用户名: 密码: 验证码:
基于滑模理论的欠驱动UUV空间曲线路径跟踪控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间曲线路径跟踪控制是欠驱动自治水下机器人(UUV or AUV:Unmanned Underwater Vehicle or Autonomous Underwater Vehicle)完成海底探测、海底管道监测和光缆维护等使命任务的重要技术保障。本课题针对欠驱动UUV的非完整约束特性,考虑其动力学模型的非线性、各自由度之间的耦合性、水动力参数的不确定性以及存在非定常海流干扰的特点,对滑模控制理论在欠驱动UUV空间曲线路径跟踪控制中的应用进行了深入的研究,主要研究内容有以下四部分:
     第一部分:针对某型UUV对其运动与建模问题展开研究并对该系统模型进行控制特性分析。
     首先,为完善欠驱动UUV空间六自由度运动模型,建立执行机构的非线性数学模型和海流干扰模型。该运动模型不仅包含艇体水动力的非线性项和耦合性项,而且考虑了执行机构的饱和特性和海流干扰下的平衡点特性,从而提高了数字化仿真模型的精确性,操纵性仿真实验验证了所建立的欠驱动UUV运动模型的正确性。
     其次,针对欠驱动UUV运动模型,基于非完整系统理论和微分几何方法,证明欠驱动UUV属于二阶非完整系统,并且具有小时间局部可控性。该系统的特点是:不存在任何光滑时不变的反馈控制使得系统在平衡点渐近稳定,但系统在平衡点是小时间局部可控的,从而为欠驱动UUV运动控制器的设计奠定了理论基础。
     第二部分:提出基于视线法(LOS:Line of Sight)设计自适应PID控制器,以实现欠驱动UUV空间曲线路径跟踪控制。
     首先,针对欠驱动UUV不存在任何光滑时不变的反馈控制使得系统在平衡点渐近稳定的问题,提出基于视线法建立空间路径跟踪的运动误差模型。该方法将欠驱动UUV位置误差的跟踪控制转化为航速误差、艏向角误差和纵倾角误差的渐近稳定控制,实现了非完整系统的镇定控制问题转化为完整系统的镇定控制问题,从而避开了Brockett定理必要条件的约束,为传统控制方法在欠驱动UUV空间曲线路径跟踪控制中的应用提供了设计思路。
     其次,针对常规PID控制方法参数调整不具有智能性且整定参数较难的问题,提出自适应PID方法实现空间曲线路径跟踪控制。该方法参数的整定不依赖于欠驱动UUV精确数学模型,且能够在线调整以满足实时控制的要求,同时具有常规PID控制器结构简单、可靠性高的优点。欠驱动UUV在不同航速下的空间正弦曲线路径跟踪控制仿真验证了此方法的有效性。
     第三部分:提出基于虚拟向导的迭代滑模控制(ISMC:Iterative Sliding Mode Control)方法,以提高欠驱动UUV在时变海流干扰下空间曲线路径跟踪控制的精确性和鲁棒性。
     首先,针对基于视线法的空间曲线路径跟踪控制存在非连续跟踪误差且容易导致执行机构饱和的问题,提出基于虚拟向导方法建立空间曲线路径跟踪误差模型。该方法不仅结合空间曲线特性和欠驱动UUV运动特性,建立光滑连续的空间误差运动模型,而且给定虚拟向导一定的移动速度,能够避免路径跟踪的奇异值问题。
     其次,针对自适应PID控制器难以抑制时变海流干扰的问题,提出基于增量反馈的迭代滑模控制方法设计空间曲线路径跟踪控制器。该方法的滑模迭代设计思想能够避免滑模面的切换引起的抖振,增量反馈控制能够缓解传统反馈的积分超调和稳态误差的矛盾问题,具有很强的鲁棒性。时变海流干扰下的空间曲线路径跟踪控制仿真实验验证了该方法的抗干扰能力。
     第四部分:提出基于预测控制思想设计离散滑模预测控制器(DSMPC:Discrete-time Sliding Mode Predictive Controller),以实现空间曲线路径跟踪的优化控制。
     针对基于连续时间系统设计的迭代滑模控制器在数字控制器上难以达到满意控制性能的问题,引进单值滑模预测控制算法,该算法计算简单,易于工程实现,其滚动优化和反馈校正环节补偿欠驱动UUV运动模型不确定项和定常非连续海流干扰对离散滑模面的影响,不仅增强控制系统的鲁棒性,而且提高空间曲线路径跟踪的精确性。
The spatial curvilinear path following control is the essential basis of underactuated Unmanned Underwater Vehicle's (UUV) mission implement, such as seabed survey, submarine pipeline monitoring, and cable maintenance. This paper deals with the characteristics of nonholonomic restriction for underactuated UUV, considering the nonlinear of dynamic motion, the dynamic coupling between the degrees of freedom, the uncertainties of hydrodynamic and unsteady ocean current disturbance. Sliding mode control theory for underactuated UUV as well as its practical applications in curve path following control are deeply investigated in this paper, and the main contents contain the following four parts:
     The first section:the motion and modeling of a certain underactuated UUV are fully investigated and its characteristics of the control system are studied in this paper.
     Firstly, in order to improve the mathematical models of underactuated UUV motion for six degrees of freedom, the nonlinear mathematical models of actuators and the disturbance model of ocean current are established. The motion models include the nonlinear terms and coupling characteristics of hydrodynamic, also contain the saturation characteristics of actuators and the equilibrium point characteristics under the disturbance of ocean current. Thus the accuracy of digital models are improved and the validity of the models is verified through the maneuverability experiments.
     Secondly, the underactuated UUV motion models are investigated based on the theory of nonholonomic system and differential geometry. It is proved that the underactuated UUV is second-order nonholonomic system, which has the small-time local controllability. It is demonstrated there is no continuous time-invariant feedback control law that makes underactuated UUV asymptotically stabilization to a single equilibrium, but the system is small-time local controllable. All of that lay a theoretical foundation for motion controller design.
     The second section:the line-of-sight method is proposed to design the adaptive PID controller, thus the spatial curvilinear path following control for underactuated UUV is actualized.
     Firstly, aiming at the problem that there is no continuous time-invariant feedback control law to make system be asymptotically stabilized to a single equilibrium, the line-of-sight method is proposed to establish the space movement error models of underactuated UUV. Then the problem of position error's stabilization control is turned into the asymptotic stability design of the speed error, heading error and pitch error, by which the nonholonomic stabilization can be transformed into control problems of holonomic systems. Thus the restrictions of Brockett theorem are avoided and the traditional control methods could be applied to the spatial path following control for underactuated UUV.
     Secondly, according to the classical PID parameters are difficult to setting, the motion controller is designed based on adaptive PID algorithm for underactuated UUV. The adaptive PID parameters'setting are independent of the accurate mathematical models, which on-line adjustment could realize real-time control. It also has the advantages of simple structure, high reliability as the PID controller. The validity of the method is test and verified through the simulation experiments for spatial curvilinear path following control under the different velocity of underactuated UUV.
     The third section:the nonlinear iterative sliding mode control based on virtual guide method is proposed, thus the accuracy and robustness of path following are improved under the time-varying ocean current disturbance.
     Firstly, in allusion to the discontinuity tracking errors which result in saturation characteristic of actuators in LOS method, the virtual guide method is proposed to establish the space movement error models of underactuated UUV. Considering the characteristic of spatial curve and the movement characteristics of underactuated UUV, the smooth continuous space movement error model is established based on virtual guide method, which gives a speed on the path could avoid the occurrence of a singularity.
     Secondly, aiming at the difficulty for adaptive PID controller to restrain the time-varying ocean current disturbance, the iterative sliding mode control method based on increment feedback is proposed to design the spatial curve path following controller. The recursive sliding mode designing procedure could avoid the problem of the chattering, the increment feedback control method could reduce the overshoot and static error. The anti-interference ability of controller is verified by the simulation experiments for spatial curvilinear path following control under the time-varying continuous ocean current disturbance.
     The fourth section:the discrete-time sliding mode predictive control method is proposed to achieve the path following receding-horizon control.
     According to the problem that the ISMC which designed based on continuous-time system can't attain the satisfying control performance, The single-value sliding mode predictive control algorithm is introduced, which is convenient for engineering realization. Feedback correction and receding horizon optimization approaches are employed to compensate the uncertainties of dynamic model and the influence of steady discontinuous ocean current disturbances, thus the spatial curve path following control system possesses stronger robustness and higher accuracy for underactuated UUV.
引文
[1]徐玉如,肖坤.智能海洋机器人技术进展.自动化学报,2007,33(5):518-521页
    [2]孙碧娇,何静.美海军无人潜航器关键技术综述.鱼雷技术,2006,14(4):7-10页
    [3]冯正平.国外自治水下机器人发展现状综述.鱼雷技术,2005,13(1):5-9页
    [4]燕奎臣,李一平,袁学庆.远程自治水下机器人研究.机器人,2002,24(4):50-51页
    [5]钱东.美国海军水下站中心NUWC.鱼雷技术,2003,11(2):50-51页
    [6]李开生,王文友.军用无人潜器的发展及其关键技术.鱼雷技术,2004,12(1):6-8页
    [7]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000,11:225—237页
    [8]封锡盛,刘永宽.自治式水下机器人研究开发的现状和趋势.高技术通讯,1999,9:55—59页,51页
    [9]张铭钧.水下机器人.北京:海洋出版社,2000:1—5页
    [10]任洪亮,李莉,边信黔.基于模糊航向制导的AUV航迹控制方法研究.应用科技,2004,31(12):43-45页
    [11]周岗,陈永冰,姚琼荟,周永余,李文魁.一类船舶直线航迹控制系统全局渐近稳定的充分条件及推论.自动化学报,2007,33(11):1204-1208页
    [12]付明玉,施小成,丁福光.气垫船航迹反步控制方法研究.哈尔滨工程大学学报,2008,29(3):251-255页
    [13]陈炜,余跃庆,张绪平.欠驱动机器人研究综述.机械设计与研究,2005,21(4):22-26页
    [14]何广平,陆震,王风翔.欠驱动冗余度空间机器人优化控制.控制理论与应用,2004,21(2):305-309页
    [15]王朝立,霍伟,谈大龙.控制受限的一类非完整动力学系统的镇定问题.自动化学报,2002,28(2):222-229页
    [16]王越超,景兴建.非完整约束轮式移动机器人人工场导向控制研究.自动化学报,2002,28(5):777-784页
    [17]胡跃明,谭慧琼,李迪.基于非线性系统相对度的学习控制算法及在非完整移动机器人中的应用.控制理论与应用,2001,18(5):662-667页
    [18]胡跃明,周其节,裴海龙.非完整控制系统的理论与应用.控制理论与应用,1996.13(1):1-10页
    [19]程涛,孙汉旭,贾庆轩,宋荆洲.非完整控制系统的发展现状及展望.中国机械工程,2006,17:438-444页
    [20]卜仁样.欠驱动水面船舶非线性反馈控制研究.大连海事大学,2007,32页
    [21]李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究.控制与决策,2005.20(7):750-754页
    [22]李世华.非完整移动机器人的轨迹跟踪控制.控制与决策,2002,17(3):301-305页
    [23]董文杰,霍伟.链式系统的轨迹跟踪控制.自动化学报,2000,26(3):310-316页
    [24]韩冰.欠驱动船舶非线性控制研究.哈尔滨:哈尔滨工程大学,2004:2-8页
    [25]李铁山.船舶直线航迹控制非线性设计方法.大连:大连海事大学,2005:3-4页
    [26]彭秀艳,李小军,沈艳,赵希人.大型船舶航迹多变量随机最优控制.船舶工程,2003,25(3):41-45页
    [27]詹月林.船舶航迹间接多模态控制方法研究.工业仪表与自动化装置,2003(6):31-34页
    [28]A. Aguiar, A. Pascoal. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Proc.of 41st IEEE Conference on Decision and Control,2002,2:2105-2110 P
    [29]T.Fossen, M. Breivik, R. Skjetne. Line-of-sight path following of underactuated marine craft. Proc.6th IFAC Manoeuvring and Control of Marine Craft, 2003:244-249P
    [30]Even Borhaug, Kristin Y. Pettersen. Adaptive way-point tracking control for underactuated autonomous vehicles. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005,2005: 4028-4034P
    [31]A. Aguiar, A.M.Pascoal. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. International Journal of Control,2007, 80(7):1092-1108P
    [32]P.Encarnacao, A.Pascoal.3D path-following for autonomous underwater vehicles. Proceedings of the 39th IEEE Conference on Decision and Control,2000,3: 2977-2982P
    [33]P.Encarnacao, A.Pascoal, M.Arcak. Path-following for marine vehicles in the presence of unknown currents. Proceedings of the 6th IFAC Symposium on Robot Control, 2001,2:507-512P
    [34]K.D.Do, J.Pan. Robust and adaptive path following for underactuated autonomous underwater vehicles. Proceedings of American Control Conference, 2003:1994-1999P
    [35]Morten Breivik, Thor. I.Fossen. Guidance-Based Path Following for Autonomous Underwater Vehicles. Proceedings of IEEE/MTS OCEANS,2005:2807-2814 P
    [36]E. Fredriksen, K. Y. Pettersen. Global κ-exponential way-point maneuvering of ships: Theory and experiments. Automatica,2006,42(4):677-687P
    [37]A. Pavlov, E. Borhaug, E. Panteley. Straight line path following for formations of underactuated surface vessels. Proceedings of IFAC NOLCOS,2007:654-659P
    [38]E. Borhaug, A. Pavlov, Kristin, Y. Pettersen. Straight Line Path Following for Formations of Underactuated Underwater Vehicles. Proceedings of the 46th IEEE Conference on Decision and Control,2007:2905-2912P
    [39]L.Lapierre, D.Soetanto, A.Pascoal. Nonsingular path following control of a unicycle in the presence of parametric modelling uncertanity. International journal of robust and Nonlinear control,2006,16(10):485-503P
    [40]Lionel Lapierre, Didik Soetanto. Nonlinear path-following control of an AUV. Ocean Engineering,2007,34:1734-1744 P
    [41]Jawhar Ghommam, Oscar Calvo, Alejandro Rozenfeld. Coordinated path following for multiple underactuated AUVs. OCEANS2008 MTS/IEEE Kobe Techno-Ocean'08 Voyage toward the Future,2008:514-520P
    [42]C.A.Woolsey, L.Techy. Cross-track control of a slender, underactuated AUV using potential shaping. Ocean Engineering,2009,36:82-91 P
    [43]I.Kaminer, A.Pascoal, E.Hallberg, C.Silvestre. Trajectory tracking for autonom-ous vehicles:an integrated approach to guidance and control. Journal Guidance, Control and Dynamics,1998,21(1):29-38P
    [44]A.Aguiar, J.Hespanha. Position tracking of underactuated vehicles. Proceedings of the 2003 American Control Conference,2003,3:1988-1993P
    [45]Filoktimon Repoulias, Evangelos Papadopoulos. Trajectory planning and tracking control design of underactuated AUVs. Proceedings of the IEEE International Conference on Robotics and Automation,2005:1622-1627P
    [46]Filoktimon Repoulias, Evangelos Papadopoulos. Planar trajectory planning and tracking control design for underactuated AUVs. Ocean Engineering 2007, 34:1650-1667P
    [47]Y.Pettersen, T.Fossen. Underactuated dynamic positioning of a ship-experimantal results. IEEE Transactions on Control Systems Technology,2000,8(5):856-863P
    [48]Y.Pettersen, H.Nijmeijer. Underactuated ship tracking control:theory and experiments. International Journal of Control,2001,74(14):1435-1446P
    [49]E.Lefeber, Y.Pettersen, H.Nijmeijer. Tracking control of an underactuated ship. IEEE Transactions on Control Systems Technology,2003,11(1):52-61P
    [50]Z.Jiang. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38(1):301-309P
    [51]韩冰,赵国良.基于微分平滑的欠驱动船舶航迹控制.哈尔滨工程大学学报,2004,25(6):709-713页
    [52]周岗,姚琼荟,陈永冰,周永余,李文魁.不完全驱动船舶直线航迹控制稳定性研究.自动化学报,2007,33(4):378-384页
    [53]周岗,姚琼荟,陈永冰,周永余.基于输入输出线性化的船舶全局直线航迹控制.控制理论与应用,2007,24(1):117-121页
    [54]李铁山,杨盐生,洪碧光,秦永祥.船舶航迹控制鲁棒自适应模糊设计.控制理论与应用,2007,24(3):445-448页
    [55]郭莹,徐国华,徐筱龙,肖治琥.水下自主作业系统轨迹跟踪与动力定位.中国造船,2009,50(1):92-100页
    [56]王银涛,郑美云,严卫生.一种新的AUV路径跟踪控制方法.西北工业大学学报,2009,27(4):517-521页
    [57]曹永辉,石秀华.水下航行器轨迹跟踪控制与仿真.计算机仿真,2006,23(7):19-21页
    [58]曹永辉.基于动态边界层的水下航行器滑模轨迹跟踪.计算机仿真,2009,26(5):190-194页
    [59]马岭,崔维成.NTSM控制的AUV路径跟踪控制研究.中国造船,2006,47(4):76-82页
    [60]马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制.控制理论与应用,2006,23(3):341-346页
    [61]崔荣鑫,徐德民,严卫生.编队约束下的AUV路径跟踪.西北工业大学学报,2007,25(6):800-804页
    [62]付江锋,严卫生,赵涛.欠驱动AUV的直线航迹跟踪控制.计算机仿真,2009,26(10):145-147页
    [63]Anthony M B, Jerrold E M, Dmitry V Z. Nonholonomic Dynamics. Notices of the American Mathematical Soeiety,52,2005:324-333P
    [64]赖旭芝.一类非完整欠驱动机械系统的智能控制.长沙:中南大学,2001.
    [65]理查德·摩雷,李泽湘,夏恩卡·思特里.机器人操作的数学导论.北京:机械工业出版社,1998.
    [66]G.Ckiolo, Y.Nakamura. Control of mechanical systems with second-order nonholonomic constraints:underactuated manipulators. Process 30th conference decision control 1991:2398-2403P
    [67]R.W.Brockett. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory,1983,181-191P
    [68]H.Sussmann. A general theorem on local controllability. SIAM jouranl on control and optimization,1987,25 (1):158-194P
    [69]A.De Luca, S.Iannitti. A simple STLC test for mechanical systerms underactuated by one control. Process of IEEE international conference on R&A. Washington, DC, 2002P
    [70]Ph.Mullhaupt, B.Srinivasan, D.Bonvin. Analysis of exclusively kinetie two-link underactuated mechanical system. Automatics,2002,38:1565-1573P
    [71]F.Bullo, K.M.Lynch. Kinematic controllability for decoupled trajectory planing in underactuated mechanical systems. IEEE transactions on robotics and automatics, 2001,17(4):402-412P
    [72]A.Isidori. Nonlinear control system. London:Springer-Verlag. Third Edition,1995.
    [73]M.Flicss, J.Levine. Flatness and defect of nonlinear systems:introductory theory and examples. International Journal of Control.1995,61(6):1327-1361P
    [74]R.M.Murray, S.Sastry. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Control,1993,38(5):700-716P
    [75]李青湘,胡跃明,毛宗源.一类非完整系统的变结构控制运动规划.华南理工大学学报,1999,27(8):103-107页
    [76]I.Kolmanovsky, N.H.Mcclalnroch. Developments in nonholonomic control problems[J], IEEE Control Systems Magazine,1995,15(6):20-36P
    [77]M.B.Anthony. Nonholonomic Mechanics and Control, vol.24 of Interdisciplinary Applied Mathematics, Springer, NewYork, NY, USA,2003.
    [78]T.Yoshikawa, K.Kobayashi, T.Watanabe. Design of a desirable trajectory and convergent control for 3-DOF manipulator with a nonholonomic constraint. Process of IEEE International Conference on Robotics and Automation,2000:1805-1810P
    [79]L.Rifford. The Stabilization problem:AGAS and SRS Feedbacks. In Optimal Control, Stabilization, and Nonsmooth Analysis, Lectures Notes in Control and Information Sciences,301, Springer-Verlag, Heidelberg (2004),173-184P
    [80]L.Rifford. Stabilization Problem for nonholonomic control systems. WSPC-Proeeedings,2007:l-9P
    [81]程涛,孙汉旭,贾庆轩等.非完整控制系统的发展现状及展望.中国机械工程,2006,17(增):438-444页
    [82]Mingjun Zhang, Tzyh Jong Tarn. A hybrid switching control strategy for nonlinear and underactuated mechanical systerms. IEEE Transactions on Automatic Control, 2003,48(10):1777-1782P
    [83]D.A.Lizarraga, N.Aneke, H.Nijmeijer. Robust exponential stabilization for the extended chained form via hybrid control. Process of the IEEE conference on decision and control,2002:2798-2803P
    [84]Z.Sun, S.S.Ge, T.H.Lee. Nonregular backstepping design of underactuated mechanical systems. Process of IEEE International conference on control applications, 2001:173-178P
    [85]朱齐丹.具有非驱动关节的机器人控制研究.哈尔滨:哈尔滨工程大学.2002.
    [86]A.GSiqueira, M.H.Terra. Control of underactuated manipulatons using nonlinear H∞ techniques. Process of IEEE Conference on Decision and Control,2002:2032-2037P
    [87]刘殿通,易建强,谭民.不确定欠驱动非线性系统的模糊滑模控制.电机与控制学报,2003,7(3):215-218页
    [88]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [89]贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [90]王智学,边信黔,王奎民,刘云霞.近壁面水动力干扰下的AUV运动控制研究.船舶工程.2006,28(5):63—66页
    [91]汪伟,边信黔,王大海.AUV深度的模糊神经网络滑模控制.机器人.2003,25(3):209—212,249页
    [92]熊华胜,边信黔,施小成.积分变结构控制原理在AUV航向控制中的应用仿真.船舶工程,2005,27(5):30-33页
    [93]A.Isidori.Nonlinear Control Systems.Springer Verlag,1989.
    [94]程金.水面船舶的非线性控制研究.中国科学院研究生院,2006:25-26页
    [95]陈炜,余跃庆,张绪平.欠驱动机器人可控性研究方法综述.工业仪表与自动化装置,2006,12-15页
    [96]祝晓才.轮式移动机器人的运动控制.国防科学技术大学研究生院,2006,25-26页
    [97]卜仁祥.欠驱动水面船舶的非线性反馈控制研究.大连海事大学,2007,37-38,55-56页
    [98]陶永华.自适应PID控制.工业仪表与自动化装置,1997,3(5):50~53页
    [99]李言俊,张科.自适应控制理论及应用.西安:西北工业大学出版社,2005:149~150页,158~160页
    [100]吴士昌,吴忠强.自适应控制(第2版).北京:机械工业出版社,2005:2~3页,24~27页
    [101]周东华.非线性系统的自适应控制导论.北京:清华大学出版社,2002:9~15页
    [102]韩曾晋.自适应控制.北京:清华大学出版社,2000:1-7页
    [103]姚郁,贺风华译.自适应及鲁棒控制.北京:电子工业出版社,2006:14~17页
    [104]徐湘元.自适应控制理论与应用.北京:电子工业出版社,2007:15~19页
    [105]刘兴堂.应用自适应控制.西安:西北工业大学出版社,2003:15~18页
    [106]孙彦广.工业智能控制技术与应用.北京:科学出版社,2007:45~47页
    [107]Astrom K J and Wittenmark b.李清泉等译.自适应控制.北京:科学出版社,1992:21~22页
    [108]李清泉.自适应控制系统理论、设计与应用[M].北京:科学出版社,1990:5~9页
    [109]舒迪前.自适应控制.沈阳:东北大学出版社,1993:15~18页
    [110]陶永华,张捍东.自适应控制技术与应用.基础自动化,1997,4(2):54~59页
    [111]袁震东.自适应控制理论应用.上海:华东师范大学出版社,1988:12~14页
    [112]康景利译.论自适应控制.北京:北京理工大学出版社,1992:11~13页
    [113]Keyser R.M.C. Van Canwenberghe A. R. Self-Tuning Prediction and Control[J]. Int J Systems Sci,1983,14(2):147~168页
    [114]王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1995:9~10页
    [115]蒋新华.自适应PID控制.信息与控制,1998,17(5):41~49页
    [116]A strom K J,Wittenmark b.Self-Tuning Controllers Based Pole-zero Placement.ProcIEEE,1980,127(3):126~129页
    [117]Tjokro S,Shah S L. Adaptive PID control.Proceedings of the 1985 American Control Conference,1985,7(3):1528~1534页
    [118]Yuan-Yih Hsu, Kan-Lee Liou. Desing of self-tuning PID power system stabilizers for synchronous generators.IEEE Trans EC,1987,2(3):343~348页
    [119]夏红,王慧,李平.PID自适应控制.控制与决策,1995,10(6):558~562页
    [120]陶永华.PID控制原理和自整定策略.工业仪表与自动化装置,1997,9(4):60~64页
    [121]李清泉,郭莉.智能PID调节器.自动化学报,1993,19(3):336~339页
    [122]张军英,方敏.智能PID控制器及其自学习.黑龙江自动化技术与应用,1992,1(1):20~23页
    [123]聂建华,陶永华.智能PID控制.工业仪表与自动化装置,1997,2(6):57~61页
    [124]吴玉香.滑模控制理论及在移动机械臂中的应用.华南理工大学博士学位论文,2006:1-5页
    [125]张昌凡.滑模变结构控制研究综述.株洲工学院学报,2004,18(2):1-5页
    [126]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆,重庆大学出版社.1997.
    [127]Chao-Yang C, Zhenxiang H, Yi-xin N. Deeentralized Nonlinear variable strueture control for AC-DC Power System. IEEE International Conference on Advances in Power System Control, Operation and Management,1991:821-826P
    [128]Sohee H, Byungsun C, Sung-Han S, Kang-Bak P, Teruo T. Sliding mode controller with nonlinear sliding surface for a second order system with input saturation. The 30th Annual conference of the IEEE Industrial Eleetronies Sosiety,2004:2159-2162P
    [129]Yu X, Man M. Mode reference adaptive control systems with terminal sliding rnodes.Int.J.Control,1999,64(6):1165-1176P
    [130]JohnY.Hung, G.Weibing, C.H.James. Variable Strueture Control:A Survey. IEEE Trans. On lnd.Eleetronies,1993,40(1):2-22P
    [131]高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990.
    [132]Hsin-Jang S, Kuo-Kai S. Nonlinear Sliding-Mode Torque Control with Adaptive Backstepping Approaeh for Induction Motor Drive. IEEE Trans. On Ind. Eleetronies, 1999,4(2):380-387P
    [133]Shtessel Y. Nonlinear output traeking via nonlinear dynamic Sliding Manifolds. Proe.of the 9th Intenational Symposium on intelligent control.1994:297-302P
    [134]李殿璞.船舶运动与建模.哈尔滨,哈尔滨工程大学出版社,1996:11页
    [135]K.Y.Wichlund, O.J.Sordalen, O.Egeland. Control Properties of Underactuated Vehicles. IEEE International Conference on Robotics and Automation,1995: 2009-2014P
    [136]Bu Renxiang. Path following of underactuated surface ships with uncertain forward speed. Chinese control and decision conference, CCDC 2008:4053-4058P
    [137]程代展.应用非线性控制.北京:机械工业出版社,2006:82-84页
    [138]苏成利.非线性模型预测控制的若干问题研究.浙江大学博士学位论文,2006:3-4页
    [139]Findeisen R, Imsland L, Allgower F, Foss B A. Output feedback stabilization of constrained systems with nonlinear predietive control. International journal of robust and nonlinear control,2003,13:211-227 P
    [140]Adetola V, Guay M. Noulinear sampled-data output feedback receding horizon control. Journal of process control,2005,15:469-480 P
    [141]Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear proeesses using genetic algorithms. Fuzzy sets and systems,2003,139:59-80 P
    [142]刑宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究.控制与决策,2005,20(5):495-499页
    [143]林茂琼,陈增强,袁著社.基于阻尼最小二乘法的神经网络预测偏差补偿自校正控制器.信息与控制,2000,29(1):27-33页
    [144]刘贺平,张兰玲,孙一康.基于多层局部回归神经网络的多变量非线性系统预测控制.控制理论与应用,2001,18(2):298-300页
    [145]Zhong W M, Pi D Y, He G L, Sun Y X. SVM with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive control. Chinese journal of chemical engineering,2005,13(3):373-379 P
    [146]Li X, Cao G Y, Zhu X J. Modeling and control of PEMFC based on least squares support vector machines. Energy conversion and management,2006 47(7):1032-1050P
    [147]张日东.非线性预测控制及应用研究.浙江大学博士学位论文,2007:2—4页
    [148]席裕庚,耿晓军.连续非线性系统预测控制的次优性分析.自动化学报,1999,25(5):673-676页
    [149]GAO W B, WANG Y, HOMA IFA A. Discrete-time variable structure control system s.IEEE Trans Industrial Electronics,1995,42(2):117-122 P
    [150]CHEN X, FUKUDA T, YOUNG K D. Adaptive quasi-sliding mode tracking control for discrete uncertain input-output systems. IEEE Trans Industrial Electronics,2001, 48(1):216-223 P
    [151]MONSEES G, SCHERPEN J M A.Adaptive switching gain for a discrete-time sliding mode controller. Int J Control,2002,75(4):242-251 P
    [152]肖玲斐.基于预测控制策略的离散滑模控制研究.浙江大学博士学位论文,2008:10-12页
    [153]Hebertt Sira-Ramirez, Miehel Fliess. A dynamical sliding mode control approach to predictive control by inversion. Proseedings of the 32nd IEEE conference on decision and control, San Antonlo, Texas,1993:1322-1323P.
    [154]胡剑波,陈新海.反馈线性化系统的非线性预测滑模控制.航空学报,1997,18(5):579-582页
    [155]宋立忠,李红江,陈少昌.滑模预测离散变结构控制用于船-舵伺服系统.中国电机工程学报,2003,23(11):160-163页
    [156]宋立忠,陈少昌,姚琼荟.滑模预测离散变结构控制.控制理论与应用,2004,21(5):826-829页
    [157]宋立忠,陈少昌,姚琼荟.多输入离散时间系统滑模预测控制.电机与控制学报,2005,9(2):128-132页
    [158]胡寿松.自动控制原理.北京,科学出版社,2001:334-336页
    [159]宋立忠,李槐树,杨志红,周岗.单值预估离散滑模控制及其应用.控制与决策,2006,21(7):829-832页
    [160]Jung-ho Kim, Seung-Hyun Oh, Dong-il Cho and J. Karl Hedrick. Robust discrete-time variable structure control methods. ASME Journal of Dynamie Systems, Measurement and Control,2000,122:766-775 P
    [161]Lingfei Xiao, Hongye Su, and Jian Chu. Sliding mode prediction based control algorithm for diserete-time nonlinear uneertain coupled systems. International journal of control,2007,80(10):1616-1625 P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700