用户名: 密码: 验证码:
立体匹配关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立体匹配是计算机视觉最活跃的研究问题之一,立体匹配的目标是从同一景物不同角度的两幅或多幅图像中求得景物的立体深度,可以为三维重建、机器人视觉、自主车导航等提供有用的信息,但是立体匹配是一个病态问题,准确地恢复景物视差(深度)目前仍然面临很大挑战。因为在计算机视觉技术中,双目视觉更接近于人的双眼视觉原理,并且在实际应用中更容易实现,所以本课题对双目视觉的立体匹配相关理论及一些关键技术进行了研究,尝试对不同需求建立相应的算法,并通过对真实图像的实验证明了算法的可行性和有效性。
     目前固定窗口的立体匹配方法有重要的缺陷,原因是没有办法选择一个统一大小尺寸的匹配窗口。一方面,窗口尺寸要尽量大,以便为可靠匹配包容足够的灰度变化;另一方面,窗口尺寸要尽量小,以避开投影畸变的影响。为了解决这一问题,得到准确的视差图,本文研究了在不同纹理和邻域结构的像素如何采用自适应窗口这一问题,并把这一问题放在更为复杂的彩色图像中来研究,分别结合RGB颜色相似性和HSV模糊相似性提出了多窗口选择和自适应窗口尺寸缩减两种方法,提高了立体匹配的精确度。
     图像噪声会极大地影响立体匹配的准确率,为了抑制噪声对匹配结果的影响,本文根据Rank变换的原理,并引入了Census变换和色差梯度的约束条件,提出了基于Rank变换的彩色图像匹配方法。为了解决Rank变换对变换窗口中心像素灰度值过分依赖的缺点,另外本文提出了一种基于领域差值的非参量图像变换方法,实验结果表明抑制了噪声对匹配结果的影响。
     传统的立体匹配建立在Lambertian的漫反射模型之上,漫反射模型的立体匹配在一个图像的大多部分是有效的,但是在处理图像中包含镜面反射的部分时会产生严重的匹配错误。为了解决这一问题,本文利用漫反射和镜面反射在灰度和最大色度上的不同,对分离像素中镜面反射部分的方法进行了数学推导,然后提出了在镜面反射部分首先分离镜面反射内容然后再匹配的方法,同时提出了一种针对镜面反射的匹配测度,结果在图像中漫反射部分和镜面反射部分都能匹配得到正确的视差。
     图切割将立体匹配转变为全局能量最小化问题,是目前匹配准确率最高的立体匹配方法之一,但是它在视差最大的范围内构造网络规模,匹配时间太长。为了解决这一问题,本文提出了一种基于视差梯度和模糊规则的快速最小割立体匹配方法,根据匹配像素的不同特性,把匹配搜索范围限定在有限的几个候选匹配像素之中,极大地减少了构造网络的规模,在保证高匹配率的情况下明显减少了匹配时间。
     由于红外图像具有高噪声、低分辨率的特点,这使得在红外图像中计算场景的深度信息非常困难,目前多采用基于特征的匹配方法,但是提取的特征像素只有物体的边缘,要想生成整幅图的视差非常困难。本文提出了先对图像进行相位一致性变换,然后根据相位一致性变换后图的特点,采用非一致采样方法不均匀地提取出特征像素形成一个网格图,然后利用信任度传播方法计算出网格节点像素的视差,再插值求取整幅图像的视差方法。结果得到了准确的红外场景深度信息。
Stereo matching has been one of the most researched areas of machine vision. It can bring critical advantages to a very wide spectrum of visual application domains, such as 3-D reconstruction, robot vision, automation land vehicle navigation, and so on. But stereo matching is an ill-posed problem with the influence of distortions, occlusions and low texture, obtaining exactly disparity still faces challenge. In computer vision, binocular vision is similar to the mechanism of human binocular vision, and easy to achieve in practical applications. The relevant theories and approaches of binocular stereo matching have been studied in this thesis, and some progressive achievements have been made.
     A central problem in stereo matching by computing correlation or sum of squared differences (SSD) lies in selecting an appropriate window size. The window size must be large enough to include enough intensity variation for reliable matching, but small enough to avoid the effects of projective distortion. If the window is too small and does not cover enough intensity variation, it gives a poor disparity estimate, because the signal to noise ratio is low. If, on the other hand, the window is too large and covers a region in which the depth of scene points (i.e., disparity) varies, then the position of maximum correlation or minimum SSD may not represent correct matching due to different projective distortions in the left and right images. For this reason, a window size must be selected adaptively. We have researched multiple windows and adapted windows which find a best matching windows for area-based stereo matching.
     Image transformation is widely and effectively used in image processing. According to the principle of Rank transformation and Census constraint and color difference gradient constraint, the paper presented a color image matching algorithm based on Rank transformation. The experiment results show that the disparity of Rank transformation image is more precise than that of intensity image. At the same time, the matching result is more robust by noise influence to a certain extent. In addition a new non-parametric transform founded on neighboring region disparity for stereo matching is proposed in the paper, the proposed algorithm is the more precise matching invariance to certain types of image noise than Rank transform and Census transform.
     Traditional stereo correspondence algorithms rely heavily on the lambertian model of diffuse reflectance. While this diffuse assumption is generally valid for much of an image, processing of regions that contain specular reflections can result in severe matching errors. In this paper, We address the problem of binocular stereo dense matching in the presence of specular reflections by introducing a novel correspondence measurement which is robust to the specular reflections. Accurate depth can be estimated for both diffuse and specular regions. Unlike the previous works which seek to eliminate or avoid specular reflections using image preprocessing or multibaseline stereo, our approach works in its presence.
     Some recent stereo matching algorithms are based on graph cuts, they transform the matching problem to a minimisation of a global energy function. The minimisation can be done by finding out an optimal cut in a special graph. Different methods were proposed to construct the graph, But all of them, consider for each pixel, all possible disparities between minimum and maximum values. In this article, a new method is proposed:only some potential values in the disparity range are selected for each pixel, These values can be found using disparity gradient and fuzzy logic. This method allows us to make wider the disparity range,and at the same time to limit the volume of the graph, and therefore to reduce the computation time.
     Infrared images have higher noise and lower resolution than visible images. This makes it more difficult to achieve a better disparity image in infrared images by using the method based on region matching. After analyzing the phase congruency transformed image, a sparse depth field may be obtained that can be interpolated to produce a dense depth field. In our proposed technique the sparse disparity map is produced by matching the stable features, extracted from the phase congruency model. A set of Log-Gabor wavelet coefficients is used to analyze and describe the extracted features for matching. The resulted sparse disparity map is then refined by triangular and epipolar geometrical constraints. In this work, we present a stereo matching algorithm based on belief propagation (BP). The algorithm is designed to work on sparse images originating from image content adaptive mesh representation techniques. There, an image is approximated with a mesh. The nodes of the mesh are the non-uniform samples which are the ones that form the sparse image. The key issue in the proposed method is to formulate BP such that it matches a sparse left stereo image with a dense right image to obtain a sparse depth map. Moreover, we propose a simple method that recovers the dense disparity map of the scene from the sparse one using the approximating mesh of the image.
引文
[1]Linda G.shqpiro, George C, Stockman计算机视觉.机械工业出版社.2005
    [2]Y. Cheng, and M.A. Jafari. Vision-Based Online Process Control in Manufacturing Applications. Automation Science and Engineering, IEEE Transactions on, Jan.2008, 5(1):140-153
    [3]David A, Forsyth J P.计算机视觉-一种现代方法.北京:电子工业出版社,2004
    [4]C.M. Falco. Computer Vision and Art. Multimedia,2007,14(2):8-11
    [5]H. Meng, P. Nick, and B. Chris.A Human Action Recognition System for Embedded Computer Vision Application. Computer Vision and Pattern Recognition,2007. CVPR '07. IEEE Conference on 17-22 June 2007:1-6
    [6]Prem Kalra, Shmuel Peleg计算机视觉、图形与图像处理/会议录.广东教育出版社.2006
    [7]Forsyth, Ponce计算机视觉:一种现代的方法(英文影印版).清华大学出版社.2004
    [8]Marr D. Vision. W. H. Freeman and company.1982
    [9]G. Danuser.Computer vision for systems biology. Biomedical Imaging:Nano to Macro, 2006.3rd IEEE International Symposium on,6-9 April 2006:241-244
    [10]周永新,罗述谦.基于形状特征点最大互信息的医学图像配准.计算机辅助设计与图形学学报.2002,14(7):654-658
    [11]谷口庆治.数字图像处理(基础篇).北京:科学出版社,2002
    [12]Haijiang Zhu, Jinfu Yang, Zhongtian Liu. Fisheye Camera Calibration with Two Pairs of Vanishing Points.2009,1(25-26):321-324
    [13]Carlos Leung, Ben Appleton, Changming Sun. Iterated dynamic programming and quadtree subregioning for fast stereo matching. Image and Vision Computing.2008, 26(10):1371-1383
    [14]Ju Yong Chang, Kyoung Mu Lee, Sang Uk Lee. Stereo matching using iterative reliable disparity map expansion in the color-spatial-disparity space. Pattern Recognition.2007, 40(12):3705-3713
    [15]Vasiliki E, Markaki Pantelis A, Asvestas George K, Matsopoulos. Application of Kohonen network for automatic point correspondence in 2D medical images. Computers in Biology and Medicine.2009,39(7):630-645
    [16]Min Chul Sung, Sang Hwa Lee, Nam Ik Cho. Stereo Matching Using Multi-directional Dynamic Programming. Intelligent Signal Processing and Communications. ISPACS'06. International Symposium on.2006:697-700
    [17]Wenhui Zhou, Zhiyu Xiang, Weikang Gu. Segment Based Stereo Matching Using Cooperative Hopfield Networks. Computational Intelligence and Security,2006, 2(3-6):1845-1848
    [18]Klaus A.Sormann M, Karner K. Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure. Pattern Recognition.2006, 3:15-18
    [19]Quanquan Gu, Jie Zhou. Belief propagation on Riemannian manifold for stereo matching. Image Processing, ICIP 2008.15th IEEE International Conference.2008:1788-1791
    [20]Eunkwang Park, Kwangyun Wohn. Stereo and motion correspondences using nonlinear optimization method. Computer Vision and Image Understanding.,2006,101 (3):194-203
    [21]Jun Feng, Horace H S, Ip Lap Yi Lai, Alf Linney. Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions. Image and Vision Computing, Volume 26, Issue 6,2 June 2008, Pages 761-775
    [22]Bian Houqin, Su Jianbo. Feature matching based on geometric constraints in weakly calibrated stereo views of curved scenes. Journal of Systems Engineering and Electronics. 2008,19(3):562-570
    [23]Haili Chui, Anand Rangarajan. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding. Volume 89, Issues 2-3, February-March 2003, Pages 114-141
    [24]Mohamed El Ansari, Lhoussaine Masmoudi, Abdelaziz Bensrhair. A new regions matching for color stereo images. Pattern Recognition Letters, Volume 28, Issue 13,1 October 2007, Pages 1679-1687
    [25]Lorenzo T, Vladimir K, Carsten R. Feature Correspondence Via Graph Matching:Models and Global Optimization. Proceedings of the 10th European Conference on Computer Vision:Part 11.2008:596-609
    [26]Marr D, Poggio T. Cooperative Computation of Stereo Disparity. Science,1976,194: 209-236
    [27]Barnard S T, Thompson W B. Disparity analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(4):333-340
    [28]Wai Lam Chan, Hyeokho Choi, Baraniuk R G. Multiscale Image Disparity Estimation using the Quaternion Wavelet Transform. Image Processing. IEEE International Conference.2006:1229-1232
    [29]Xiaodong Huang, Dubois E. Disparity estimation for the intermediate view interpolation of stereoscopic images. Acoustics, Speech, and Signal Processing. Proceedings. (ICASSP '05). IEEE International Conference.2005,2(18-23):881-884
    [30]徐奕,周军,周源华.基于小波及动态规划的相位匹配.上海交通大学学报.2003,37(3):388-392
    [31]Fleet D J. Disparity From Local Weighted Phase-Correlation. IEEE Transactions on Systems, Man and cybernetics, San Antonio,1994:48-56
    [32]Fleet D J, Jepson A D, Jenkin M R M. Phase-based Disparity Measurement. CVGIP: Image understanding,1991,53(2):198-210
    [33]Zhou J, Xu Y, Yu W R. Phase matching with multiresolution wavelet transform. In: Proceedings of SPIE,2002,4661(10):82-91
    [34]Maimone M W, Shafer S A. Modeling Foreshortening in Stereo Vision Using Local Spatial Frequency. Technical report CMU-CS-95-104, Carnegie Mellon University, Pittsburgh
    [35]Luo Q, Zhou J, Yu S, Xiao D. occlusion detection with integrity and illusion sensitivity. Pattern Recognition Letters,2003,24(9-10):1143-1149
    [36]Tomas Pajdla. Comprter Vision-Eccv 2004计算机视觉——ECCV2004/会议录第Ⅱ部分.北京燕山出版社.2004
    [37]Thompson W B Barnard S T. Disparity analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(4):333-340
    [38]Bernt Schiele, Gerhard Sagerer.湖南文艺出版社.2001
    [39]Faugeras,O. and Robert, L. What can two images tell us about a third one?, Proceedings of the Third European Conference on Computer Vision,1994:485-492
    [40]Avidan, S. and Shashua,A., Novel view synthesis in tensor space, In Conference on Computer Vision and Pattern Recognition,1997:1034-1040
    [41]Kanade T,Odutomi M.A stereo matching algorithm with an adaptive windows:theory and Experiments [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(9):920-932
    [42]D. Marr, and T. Poggio. Cooperative Computation of Stereo Disparity. Science,1976, 194:209-236
    [43]S. Cochran, and G. Medioni.3-D surface description from binocular stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):981-994
    [44]丁震,胡钟山,唐振民.从二维图像中恢复距离信息的体视匹配方法.南京理工大学学报,1996,20(5):449-452
    [45]K. Prazdny. Detection of Binocular Disparities. Biological Cybernetics,1985,52(2): 93-99
    [46]R.D. Eagle, and S.J.D. Prince. Weighted directional energy model for human stereo correspondence. Vision Research,2000,40:151-162
    [47]徐光佑.计算机视觉.北京:清华大学出版社,1999
    [48]高文,陈熙霖.计算机视觉-算法与系统原理.北京:清华大学出版社,1999
    [49]Moravec H P. Towards Automatic Visual Obstacle Avoidance. In:Proceedings of 5th Int Joint Conf Artificial Intell, Cambridge, MA,1977
    [50]Levine M D. Handley O. Computer Determination of Depth Maps. Computer Graphics and Image Processing,1972,2:131-150
    [51]Koschan, A.Using perceptual attributes to obtain dense depth maps.Proceedings of the IEEE outhwest Symposium on Image Analysis and Interpretation,1996:155-159
    [52]Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing, Second Edition[M]. Beijing:Publishing House of Electronics Industry,2003
    [53]薛向阳等.一种新的颜色相似度定义及其计算方法.计算机学报,1999,22(9):918-922
    [54]Okutomi M, Yoshizaki O, Tomita G.Color stereo matching and itsapplication to 3-D measurement of optic nerve head pattern recognition[C]//Proceedings of the 11th IAPR International Conference onComputer Vision and Applications.1992,1:509-513
    [55]Sylvia Oi-Yee chan, Ya-Ping Wong, Jacob K, Daniel, Dense Stereo Correspondence Based On Recursive Adaptive Size Multi-Windowing. Image and Vision Computing NZ, 2003:256-259
    [56]Francescomaria Marino,Giuseppe Mastronardi.A robust algorithm for the digital stereo matching.1996 IEEE
    [57]Zadeh, LA.. Fuzzy sets. Information and Control.1965,8:338-353
    [58]Chi Zheru, Yan Hong, Pham T. Fuzzy algo rithm s:W ith application to image processing and pattern recognition. Wo rld Scientific Publish ing Co. P te. L td, Singapo re,1996
    [59]Smith, A R. Color gamut transform pairs. Computer Graphics.1978,12:12-19
    [60]Johanyak, Z C.Kovacs S. A brief survey and comparison on various interpolation based fuzzy reasoning methods.Journal of Applied Sciences at Budapest Tech Hungary 2006, 3:91-105
    [61]Lior Shamir, A proposed stereo matching algorithm for noisy sets of color images, Computers & Geosciences.2007,33,1052-1063
    [62]Takagi T, Sugeno M.Derivation of fuzzy control rules from human operator's ontrol actions. In:Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille, France,1983:55-60
    [63]Takagi T, Sugeno M.. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,1985(20),116-132
    [64]Forstner W, Pertl A.,Photogrammetric standard methods and digital image matching techniques for high precision surface measurements. In:Gelsema, E.S., Kanal,L.N. (Eds.), Pattern Recognition in Practice Ⅱ. Elsevier,New York, NY,1986
    [65]Jasmine Banks and Mohammed Bennamout and Peter Corke, Non-parametric techniques for fast and robust stereo matching, IEEE Speech and Image Technologies for Computing and Telecommunications,1997
    [66]Ahlvers U, Zoelzer U, Rechmeier S. FFT-based disparity estimationfor stereo image coding [C]//Proceedings 2003 International Conferenceof Image Processing, Barcelona, Spain.2003, (1):761-764
    [67]Moreau G, Fuchs P, Doncescu A, Regis S. Dense stereo matchingmethod using a quarter of wavelet transform[C]//Proceedings 2002International Conference of Image Processing, New York, USA.22-25 Sept.2002, (1):261-264
    [68]Adjouadi M, Candocia F. A stereo matching paradigm based on the Walsh transformation [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence (S0162-8828),1994, 16(12):1212-1218
    [69]Pagliari C L, Dennis T J. Stereo disparity computation in the DCTdomain using genetic algorithms[C]//Proceedings 1997 InternationalConferenc.e of Image Processing, Washington DC, USA.1997, (3):256-259
    [70]U. Dunn and P. Corke, Real-time stereopsis using FPGAs, in Proc. Workshop Field-Programmable Logic Applicat, London, U. K, Sept.1997:400-409
    [71]段凤增.信号检测理论.哈尔滨:哈尔滨工业大学出版社,2002
    [72]Hild,Michael,which color similarity measure is most effective for background-frame differencing? Emura,Toshinobu Source:Final Program and Proceedings-IS and T/Sid Color Imaging Conference,2001:168-173
    [73]Leclercq Philippe, Morris John. Robustness to noise of stereo matching//Proceedings 12th International Conference of ImageAnalysis and Processing, Mantova, Italy.2003: 606-611
    [74]Kum Wang,Adaptive Stereo Matching Algorithm Based on Edge Detection. CIPI, IEEE, 2004
    [75]S. Barnard and M. Fischler. Computational stereo. Computing Surveys,14(4):553-572, Dec 1982
    [76]K. N. Plataniotis and A. N. Venetsanopoulos. Color Image Processing and Applocations, Springer-Verlag, berlin,2000
    [77]Scharstein D, Szeliski R. A Taxonomy and Evaluation of DenseTwo-Frame Stereo Correspondence Algorithms. IJCV (S0920-5691),2002,47(1/2/3):7-42
    [78]J.Banks and M.Bennamoun. A constraint to improve the reliability of stereo matching using the Rank transform. IEEE International Conference.1999,1(6):3321-3324
    [79]Jasmine Banks and Mohammed Bennamout and Peter Corke, Non-parametric techniques for fast and robust stereo matching, IEEE Speech and Image Technologies for Computing and Telecommunications,1997
    [80]Wei Zhou and Chandra Kambhamettu, Binocular Stereo Dense Matching in the Presence of Specular Reflections, IEEE conf.CVPR,2006
    [81]D. Bhat and S. K. Nayar. Stereo and specular reflection.IJCV.1998,26(2):91-106,
    [82]D. Bhat and S. K. Nayar. Stereo in the presence of specularreflection. IEEE ICCV, 1995:1086-1092,
    [83]G. Brelstaff and A. Blake. Detecting specular reflectionsusing Lambertian constraints. Proc. Int. Conf. on Computer Vision,1988:297-302,
    [84]Y. Yang, A. Yuille, and J. Lu. Local, global and multilevel stereo matching. CVPR, 1993:274-279
    [85]H. Jin, S. Soatto, and A. Yezzi. Multi-view Stereo Beyond Lambert. Proc. IEEE conf. CVPR,2003
    [86]S. Lin, Y. Li, S. Kang, X. Tong, and H. Shum. Diffuse-Specular Separation and Depth Recovery from Image Sequences.Proc. European Conf. Computer Vision,2002:210-224,
    [87]K. Torrance and E. Sparrow. Theory for off-specular reflection from roughened surfaces. Journal of the Optics Society of America,1967,57:1105-1114
    [88]Cai L D, Mayhew J. A note on some phase differencing algorithm for disparity estimation. Int Journal of Computer Vision,1997,22(2):111-124
    [89]Candocia F, M. Adjouadi. Similarity measure for stereo feature matching. IEEE Trans.on Image Processing.1997,6(10):1460-1464
    [90]S. Shafer. Using Color to Separate Reflection Components.Color Research and Applications,1985,10:43-51
    [91]H.C. Lee, E.J. Breneman, and C.P.Schulte. Modeling light reflection for computer color vision. IEEE Trans.on Pattern Analysis and Machine Intelligence,1990,12:402-409
    [92]Robby T.Tan,Ko Nishino,Katsushi Ikeuchi, Reflection Components Seperation based on Chromaticity and Noise Analysis, IEEE Transactions on Pattern Analysis and Machine ntelligence,October 2004,26(10):1373-1379
    [93]L.D. Stefano, M. marchionni, and S. Mattoccia. A Fast Area-Based Stereo Matching Algorithm. Image and Vision Computing,2004,22(12):983-1005
    [94]夏永泉,杨静宇.基于最大窗口的二次立体匹配方法.计算机科学,2006,33(3):208-211
    [95]D.N. Bhat, and S.K. Nayar. Ordinal Measures for Image Correspondence IEEE Trans. Pattern Analysis and Machine Intelligence,1998,20:415-423
    [96]O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E. Theron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real Time Correlation-Based Stereo Algorithm, Implementations and Applications [R#16]:[INRIA Technical Report 2013].1993
    [97]P. Burt, and B. Julesz. Modifications of the classical notion of Panum's fusional area. Percept,1980,9:671-682
    [98]Huq S,Koschan A, and et al. Efficient BP stereo with automatic paramemeter estimation. Image Processing.15th IEEE International Conference on 12-15.2008:301-304
    [99]Z. Li, and G. Hu. Analysis of Disparity Gradient Based Cooperative Stereo. IEEE Trans, on Image Processing,1996,5 (11):1493-1506
    [100]S.B. Pollard, J.V.W. Mayhew, and J.P. Frisby. PMF:A stereo correspondence algorithm using a disparity gradient limit. Percept,1985,14:449-470
    [101]S.B. Pollard, J. Porrill, J.E.W. Mayhew, and J.P. Frisby. Disparity gradient, Lipschitz continuity, and computing binocular correspondence. O. D. Faugeras and G. Giralt, eds. Proc.3rd Int.Symp. Robot. Res,1986:19-26
    [102]P. Moallem, and K. Faez.Search space Reduction in t he Edge Based Stereo Correspondence. In:Proceedings of the International Workshop on Vision,Modeling,and Visualization 2001 (VMV2001),Germany,2001:423-429
    [103]Liu Zhengdong,Yang Jingyu. Stereo matching algorithm using adaptive windows constrained and DTW [J]. Journal of Computer2Aided Design & Computer Graphics, 2005,17(2):291-294 (in Chinese)
    [104]D. Scharstein and R. Szeliski,A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J] IJCV,2002,47,(1-3):7-42
    [105]Y. Boykov, O. Veksler, and R. Zabih, Markov random fields with efficient approximations, in Proc. of the IEEE CVPR,1998:648-655
    [106]L. Ford and D. Fulkerson, Flows in Networks, Princeton University Press,1962
    [107]T. Cormen and R. Rivest et al., Introduction to Algorithms, Second Edition, The MIT Press,2001
    [108]A. Goldberg and R. Tarjan, "A new approach to the maximum-flow problem," Journal of the ACM,1988.35(4):921-940,
    [109]Y Boykov, V Kolmogorov, "An experimental comparison of min-cut/max-flowalgorithms for energyminimization in vision," in IEEE Trans. on PAMI,2004,26:1124-1137
    [110]S. Roy, Stereo without epipolar lines:A maximumflow formulation。IJCV,1999,34, (2-3):147-161
    [111]P. Granjean and P. Lasserre, Stereo vision improvmentsin IEEE ICAR, Barcelona,1995
    [112]O. Veksler, Efficient graph-based energy minimization methods in computer vision, Ph.D. thesis, Cornell University,1999
    [113]L. Ford and D. Fulkerson, Flows in Networks,。 Princeton University Press,1962
    [114]T. Cormen and R. Rivest et al, Introduction to Algorithms, Second Edition。The MIT Press,2001
    [115]Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11): 1222-1239
    [116]Bobick A F, Intille S S. Large occlusion stereo. International Journal of Computer Vision,1999,33(3):181-200
    [117]Kovesi P D. Phase congruency:A low-level image invariant. Psychological Research, 2000,64(2):136-148
    [118]Hajebi K, Zelek J S.Dense Surface from Infrared Stereo. Applications of Computer Vision,2007. WACV'07,IEEE Workshop on Feb.2007:21-21
    [119]Field D J. Relations Between the statistics of natural images and the response properties of cortical cells. J. Opt.Am.A.1987,4(12):2379-2394
    [120]Simoncelli E P, Freeman W T.and et al. Shiftable multiscale transforms. IEEE Transactions on Information Theory, March 1992,38(2):587-607
    [121]惠阿丽,林辉.基于小波分维的红外图像边缘检测.红外技术,2007,29(1):55-58
    [122]Mulet2ParadaM, Noble J A.2D+T acoustic boundary detection in echocardiography [J]. Medical Image Analysis,2000,4:21-30
    [123]Xiao Z, Yu M, Li Q, et al. Symmetry Phase Congruency:Feature Detector Consistent with Human Visual SystemCharacteristics. WAA2003.2003:381-386
    [124]M.C. Morrone, and R.A. Owens. Feature detection from local energy. Pattern Recognition Letters,1987.6(5):303-313
    [125]Venkatesh S, Owens R.A.An energy feature detection scheme. In The International Conference on Image Processing, Singapore,1989:553-557
    [126]E.W.Weisstein. The CRC Concise encyclopedia of mathematics. CRC Press,1998
    [127]Kovesi P. Invariant measures of image features from phase information. PhD thesis, Univ. of Western Australia,1996
    [128]Sobel L. Camera Models and Machine Perception. PhD theses, Stanford University, Standford, CA,1970
    [129]Canny J F. Finding edges and lines in images. Technical report,No.720, MIT, AI Lab.1983
    [130]S.Sarkar, and K.L.Boyer. Optimal infinite impulse zero crossing based edge detectors. CVGIP:Image Understanding,1991,54(2):224-243
    [131]Hajebi K, Zelek J S.Dense Surface from Infrared Stereo. Applications of Computer Vision,2007. WACV'07,IEEE Workshop on Feb.2007:21-21
    [132]Field D J. Relations Between the statistics of natural images and the response properties of cortical cells. J. Opt.Am.A.1987,4(12):2379-2394
    [133]Sarkis M,Lorscheider O, Diepold K, Efficient content adaptive mesh representation of an image using binary space partitions and singular value decomposition, in IEEE InternationalConference on Acoustics, Speech and Signal Processing,Mar.2008:1109-1112
    [134]Boykov Y,Veksler O,Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11): 1222-1239,
    [135]Weiss Y, Freeman W T.On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 2001,47(2):723-735
    [136]Felzenszwalb P F, Huttenlocher D P, " Efficient belief propagation for early vision," International Journal on Computer Vision,2006,70,(1),:41-54.
    [137]Majumdar J, Seethalakshmy. Efficient parallel processing for depth calculation using stereo. Robotics and Autonomous Systems,1997,20:1-13
    [138]余洪山,王耀南.主动立体双目视觉平台的设计与实现.工业仪表与自动化装置,2004,(1):61-64
    [139]Ting Y,Chen C H, Feng H Y, and et al.Apply Computer Vision and Neural Network to Glue Dispenser Route Inspection. Mechatronics and Automation,2007. ICMA 2007. International Conference on,5-8 Aug.2007:3882-3887
    [140]Atli A V,Gullu M K, and et al.Tracking the Rotation of Lab Animals via Computer Vision. Signal Processing and Communications Applications,2007.
    [141]Lopez Sastre R.J,GilJimenez P, and et al.Computer Algebra Algorithms Applied to Computer Vision in a Parking Management System. Industrial Electronics,2007. ISIE 2007. IEEE International Symposium,2007,4-7:1675-1680
    [142]Kumar A. Computer-Vision-Based Fabric Defect Detection:A Survey. Industrial Electronics, IEEE Transactions on, Jan.2008 55(1):348-363
    [143]郑志刚,汪增福.基于区域协同优化的立体匹配算法.自动化学报,2009,5(35):469-477
    [144]郭大波,卢朝阳,焦卫东,崔玲玲.遮挡检测/立体匹配中的分段动态规划法.电子学报,2009,7(37):1516-1521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700