用户名: 密码: 验证码:
仿蟹机器人步态规划及复杂地貌行走方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对仿蟹机器人复杂地貌行走时需要解决的步行足冲击力、机体稳定性差等技术问题,在机器人步行足轨迹规划、步态方法及柔顺控制等方面开展了理论与实验研究工作。
     提出了仿蟹机器人结构方案,包括:模块化关节、扁形弹性足尖结构、步行足以及躯体结构等。并从正运动学和逆运动学两方面对仿蟹机器人步行足以及机体的运动性能进行了分析和仿真。根据仿蟹机器人步行足关节角度的约束,利用搜索法求解步行足以及整机的可达工作空间。
     研究了仿蟹机器人步行足末端轨迹规划问题,采用三次样条曲线对仿蟹机器人步行足末端轨迹进行了规划。提出了自适应轨迹规划原理和轨迹库的基本建立方法与其调用机制。建立了虚拟样机系统的控制系统和仿真模型,对仿蟹机器人在复杂地形情况行走进行仿真分析,证明了仿蟹机器人较强的复杂地形适应能力。
     通过分析生物螃蟹的运动特点,对仿蟹机器人步行足的步序关系及步态参数进行了规划研究,提出了一种步态规划方法。依据静稳态条件,将机器人步行足依z字形分组,通过调节组内先后摆动的两步行足间的相位因子调整步序,并提出交错等相位波形步态。建立了步态参数方程,计算了步行足占空比,利用能耗比分析了相位因子与占空比变化对步态能量损耗的影响。步态仿真分析表明,随着占空比增大,能耗比值呈线性增加趋势,当占空比等于0.454,相位因子等于0.25时,躯体可以获得较高的移动速度和较好的运动稳定性,运动能量损耗最小。与双四足步态相比,机器人具有良好的行走稳定性和较低的能耗比。
     提出了仿蟹机器人的柔顺控制方法。分析了步行足与环境的接触模型,采用基于位置阻抗的柔顺控制方法,建立了机器人控制策略仿真模型。仿真结果表明采用柔顺控制的机器人在行走过程中的冲击力得到了抑制,步行足末端受力能够迅速稳定,无波动现象,说明该控制方法适用于机器人的行走控制。同时,由于处于摆动相与支撑相的步行足受到的外部环境干扰不同,特别是力信号的差异对控制的影响,将模糊控制器应用到步行足单关节的位置控制中,并进行了仿真分析与实验研究。结果表明模糊控制对力参数的变化具有较强的鲁棒性,适合作关节位置控制系统的控制器。
     研制仿蟹机器人实验样机,构建了测量实验平台,对仿蟹机器人复杂地形的运动性能进行了实验研究,为仿蟹机器人的深入研究奠定了基础。利用dSPACE实时仿真系统进行了仿蟹机器人步态实验,并对仿蟹机器人实验样机进行了平面运动和斜坡运动的测试。通过不同速度下的交错等相位波形步态与双四足步态的对比实验,验证了交错等相位波形步态的可行性,实验结果表明交错等相位波形步态在运动过程中,速度变化平稳,重心波动小,具有良好的运动稳定性。
     通过引入柔顺控制策略解决了仿蟹机器人行走时步行足冲击力的问题,消除了冲击力对步行足的影响。通过柔顺控制实验,对系统刚度变化进行了测试,实验结果表明,在该控制策略的作用下,机器人具有良好的柔顺性,在步行足受到冲击力时能够产生良好的缓冲作用。
     仿蟹机器人在行走过程中具有较高的运动稳定性,其冗余肢体结构使其能在复杂环境中仍保持稳定状态,即使个别关节出现故障仍然可以完成作业,具有较强的地形适应性。
Theroy analysis and experimental study have been developed in this paper aiming at solving the leg impact and body stability problem during walking on the uneven terrains.
     The structure schemes of the crablike robot including modularization joints, elastic toe, walking legs and body structure are proposed. And the motion performance of the leg and body has been studied and simulated by forward kinematics and inverse kinematics. Based on joint angle constraints of walking leg, the reachable workspaces of the leg and body are worked out using searching method.
     The trajectory problem of the leg is studied and the tip trajectory is planned using cubic spline curve. An adaptive trajectory planning strategy and trajectroy database are put forward as well as the calling mechanism of database. The simulation which is made for testing the motion on the uneven terrain proves that the crablike robot has favorable environmental adaptability.
     The pace order and gait's parameters of the crablike robot are planned based on the analysis of crab's motion traits and a new gait planning method is put forward. According to the statistic stability, the walking legs have been distributed along Z-form and the alternating equal-phase wave gait is proposed after considering the effect of variable phase factor of the successive legs within a tetrapod group. The paper establishs the gait's parameter function, calculates the duty factors of the legs and analyzes the changing effects of duty factor and phase factor using energy comsumption ratio. The results of gait's simulation show that the energy comsumption ratio increases linearly with the duty factor. When the duty factor is 0.454, the phase factor is equal to 0.25 and the robot can walk with better moving stability and lower energy comsumption ratio than the double tetrapod one.
     The compliance control method of the crablike robot is proposed in this paper. Based on position impedance control method, the simulation model of control is established through analyzing the contact model between legs and environment. The simulation results indicate that the impact force is restrained during walking by using compliance control without leg fluctuation. That means the compliance control method is suitable for the walking control of the robot. Because the environment impacts on the transferring legs and supporting legs are different, especially the effect of different force signal, the fuzzy controlor is applied to the position control of a single joint and the simulation is carried out. The simulation results show that the fuzzy controler has strong robustness for the variation of force and is suitable for the controler of joint's position control. And the compliance control of the robot is realized in the paper.
     The experimental platform for the crablike prototype is developed and the experiments of the motion performance on the complex terrain have been made sufficiently for the deep study. Gaits'experiments using real-time simulation system dSPACE and moving tests on flat groud and slope are carried out. Through the contrast experiments between alternating equal-phase wave gait and double tetrapod gait, the feasibility of the alternating equal-phase wave gait is proved. The results show that the velocity of alternating equal-phase wave gait changed smoothly with small fluction of gravity centre and the robot can receive favorable gait stability.
     The influence of the leg's impact force is eliminated by using control strategy. Through compliance control experiment, the variation of system stiffness is tested. And the compliance control tests show that the robot can receive nice compliance performance and this method can provide a good buffer effect when the legs are subject to the impact force.
     The robot has high motion stability with stronge terrain adaptation. The crablike robot can also keep stable in complex environment because of its redundant structure and complete the operation even if some joints'are disabled.
引文
[1]蔡自兴.人工智能控制.北京:化学工业出版社,2005,136-143页
    [2]王田苗,刘进长.机器人技术主题发展战略的若干思考.中国制造业信息化.2003.11
    [3]孟庆春,齐勇,张淑军等.智能机器人机器发展.中国海洋大学学报,2004,34(5):831-838页
    [4]干东英,甘建国.步行机器人评述.机械工程.1990(4):1-4页
    [5]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制.武汉:华中科技大学出版社,2006
    [6]S. HIROSE, K. KATO. Study on Quadruped Walking Robot in Tokyo Institute of Technology-Past, Present and Future-Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA.2000:414-41P
    [7]R.S.Mosher. Test and Evaluation of a Versatile Walking Truck.Proc.Off-Road Mobility Research Symp,1968:359-379
    [8]Angeles J. Fundamentals of Robotic Mechanical Systems:Theory, Methods, and Algorithms. New York:Springer-Verlag,1997
    [9]王刚.多足仿生机械蟹步态仿真及样机研制.哈尔滨工程大学硕士学位论文,2007:1-10P
    [10]刘海波,顾国昌,张国印.智能机器人体系结构分类研究.哈尔滨工程大学学报,2003,24(6):664-668页
    [11]R. B. McGhee. Some Finite State Aspects of Legged Locomotion. Math.Biosci.,1968: 67-84P
    [12]Hirose, Shigeo, Masui Tomoyuki, Kikuchi Hidekazu.et al. TITAN III:a quadruped walking vehicle:its structure and basic characteristics. MIT Press,1985:325-331P
    [13]Hirose, S., Yoneda, K., Tsukagoshi, H. TITAN VII:quadruped walking and manipulating robot on a steep slope.Proceedings.1997 IEEE International Conference on Robotics and Automation,1997,1(1):494-500P
    [14]Arikawa K, Hirose S. Development of quadruped walking robot TITAN-VIII. IEEE International Conference on Intelligent Robots and Systems,1996:208-214P
    [15]Berns.K, Ilg.W, Deck. M, Dillmann. R. The Mammalian-like Quadrupedal Qalking Machine BISAM.5th International Workshop on Advanced Motion Control, Coimbra., 1998:429-433P
    [16]Berns.K, Ilg.W, Deck.M, Albiez.J, Dillmann.R.Mechanical Construction and Computer Architecture of the Four-legged Walking Machine BISAM., IEEE/ASME Transactions on Mechatronics,1999:32-38P
    [17]Jose A. Galvez, Joaquin Estremera, Pablo Gonzalez de Santos. A new legged-robot configuration for research in force distribution. Mechatronics 2003 (13):907-932P
    [18]Hiroshi Kimura. Three-dimensional Adaptive Dynamic Walking of a Quadruped-rolling Motion Feedback to CPGs Controlling Pitching Motion. Proc.of IEEE Robotics and Automation(ICRA), Washington D.C.2002:2228-2233P
    [19]Yasuhiro Fukuoka. Adaptive Dynamic Walking of a Quadruped Robot Tekken'on Irregular Terrain Using a Neural System Model. Proc.of IEEE Robotics and Automation (ICRA).2003:2037-2042P
    [20]Bernhard Klaassen, Ralf Linnemann, Dirk Spenneberg, Frank Kirchner. Biomimetic walking robot SCORPION:Control and modeling. Robotics and Autonomous Systems,2002:69-76P
    [21]Dirk Spenneberg, Stefan Bosse, Jens Hilljegerdes, et al. Control of a Bio-Inspired Four-Legged Robot for Exploration of Uneven Terrain. In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands,2006:1-7P
    [22]http://news.whjs.gov.cn/19/content_70009.html
    [23]http://www.bostondynamics.com/content/sec.php?section=BigDog
    [24]Marc Raibert, Kevin Blankespoor, Gabriel Nelson, et al. BigDog, the Rough-Terrain Quadruped Robot. The International Federation of Automatic Control, Seoul, Korea, 2008:10822-10825P
    [25]张秀丽.四足机器人节律运动及环境适应性的生物控制研究.清华大学博士学位论文,2004:64-65页
    [26]马培荪,马烈.全方位四足步行机器人JIUWM-II转弯步态控制的研究.上海交通大学学报,1995,29(5):92-97页
    [27]陈佳品,程君实,席裕庚.四足机器人对角小跑直线步行的虚拟模型.上海交通大学学报,2001,35(12):1771-1775页
    [28]何冬青,马培荪.四足机器人动态步行仿真及步行稳定性分析.计算机仿真,2005,22(2):146-149页
    [29]何冬青,马培荪,曹曦.四足机器人对角小跑起步姿态对稳定步行的影响.机器人,2004,26(6):529-532页
    [30]Chen Xuedong, Watanabe K, Izumi K. Kinematic Solution of a Quadruped Robot-Posture Analysis of TITAN-VIII. Proc. of 14th IFAC World Congress: Vol.B.Beijing, China,1999:343-348P
    [31]Sun Yi, Jia Wenchuan, Chen Xuedong. The Outline of AMOEBA, a Kind of Reconfigurable Robotic System. Proc. IEEE Int. Conf. on RISSP. Changsha, China, 2003:948-953P
    [32]Chen Xuedong. Novel Formulation of Static Stability for a Walking Quadruped Robot. Chinese Journal of Mechanical Engineering,16(2):120-122P
    [33]Pengfei Wang, Lining Sun. The Stability Analysis for Quadruped Bionic Robot. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2006, Beijing:5238-5243P
    [34]阮鹏,俞志伟,张昊等.基于ADAMS的仿壁虎机器人步态规划及仿真.机器人,2010,32(4):499-504页
    [35]Cruse H, Kindermann T, Schumm M, et al. Walknet-a Biologically Inspired Network to Control Six-Legged Walking. Neural Networks,1998,11:1435-1447P
    [36]Chen Xuedong, Watanabe K, Izumi K. Joint Position and Robot Stability of the Omnidirectional Crawling Quadruped Robot. J. of Robotics and Mechatronics, 1999,11(6):510-517P
    [37]R.BMcGhee. Some finite state aspects of legged loeomotion, Mathematics Bioseientes,1968,2:67-84P
    [38]McGhee, R.B., Iswandhi, G.I., Adaptive Locomotion of a Multilegged Robot Over Rough Terrain. IEEE Trans. On Systems, Man, and Cybernteics, Vol. SMC-9, No.4: 176-182P
    [39]S.M. Song, C.D. Zhang. Turning Gait of a Quadruped Walking Machine, Proceeding of IEEE International Conference on Robotics and Automation.1991:2106-211P
    [40]Rodney A.Brooks. A robot that Walks:Emergent Behaviors from a Carefully Evolved Network. Proceedings IEEE International Conference on Robotics and Automation. 1989
    [41]J.M.Porta, E.Celaya. Reactive Free-gait Generation to follow Arbitrary Trajectories with a hexapod robot.Robotics and Autonomous Systems,2004:187-201P
    [42]C.Angle. Small Planetary rovers. Proceedings IEEE International Conference on Intelligen. Robots and Systems.1990:383-388P
    [43]http://www.boeing.com/defense-space/infoelect/lmrs/sld001.htm
    [44]http://robosapiens.mit.edu/ariel.htm
    [45]Elsley. Autonomous Legged Underwater Vehicles For Near Land Warfare. Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium.1995
    [46]http://tech.china.com/zh_cn/science/zhuanti/robot/guoji/3147/20021220/11384377.ht ml
    [47]James P. Schmiedeler, Nathan J. Bradley, Brett Kennedy, Maximizing Walking Step Length For A Near Omni-Directional Hexapod Robot, The 2004 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2004
    [48]Brett Kennedy, Agazarian H, Cheng Y, Garrett M, Hickey G, Huntsberger T, Magnon L,Mahoney C, Meyer A, Knight J, LEMUR:Legged Excursion Mechanical Utility Rover[J]. Autonomous Robots.2001,11(3):201-205P
    [49]http://vesuvius.jsc.nasa.gov/er_er/html/spider/index.html
    [50]Kennedy B, Okon A, Aghazarian H, Badescu M, Xiaoqi Bao, Bar-Cohen Y, Chang Z, Dabiri B E, Garrett M, Magnone L, Sherrit S. Industrial Robot.2006,33(4):265-269P
    [51]P. Gonzalez de Santos, J.A. Cobano, E. Garcia, J. Estremera, M.A. Armada. A six-legged robot-based system for humanitarian demining missions. Mechatronics, 2007(17):417-430P
    [52]阳如坤.全方位六足步行机器人分析腿机构、运动学、静力学分析、步态规划与步行软件.中科院沈阳自动化研究所,1991
    [53]孟偲,王田苗,丑武胜等.仿壁虎机器人的步态设计与路径规划.机械工程学报,2010,46(9):32-37页
    [54]马建旭,马培荪,杨保忠.四足步行机器人中一种新型腿结构缓冲特性.上海交通大学学报,1997,33(7):847-850页
    [55]马培荪,郑伟红.四足步行机器人模糊神经网络控制.机器人,1997,19(1):56-60页
    [56]李明东,程君实,马培荪.一种形状记忆合金驱动的微小型六足机器人.上海交通大学学报,2000,34(10):1426-1429页
    [57]祝捷,曹志奎,马培荪.SMA驱动的微型双三足步行机器人作全方位运动的研究.传动技术,2002(4):11-15页
    [58]田文罡,陈学东.六足步行机器人的多关节协调运动.机器人技术与应用,2003(6):33-37页
    [59]Chen Xuedong, Tian Wengang, Li Xiaoqing, et al. Motion design of a hybrid wheeled/legged robot for lunar exploration. Journal of Harbin Institute of Technology(New Series), Vol.10, No.3,2003:246-249P
    [60]陈学东,郭鸿勋,渡边桂吾.四足机器人爬行步态的正运动学分析.机械工程学报,2003,39(2):8-12页
    [61]Chen Xuedong, Watanabe K, Kiguchi K, et al. Force Distribution of a Quadruped Robot. Proc. Of 2000 JSME Conf. on Robotics and Mechatronics. Kumamoto, Japan, 2000:43-56P
    [62]Dirk Spenneberg, Kevin McCullough, Frank Kirchner. Stability of Walking in a Multilegged Robot Suffering Leg Loss.2002
    [63]B. Klaassen, R. Linnemann, D. Spenneberg, F. Kirchner. Biologically Inspired Robot Design and Modeling. Proceedings of ICAR 2003 The 11th International Conference on Advanced Robotics Coimbra, Portugal, June 30-July 3,2003,576-581P
    [64]D. Spenneberg, F. Kirchner. SCORPION:A Biomimetic Walking Robot In:Robotik 2002, Vol.1679, VDI-Bericht,2002:677-682P
    [65]Ayers J. Finite State Analysis of Behavior and the Development of Underwater Robots. In Artificial Ethology, D.McFarland and O. Holland. Oxford University Press. In press.2000
    [66]Joseph Ayers, Jan Witting, et al. Biomimetic Robots for Shallow Water Mine Countermeasures.2004
    [67]D. Spenneberg, F. Kirchner. An Approach towards Autonomous Outdoor Walking Robots, Proc. of the 10th International Conference on Advanced Robotics, Budapest, Hungary,2001:115-122P
    [68]F. Kirchner, D. Spenneberg, R. Linnemann. A biologically inspired approach towards robust real world locomotion in legged robots, in Book, Neurotechnology for Biomimetic Robots, Ayers, J. Davis, J. and Rudolph, A. (eds), MIT-Press, Cambridge, MA, USA,2002
    [69]http://www.strategypage.com/military_photos/military_photos_2006432323235823.as px
    [70]Joseph Ayers. Underwater walking, Arthropod Structure& Development 2004,33: 347-360P
    [71]http://vesuvius.jsc.nasa.gov/er_er/html/spider/index.html
    [72]http://www.impresswatch.com.cn/robot
    [73]http://www.pinktentacle.com/2007/07/halluc-ii-8-legged-robot-vehicle/
    [74]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论.北京:机械工业出版社,2001:11页
    [75]陈东良,孟庆鑫,王立权等.仿生机器蟹足力觉检测系统.传感器与微系统,2007(2):65-67页
    [76]王沫楠,孙立宁.仿生机器蟹步行足腿结构设计及运动学、动力学分析.机械设计与研究,2005,21(5):41-44页
    [77]孙磊.仿生机器蟹原理样机的研究.哈尔滨工程大学工学硕士论文,2005:33-36页
    [78]陈东良.仿生机器蟹两栖步行机理与控制方法研究.哈尔滨工程大学工学博士论文,2006:11-12页
    [79]郝欣伟.仿生机器蟹步行足协调运动控制系统研究.哈尔滨工程大学工学硕士论文,2007:16-35页
    [80]季宝锋.两栖多足机器人虚拟样机技术研究.哈尔滨工程大学工学硕士论文,2008:18-29页
    [81]刘德峰.两栖多足机器人通讯定位及相关技术研究.哈尔滨工程大学工学硕士论文,2008:12-19页
    [82]A. Gasparetto, V. Zanotto. A new method for smooth trajectory planning of robot manipulators, Mechanism and Machine Theory 42,2007,455-471P
    [83]袁鹏.仿生机器蟹步行机理分析及控制系统研究.哈尔滨工程大学博士学位论文, 2003:77-105页
    [84]J. Estremera, J.A. Cobano, P. Gonzalez de Santos. Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones:An application to humanitarian demining. Robotics and Autonomous Systems,2009:700-711P
    [85]郭鸿勋,陈学东.六足步行机器人机械系统.工艺与装备,2008(4):71-74页
    [86]Wang Pengfei, Sun Lining. Wheeled Foot Quadruped Robot HITAN-I. HIGH TECHNOLOGY LETTERS,2006,12(4):346-350P
    [87]Manuel F. Silva, J. A. Tenreiro Machado, Antonio M. Lopes. Energy Analysis of Multi-Legged Locomotion Systems. Internet Access via URL: http://www.ave.dee.isep.ipp.pt/-gris/_private/MSilva_Clawar01.pdf
    [88]王学敏,程君实,金锦程,杨进平.分层模糊控制器在四足步行机器人中的应用.模糊系统与数学.Vol.2.1998,83-88页
    [89]Dilip Kumar Pratihar, Kalyanmoy Deb, Amitabha Ghosh. Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach. Robotics and Autonomous Systems,2002(41):1-20P
    [90]Luo Qingsheng, Zhang Hui, Han Baoling, Zhao Xiaochuan. Research on Biologically Inspired Hexapod Robot's Gait and Path Planning. Proceedings of the 2009 IEEE International Conference on Information and Automation,2009:1546-1550P
    [91]袁鹏,孟庆鑫,王沫楠,瞿晓荣,于艳爽.两栖仿生机器蟹的单足路径规划和生成.哈尔滨工程大学学报,2003(3):296-301页
    [92]Bossert David, Vagners Juris. Experimental robotic manipulator surface touchdown analysis and results. Proceedings of the 1996 IEEE International Conference on Control Applications,1996:1084-1089P
    [93]E. Muybridge. Animals in Motion. New Dover Edition, Dover Publications, Inc., New York,1899
    [94]R. Tomovic, W.J. Karplus. Land Locomotion Smulation and Control. Proceedings Thirds International Analogue Computation Meeting, Opatija, Yugoslavia,1961: 385-390P
    [95]M. Hildebrand. Symmetrical Gaits of Horses. Science, Vol.150,1967:701-708P
    [96]R.B. McGhee. Finite State Control of Quadruped Locomotion. Proceedings of Second International Symposium on Exteral Control of Human Extremities, Dubrovnik, Yugoslavia,1966
    [97]R.B. McGhee. Some Finite State Aspects of Legged Locomotion. Mathematical Biosciences, Vol.2, No.1/2,1968:67-84P
    [98]R.B. McGhee. Vehicular Legged Locomotion. Advances in Automation and Robotics, ed. By G.N. Saridis, Jai Press, Inc., Greenwich, Conn,1985
    [99]A. P. Bessonov, N. W. Umnov. Choice of Geometric Parameters of Walking Machines, Proceedings of Symposium on Theory and Practice of Robots and Manipulators.1976:5-7P
    [100]M. Josep, Porta, Enric Celaya. Gait Analysis for Six-Legged Robots. Internet Access via URL:http://www.ee.pdx.edu/-ML_LAB/Giant_Hexpld/transm3/iri-dt-9805.pdf
    [101]M. Jesep, Porta, Enric Celaya. Walking in Unstructured Natural Environments. European Workshop on Hazardous Robotics. Barcelona, November,1996
    [102]Manuel F. Silva, J. A. Tenreiro Machado, Antonio M. Lopes. Energy Analysis of Multi-Legged Locomotion Systems. Internet Access via URL: http://www.ave.dee.isep.ipp.pt/-gris/_private/MSilva_Clawar01.pdf
    [103]Manuel F. Silva, J. A. Tenreiro Machado, Antonio M. Lopes. Performance Analysis of Periodic Gaits in Multi-Legged Locomotion. Internet Access via URL; http://www.ave.dee.isep.ipp.pt/-gris/_private/M Silva_ICAR01.pdf
    [104]R.B. McGhee, A. A. Frank. On the Stability Properties of Quadruped Creeping Gaits. Mathematical Biosciences, Vol.3,1968:331-351P
    [105]S. Hirose, K. Yoneda. Dynamic And Static Fusion Control Of Quadruped Walking Vehicle. IEEE Int. Workshop, on Intelligent Robots and Systems. Tsukuba,1989: 199-204P
    [106]S. Hirose, K. Yoneda, H. Tsukagoshi. TITAN VII:Quadruped Walking and Manipulating Robot on a Steep Slope. Proc. Int. Conf. on Robotics and Automation, Albuquerque, New Mexico,1997:494-500P
    [107]S. M. Song, J. K. Lee. The Mechanical Efficiency and Kinematics of Pantograph Type Manipulatiors. Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, Vol. I,1988:414-420P
    [108]S. M. Song. Machines That Walk:The Adaptive Suspension Vehicle. The MIT Press, Cambridge, Massachusetts, London, England,1989:19-21P
    [109]Park S, Y. J. Lee. Discontinuous zigzag gait planning of a quadruped walking robot with a waist-joint. Advanced Robotics,2007,21(1):143-1642P
    [110]R. B. McGhee, G. I. Iswandhi. Adaptive Locomotion of a Multilegged Robot Over Rough Terrain. IEEE Trans. On Systems, Man, and Cybernteics. Vol. SMC-9, No.4, 1979:176-182P
    [111]P. K. Pal, K. Jayarajan. Generation of Free Gait-A Graph Search Approach. IEEE Transaction on Robotics and Automation, Vol.7(3),1991:3-8P
    [112]R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. B. Brown Jr, D. McMordie, U. Saranli, R. Full, D. E. Koditschek. Rhex:A Biologically Inspired Hexapod Runner. Autonomous Robots 11,2001.207-213P
    [113]Bien Z, Chun M G, Son H S. An Optimal Turning Gait for a Quadruped Walking Robots and Systems IROS'91. Osaka, Japan,1991:1511-1517P
    [114]Pan J, Cheng J. Study on Quadruped Walking Robot Climbing and Walking down Slope. Proc. of IEEE/RSJ Int. Workshop on Intelligent Robots and Systems IROS'91. Osaka, Japan,1991:1531-1534P
    [115]Pan J, Cheng J. Gait Synthesis for Quadruped Robot Walking up and down Slope. Proc. of the 1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Yokohama, Japan,1993:532-536P
    [116]Bai Shaoping, Low K H, Guo W. Kinematographic Experiments on Leg Movements and Body Trajectories of Cockroach Walking on Different Terrain. Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation. San Francisco, USA,2000:2605-2610P
    [117]Josep M Porta, Enric Celaya. Effcient Gait Generation Using Reinforcement Learning. 4th International Conference on Climbing and Walking Robots, Karlsruhe, September 2001, Internet Access via URL: http://www.ee.pdx.edu/-mperkows/ML_LAB/Giant_Hexapod/transm3/clawar01.pdf
    [118]Jesep M. Porta, Enric Celaya. Walking in Unstructured Natural Environments. European Workshop on Hazardous Robotics, Barcelona, November 1996. Internet Access via URL: http://www.ee.pdx.edu/-mperkows/ML_LAB/Giant_Hexapod/transm3/clawar99.pdf
    [119]Bo Huang,Pengfei Wang,Behavior based control of a hybrid quadruped robot.World Congress on Intelligent Control and Automation(WCICA) 2006,DaLian:8997-9001P
    [120]王鹏飞.四足机器人稳定性走规划及控制技术研究.哈尔滨工业大学博士学位论文,2007:35-49P
    [121]苏军,陈学东,田文罡.六足步行机器人全方位步态的研究.机械与电子,2004(3):48-52P
    [122]殷跃红,朱剑英,尉忠信.机器人力控制研究综述.南京航空航天大学学报,1997,29(2):220-230页
    [123]Ervin Burkus, Peter Odry. Autonomous Hexapod Walker Robot "Szabad(ka)". Acta Polytechnica Hungarica, Vol.5, No.1,2008:69-85P
    [124]杨振.基于阻抗控制的机器人柔顺性控制方法研究.东南大学硕士学位论文,2005:5-9P
    [125]李元春,陆佑方,唐保健.双连杆柔性臂轨迹跟踪的鲁棒控制.自动化学报,1999,25(3):330-336页
    [126]乔兵,吴洪涛,朱剑英,尉忠信.面向位控机器人的力/位混合控制.机器人1999,21(3):217-222页
    [127]Theeraphong Wongratanaphisan, Matthew O. T. Cole. Robust Impedance Control of a Flexible Structure Mounted Manipulator Performing Contact Tasks. IEEE TRANSACTIONS ON ROBOTICS, VOL.25, NO.2, APRIL 2009:445-451P
    [128]C. A. Klein, R. L. Briggs. Use of Active Compliance in the Control of Legged Vehicles. IEEE Trans. Syst. Man, Cybern.1980,10(7):393-400P
    [129]D. M. Gorinevsky, A. Yu. Shneider. Force Control in Locomotion of Legged Vehicles over Rigid and Soft Surfaces. Int. J. Robotics Research.1990,9(2):4-23P
    [130]P. V. Nagy, W. L. Whittaker, S. Desa. A Walking Prescription for Statically-Stable Walkers Based on Walk/Terrain Interaction. IEEE Int. Conf. Robotics and Automation, 1992:149-156P
    [131]Connolly, Thomas H, Pfeiffer Friedrich. Neural network hybrid position/force control. In:International Conference on Intelligent Robots and Systems 1993. Piscataway, NJ, USA:IEEE, IEEE Service Center,1993:240-244P
    [132]Rong Jong Wai, Zhi Wei Yang. Adaptive fuzzy-neural-network control of robot manipulator using T-S fuzzy model design.2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE),2008:90-97P
    [133]K. Yoneda, H. Iiyama, S. Hirose. Sky-Hook Suspension Control of Quadruped Walking Vehicle. Int. Conf. on Robotics and Automation,1994:999-1004P
    [134]Kazuo Kiguchi, Toshio Fukuda. Fuzzy Selection of Fuzzy-Neuro Robot Force controllers in an Unknown Environment. Proceedings of the 1999 IEEE international Conf. On R&A:1182-1187P
    [135]Kazerooni H, Houpt P K, Sheridan T B. Robust Compliant Motion for Manipulators. Part I:The Fundamental Concepts of Compliant Motion. Part Ⅱ:Design Methods. IEEE J Robotic Automat,1986, RA-2(2):83-105P
    [136]Hongan N. Impedance Control An Approach To Manipulation:'Part I-theory, Part II-implementation, Part III-Applcation. J Dyn Sys Meas Cont,1985:1-24P
    [137]Shota Fujii, Kenji Inoue, Tomohito Takubo, Tatsuo Arai. Climbing up onto Steps for Limb Mechanism Robot "ASTERISK". ISARC2006,2006:225-230P
    [138]Seul Jung, T. C. Hsia, R. G. Bonitz. Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment:Theory, Simulation, and Experiment. International Journal of Robotic Research. Vol.20, No.9,2001:765-774P
    [139]Seul Jung. Robust Neural Force Control Scheme Under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics, 2000,47(4):403-412P
    [140]Seul Jung. Robot Neural Force Control with Robot Dynamic Uncertainties under Totally Unknown Environment. IEEE International Conference on Intelligent Robots and Systems,1996,2(11):4-8P
    [141]Qingjiu Huang, Yasuyuki Fukuhara. Posture and Vibration Control Based on Virtual Suspension Model Using Sliding Mode Control for Six-Legged Walking Robot, Proceedings of the IEEE/RSJ.2006:5232-5237P
    [142]Ito S, Yuasa H, Luo Zhiwei, Ito M, et al. A mathematical model of adaptation in rhythmic motion to environmental changes. IEEE Systems, Man, and Cybernetics. 1997:275-280P
    [143]R. Verhoeven. Analysis of the Workspace of Tendon-Based Stewart Platforms. Ph.D. Thesis, Duisburg:Gerhard Mercator University,2004,11-12P
    [144]陈应珍.国外海洋机器人技术发展动态.海洋高新技术,2002(4):21页
    [145]杨立辉,罗庆生,王秋丽,毛新.新型仿生六足机器人步行足运动学分析与研究.机械设计与制造.2006(9):119-121页
    [146]赵铁石,赵永生,黄真.仿蟹步行机构模型灵活度分析.中国机械工程.1998,9(3):52-5页
    [147]Bill Goodwine, Joel Burdick. Trajectory Generation for Kinematic Legged Robots. Division of Engineering and Applied Science, California Institute of Technology. Internet Access via URL:http://www.controls.ame.nd.edu/~bill/papers/icra97.pdf
    [148]A.G. Vidal-Gadea, M.D. Rinehart, J.H. Belanger. Skeletal adaptations for forwards and sideways walking in three species of decapod crustaceans. Arthropod Structure& Development,37,2008:95-108P
    [149]于晖,孙立宁,刘品宽,蔡鹤皋.新型6-HTRT并联机器人工作空间和参数研究.机器人,2002,24(4):293-313页
    [150]Stefan Staicu. Inverse dynamics of the 3-PRR planar parallel robot. Robotics and Autonomous Systems 57,2009:556-563P
    [151]D. Surdilovic, Z. Cojbasic. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. Proceedings of the 1999 IEEE Conference on Robotics& Automation, Detroit, Michigan, USA,1999,2128-2133P
    [152]王文利,段宝岩,刘宏等.并联宏-微机器人系统的逆运动学模型.科学通报,2000,45(15):1617-1622页
    [153]孙欣.大射电望远镜悬索式馈源支撑系统的非线性静力学运动学和动力学理论及方法的研究.西安电子科技大学博士学位论文,2001:140-142页
    [154]LUO Qingsheng, ZHANG Hui, HAN Baoling, ZAHO Xiaochuan. Research on Biologically Inspired Hexapod Robot's Gait and Path Planning. Proceedings of the 2009 IEEE International Conference on Information and Automation. Zhuhai/Macau, China, June 22-25,2009:1546-1550P
    [155]张小江,高秀华.三次样条插值在机器人轨迹规划应用中的改进研究.机械设计与制造,2008(9):170-171页
    [156]Hao Dong, Mingguo Zhao, Ji Zhang, Zongying Shi, Naiyao Zhang. Gait Planning Of Quadruped Robot Based On Third-Order Spline Interpolation. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October 9-15,2006, Beijing, China,2009:2756-5761P
    [157]A. Gasparetto, V. Zanotto. A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory.2007:455-471P
    [158]张立勋,李彦涛,高峻,刘富强.助餐机器人轨迹规划研究.系统仿真学报,2010,22(5):1232-1236页
    [159]Bram Vanderborght, Bjorn Verrelst, Ronald Van Ham, et al. Objective locomotion parameters based inverted pendulum trajectory generator. Robotics and Autonomous Systems,2008(56):738-750P
    [160]A.P. Bessonov, N. W. Umnov. Choice of Geometric Parameters Walking Machines. Proceedings of Symposium on Theory and Practice Robots and Manipulators,1976: 5-7P
    [161]Hirose, Shigeo, Yoneda, Kan, Fukuda, Yasushi. Quadruped walking robots at Tokyo Institute of Technology:Design, analysis, and gait control methods. IEEE Robotics and Automation Magazine,2009(16):104-114P
    [162]D. Surdilovic, R. Bernhardt. String-man a New Wire Robot for Gait Rehabilitation. Proceedings of the 2004 IEEE International Conference on Robotics& Automation, New Orleans, LA, USA,2004:2031-2036P
    [163]D. Surdilovic, J. Radojicic. Robust Control of Interaction with Haptic Interfaces. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,2007:3237-3244P
    [164]D. Surdilovic, J. Zhang, R. Bernhardt. String Man Wire Robot Technology for Safe Flexible and Human Friendly Gait Rehabilitation. Proceedings of the 2007 IEEE International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 2007:446-453P
    [165]俞昌雄,干东英.步行机能量效率问题的计算机辅助研究.机器人,1989年第3卷第5期:43-48页
    [166]西屏.你知道这些为什么吗.科学24小时,2005(6):11-14页
    [167]MARLENE M. MARTINEZ, R. J. FULL, M. A. R. KOEHL. UNDERWATER PUNTING BY AN INTERTIDAL CRAB:A NOVEL GAIT REVEALED BY THE KINEMATICS OF PEDESTRIAN LOCOMOTION IN AIR VERSUS WATER, The Journal of Experimental Biology 201,1998:2609-2623P
    [168]Jung-Min Yang. Omnidirectional walking of legged robots with a failed leg. Mathematical and Computer Modelling,2008(47):1372-1388P
    [169]Y. Qiu, Y. Duan, Q. Wei. Optimal Distribution of the Cable Tensions and Structural Vibration Control of the Cabin Cable Flexible Structure. Structural Engineering and Mechanics,2002,14(1):39-56P
    [170]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006:284-287页
    [171]Homayoun Seraji. Force Tracking in impedance. The Int. J. of robotics research,1997, (16):97-117P
    [172]Tomer Valency. Instantaneous model impedance control for robots. Proc. of the2000 IEEE/SJ Int. Conf. on intelligent robots and systems,2000:757-762P
    [173]Pei-Chun Lin, Student Member, Haldun Komsuoglu, Member, et al. A Leg Configuration Measurement System for Full-Body Pose Estimates in a Hexapod Robot. IEEE TRANSACTIONS ON ROBOTICS, VOL.21, NO.3, JUNE 2005: 411-422P
    [174]J.A. Maples, J.J. Becker. Experiments in Force Control of Robotics Manipulators. In: Proc IEEE Conf on Robotics&Automation,1986(11):1108-1114P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700