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Hort Science, 2006, 109: 1-7.
    Giri B, Mukerji KG. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 2004, 14: 304-12.
    Helgason T, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonizing Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology, 1999, 8: 659-666.
    Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 1987, 106: 465-495.
    Khaled FN , Daniel C, Ghaby K, Beliaeff B. Brachidontes variabilis and Patella sp. as quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. Environmental Pollution, 2006, 142: 73-82.
    Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR. Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biology and Fertility of Soils, 2006, 42: 358-361.
    Kumar T, Ghose M. Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil. Wetlands Ecology and Management, 2008, 16: 471-483.
    Li LF, Li T, Zhao ZW. Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza, 2007, 17: 655-665.
    Macfarlane GR, Koller CE, Blomberg SP. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere, 2007, 69: 1454-1464.
    Malcova R, Rydlova J, Vosatka M. Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza, 2003, 13:151-157.
    Mangan SA, Adler GH. Consumption of arbuscular mycorrhizal fungi by spiny rats (Proechimys semispinosus) in eight isolated populations. Journal of Tropical Ecology, 1999, 15: 779-790.
    Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 2006, 98: 1-17.
    Merryweather J, Fitter A. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytologist, 1998, 138: 117-129.
    Miller RM, Reinhardt DR, Jastrow JD. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 1995, 103: 17-23.
    Miller SP, Sharitz RR. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grasses. Functional Ecology, 2000, 14: 738-748.
    Mohankumar V, Mahadevan A. Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Current Science, 1986, 55: 936.
    Mostafa AR, Wade TL, Sweet ST. Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen. Journal of Marine System, 2009, 78: 1-8.
    Nielsen KB, Kj?ller R, Olsson PA, Schweiger P, Andersen F?, Rosendahl S. Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycological Research, 2004, 108: 616-625.
    ?pik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184: 424-437.
    ?pik M, Moora M, Zobel M, Saksü, Wheatley R, Wright F, Daniell T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 2008, 179: 867-876.
    Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews: Microbiology, 2008, 6: 763-775.
    Pi N, Tam NFY, Wu Y, Wong MH. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquatic Botany, 2009, 90: 222-230.
    Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae.
    Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11841-11843.
    Ren H, Jian SG, Lu HF, Zhang QM, Shen WJ, Han WD, Yin ZY, Guo QF. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecological Research, 2008, 23: 401-407.
    Santos JC, Finlay RD, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytologist, 2006, 172: 159-168.
    Santos-Gonzalez JC, Finlay RD, Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Applied Environmental Microbiology, 2007, 73: 5613-5623.
    Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 2004, 70: 6240-6246.
    Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 2001, 105, 1413-1421.
    Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.
    Sharifia M, Ghorbanlib M, Ebrahimzadehc H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 2007, 164: 1144-1151.
    Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press. 2008.
    Solaiman MDZ, Saito M. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytologist, 1997, 136: 533-538.
    Tullio M, Perandrei F, Salerno A, Rea E. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biology and Fertility Soils, 2003, 37: 211-214.
    Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11: 1555-1564.
    Weissenhorn I, Glashoff A, Leyval C, Berthelin J. Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores from heavy-metal polluted soils. Plant and Soil, 1994, 167: 189-196.
    Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11: 1548-1546.
    Wirsel SGR. Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2004, 48: 129-138.
    Zheng J, Wang J, Luo XJ, Tian M, He LY, Yuan JG, Mai BX, Yang ZY. Dechlorane plus in human hair from an E-waste recycling area in South China: Comparison with dust. Environmental Science & Technology, 2011, 44: 9298-9303.
    陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布.厦门:厦门大学出版社, 2002: 65-68.
    王桂文,李海鹰,孙文波.钦州湾红树林丛枝菌根初步研究.广西植物, 2003, 23(5): 445-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700