用户名: 密码: 验证码:
并联机器人运动学正解新算法及工作空间本体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半个世纪以来,并联机器人得到深入的研究和广泛的应用。但在其研究领域内,包括运动学、动力学、工作空间、奇异特性等方面,仍然存在一些难题。作为21世纪100个交叉科学难题之一,stewart并联机构的正向运动学问题,正在受到日益广泛的关注。并联机器人在实际应用中,如空间探索、海洋开发、原子能应用、军事、抢险救灾、宏微操作等,都需要精准、快速、稳定的运动学位置解(包括逆解和正解)算法,需要经过优化的动力学控制策略和更为精确和详尽的工作空间描述等。深入地研究并联机构的运动学、动力学和工作空间,特别是并联机器人的位置正解,无论在理论方面还是实用方面,都是十分必要的。
     并联机器人运动学正解数值算法、动力学和工作空间的研究存在下述问题:①运动学位置正解缺少简便、快速、且保证收敛的统一的数值算法。②不同支链构成的并联机构之间的关系及相互转化方面的研究较少。③缺少包括正解逆解和交叉解的统一算法,缺少对正解输入条件的等效代换的研究,缺少对多并联机构并联系统的研究。④对工作空间的研究不够全面、不够系统,且有关空间利用效率的研究较少。本文主要工作内容包括:①深入地研究并联机构运动学位置正解的数值算法现状;②提出一种适于所有的并联机构的正解数值算法;③提出一种适于并联机构运动学、动力学等的间接解法;④构建并联机构的工作空间简单本体。本文的主要创新点包括:
     (1)提出并定义了理想并联机构的概念,提出了非理想并联机构的节肢化分析和综合方法(简称节肢化方法)。理想并联机构是支链由广义移动副组成,且支链在动平台、基础平台上的连接点与广义移动副的轴线重合的并联机构。节肢化分析方法将复杂并联机构分解为若干个节肢,包括主节肢、传递节肢、驱动节肢。其中主节肢是一个理想并联机构,可以使用已知的各种有关理想并联机构的知识、方法、程序进行求解。然后把多个节肢串联起来,形成一个整体进行综合研究。所以,节肢化方法包括分析和综合两个方面,是分析和综合的统一。节肢化分析方法是一种间接地求解复杂并联机构的运动学(包括位置解、速度、加速度等)、动力学、工作空间、奇异位形等诸问题的新方法。非理想并联机构的节肢化分析,可以从一个新的角度研究并联机构,可以分享理想并联机构的许多研究成果。
     (2)归纳总结出了一种适用于所有并联机构的新的正解数值算法——几何迭代法。几何迭代法是基于并联机构的结构逆解和泛几何相似性假设、以某个初值开始,逐步逼近原始输入,并最终求得并联机构正解的满意解的迭代方法。采用实证和理论分析的方法证实了几何迭代法的可行性、稳定性和可靠性。几何迭代法主要包括泛几何相似性假设、并联机构的数学模型和迭代过程三部分内容。
     几何迭代法的泛几何相似性假设包括:①泛几何相似性假设:假设几何迭代的过程中并联机构的图形具有泛几何相似性,泛几何相似性就是并联机构的运动过程中,在两个不同的时刻,并联机构的结构形状具有的相似性。②铰支点图形相似假设:假设动平台各个实际铰支点形成的图形,与迭代过程中各个铰支点形成的图形结构相似;③参考点图形相似假设:假设迭代变量(参考点)与各个迭代铰支点的相对位置和各个真实参考点与真实铰支点的相对位置相似。在迭代过程的每一步,都遵循上述相似性假设。
     建立数学模型:首先进行自由度计算和自由度组合分析,然后确定几何逆解公式,最后给定迭代初值和确定理想并联机构的新的结构参数。
     迭代计算过程由迭代初值(中立位置的位姿参数)开始,之后用几何逆解公式求出并联机构的结构解(例如上平台铰支点);用原始输入或基本输入(例如,已知的杆长)修正相关铰支点的位置;利用修正后的铰支点坐标,依据相似性假设,综合确定一个新的上平台平面;由新的上平台平面得到一组新的位姿数据,代替原来的迭代初值;判断迭代是否符合精度要求,确定继续迭代或结束程序。
     新算法物理模型清晰,编程简单,通用性强,编程工作量小,迭代收敛速度较快,可以达到任意的计算精度,精度可控,稳定、可靠。新算法有一个通用的初值,保证了算法运行的可靠性。新算法彻底避开了非线性方程组,不需要导数运算及Jacobi矩阵的求逆运算。总体上讲,几何迭代法优于牛顿迭代法或与牛顿迭代法相当。
     几何迭代法适用于所有的并联机构。几何迭代法可以完成正解、逆解和交叉解的任务。几何迭代法还适于多并联机构的并联系统的求解,用于计算复杂多面体和变几何并联机构。
     (3)构建了较为完整的机器人工作空间本体。从本体论的角度分析了机器人的工作空间,扩展了工作空间的概念外延和内涵。
     本文研究工作的成效和意义如下:①理想并联机构的概念和节肢化分析方法在理想与非理想并联机构之间架起了一个桥梁,为分析、研究非理想并联机构的运动学、动力学、工作空间、奇异特性等提供了一个新思路。②几何迭代法,彻底避开了非线性方程组,为所有的并联机构的正解提供了一个新的选择。新算法已经成功地应用到多种不同类型的并联机构计算。新算法为使用数值方法求解强非线性方程组提供了一个新思路,为求解交叉解、等效输入解等提供了一个新方法。几何迭代法整体上降低了正解的解算难度,为并联机构的普及和广泛应用奠定了基础。③运用本体论建立的工作空间本体,不但拓宽了机器人工作空间方面的研究领域,而且为机器人的优化设计提供了理论依据。例如,机构的各种扰动空间、机构的空间利用率、空间规整性等新内容,可资应用并有待进一步深入研究。
For half a century, parallel robot has been thoroughly studied and widely used. However, there are still some problems in their research fields, such as kinematics, dynamics, workspace, singularity, etc. Forward solution of stewart platform which is one of the 100 interdisciplinary sciences puzzles of the 21st century is being increasingly widespread concerned. The accurate, fast, stable kinematic position solution algorithm are needed, and optimized dynamics control strategies,more precise and detailed description of the workspace are needed too in practical applications, such as space exploration, ocean development, atomic energy applications, military, disaster relief, etc. it is very necessary either in theory or in practice to research in-depth on kinematics, dynamics and working space of parallel mechanism, especially the forward position solution about the parallel robot.
     The study of the forward kinematics numerical solution,dynamics and workspace of parallel robot issues:①The method of forward kinematics solution lack simple, rapid and general numerical algorithm which ensure that iteration is convergent.②There is less research on the relationship between the parallel mechanisms composed of different limb.③There is a lack of general algorithm of the positive solutions ,inverse solution and cross solution; lack of the study of equivalent substitution to input conditions of the forward solutions; also lack of the research on multiple parallel mechanism with relationship in parallel④The research on workspace is not comprehensive and systematic enough, and the study about efficiency of space utilization is poor.
     The main contents of this dissertation include:①reviewed current situation of the numerical algorithm, the forward kinematics solution of the parallel mechanism;②presented a forward kinematics numerical solution which is applicable for all kinds of parallel mechanisms;③presented a indirect method suitable for parallel mechanisms dynamics;④Establish a simple ontology about workspace of the parallel mechanism .
     The novelties of the dissertation include:
     (1) Put forward and defined the concept of ideal parallel mechanism, put forward arthropodization method of the non-ideal parallel mechanism .Ideal parallel mechanism is a parallel mechanism whose branch is a straight line limb .Arthropodization method includes two aspects: analysis and synthesis, and decomposed the complex parallel mechanism into a number of arthropods which are connected in series, including the main arthropod, transmission arthropod, drive arthropods. Then connect the plurality of arthropod in series to form a whole .Each arthropod is a simple parallel mechanism. According to the known conditions, analyses various arthropods, and the links them. Finally gets a comprehensive solution of non-ideal parallel mechanism.
     Arthropodization method is a kind of new method to indirectly solve the problems such as kinematics, dynamics, workspace, singularity of the non-ideal parallel mechanism. Arthropod analysis method of non-ideal parallel mechanism could study the parallel mechanism from a new perspective and can share a lot of research results of the ideal parallel mechanism. The concept of ideal parallel mechanism can popular and apply the geometric iteration method to all of the parallel mechanism, and also can be used to study the kinematics, dynamics, workspace and singularity of the non ideal parallel mechanism.
     (2) Presented a new forward numerical algorithm method suitable for all parallel mechanism----geometric iteration method. The feasibility, stability and reliability of the geometric iteration method are confirmed using empirical and theoretical analysis method. Geometric iteration method is mainly composed of three parts: the pan similarity hypothesis, the mathematics model of the parallel mechanism and the iterative process.
     The similarity hypotheses of Geometric iteration method include three parts:①Universal geometrical similarity hypothesis of the parallel mechanism: Hypothesize that the graph of parallel mechanism has universal geometric similarity hypothesis in the geometric iteration process;②Graph similarity hypothesis of the hinge pivot: Hypothesize that the graphics formed by actual hinged fulcrums of the moving platform (flat or three-dimensional graphics, referred to as the true hinge pivot graphics) is similar to the graphics formed by the hinged fulcrum in the iterative process (referred to as iterative hinged fulcrum graphic) structural similarity;③Graph similarity hypothesis of the reference point : Hypothesize that the iteration variable (reference point) is similar to the relative position of each iteration hinge pivot and the real reference point is similar to the relative position of the true hinge pivot. Every step of the iterative process follows the similarity hypothesis.
     The establishment of mathematical model is to transform a given parallel mechanism into an ideal parallel mechanism, then calculate the number of the DOF and analysis the combination of the DOF; Establish a formula of the geometry inverse solution based on the basic coordinate system; Finally determine the iterative initial value and new structure parameters of the ideal parallel mechanism.
     The iterative calculation process begin from iterative initial value (home position parameters), then find out the platform hinge pivot position by geometrical inverse solution formula; Use basic input (e.g., known limb’s length ) to amend relevant hinge pivot position; Use the modified hinged fulcrum coordinate to comprehensive determine a new platform on a plane according to thepan-similarity hypothesis; Use the new platform plane to get a new set of position data, to replace the original iterative initial value; Judge if the iteration meets accuracy requirements, determine continuing the iteration or ending the program.
     Of novel algorithm, the physical model is clarity, the programming is simple, the workload of programming is small, the iterative convergence speed is high. It can achieve arbitrary precision and the precision is controllable, stable and reliable.An universal Initial value which is a Parameter in home position assures the reliability of algorithm operation.
     The novel algorithm completely avoids nonlinear equations, and does not need the derivative operation and the Jacobi matrix inverse operation. Generally speaking, geometric iteration method is better than the Newton-Raphson method or as well as the Newton-Raphson method.
     Geometric iteration method can be applied to all of the parallel mechanism. And can complete the task of positive solution, inverse solution and cross solution. Geometric iteration method is suitable for the solution of multiple parallel mechanism and parallel system, it is also used to calculate the complex polyhedron and variable geometry parallel mechanism.
     (3) Establish a simple ontology about workspace of the parallel mechanism. Analyse the robot workspace from the perspective of ontology. Extend the connotation and extension of the concept of the workspace.
     This paper has the effects and significance as follows:
     ①The arthropodization analysis methods set up a bridge between the ideal and non ideal parallel mechanism, and provided a new train of thought for the analysis of kinematics, dynamics, workspace and singularity characteristics of the non ideal parallel mechanism.②Geometric iteration method witch completely avoided the nonlinear equations provided a new choice for all forward solutions of the parallel mechanism. The novel algorithm has been successfully applied to a variety of different types of parallel mechanism, and provided a new way to solve nonlinear equations with the numerical methods, and provided a new method to solve the intersection solution, and equivalent input solutions. It reduced overall difficulty of the forward solution and lay a foundation for the popularization and application of the parallel mechanism.③Established a ontology about workspace of robot. Not only widened the research field of the robot working space, but also offered the theoretical foundation for optimization design. For example, various disturbance space of the mechanism, space utilization rate of the mechanism, spatial regularity and other new contents, which can be used and need further study.
引文
[1] Stewart D A . Platform with 6-DOE Proc[J] . On Institution of Mechanical Engineering.1965,18(1):371-386.
    [2] Bo.nev I. The Tme Origins of Parall el Robots[J],The Parallel Mechani sms InformationCenter.2002.
    [3] Dasgupta B , Mruthyunjaya TS . The Stewart platform Manipulator a Review[J]. Mech mach Theory,35:2000.15-40.
    [4]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].机械工业出版社,1997.
    [5]孔民秀,陈在礼,陈学生.并联机器人研究的进展与现状[J].机器人,2002,24(5).
    [6]陈学生.并联机器人的研究的进展与现状[J].机器人.2002,24(5).
    [7] J.-P. Melert, Parallel Robots(Second Edition)[M].Springer 2006
    [8] Zhao dingxuan, Wei hailong, Zhang,hongyan.Explicit solution for inverse kinematics of 3-RPS parallel link manipulator.2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, v 2, p 425-429, 2010.
    [9]黄真.高等空间机构学[M].高等教育出版社,2006.
    [10]郭希娟.机构性能指标理论与仿真[M].科学出版社,2010.
    [11]丛爽,尚伟伟.并联机器人——建模、控制优化与应用[M].电子工业出版社,2010.
    [12]宋伟刚.机器人学——运动学、动力学与控制[M].科学出版社,2007年.
    [13]于靖军.机器人机构学的数学基础[M].机械工业出版社,2008年.
    [14] J.M.Selig(英).机器人学的几何基础(第二版)[M].清华大学出版社,2008.
    [15]郝矿荣,丁永生.机器人几何代数模型与控制[M].科学出版社,2011.
    [16] Merlet J.-P. Parallel Robots(Second Edition)[M].Springer 2006
    [17]陆震,等.冗余自由度机器人原理及应用[M].机械工业出版社,2007.
    [18]日本机器人协会(日).机器人技术手册(新版)[M].科学出版社,2007.
    [19]肖英奎,赵丁选,石祥钟等.六自由度电业伺服并联机构的设计[J].液压与气动,2004(8):36-38.
    [20]杨廷力.机器人机构拓扑结构学[M].机械工业出版社,2004.
    [21]李喜先.21世纪100个交叉科学难题[M].科学出版社,2005:646-655.
    [22]邹慧君,高峰.现代机构学进展(第一卷)[M].高等教育出版社,2007.
    [23]汪劲松,黄阳.并联机床——机床行业面临的机遇与挑战[J].中国机械工程,1999.10:103.1107.
    [24] Jee-Hwan Ryu Parallel Manipulators New Development I-teth 2008
    [25] Huapeng Wu Parallel Manipulators Towarts New Aplications I-teth 2008
    [26]韩方元,赵丁选,李天宇.3-RPS并联机构正解快速数值算法.农业机械学报,2011,42(4):229-233.
    [27]张辉,王启明等.通用stewart平台运动学正数值求解方法及应用[J].机械工程学报,2002,38(增刊):108-112.
    [28]李秦川,陈志,陈巧红,武传宇,黄真.[PP]S类并联机器人无伴随运动的结构条件[J].机械工程学报,2010,46(8):31-35.
    [29] CARRETERO J A,PODHORODESKI R P,NAHON MA,etal.Kinematic analysis and optimization of a new three degree–off-freedom spatial parallel manipulator [J].Journal of Mechanical Design,2000,122(1):17-24.
    [30]郑亚青.6自由度绳牵引并联起重机器人的研究进展[J].华侨大学学报(自然科学版),2009,30(6):601-605.
    [31] Fang Y F,Tsai L W.Structure synthesis of a class of 4-DOF and 5-DOF parallel manipulators with identical limb structures[J].Journal of Robotics Reasearch,2002,21(9):799-810.
    [32] Zlatanov D,Gosselin C M.A family of new parallel architectures with four degrees of freedom [J].Journal of Comoulational Kinematics,2001(5):57-66.
    [33] Gao Xiaoshan , Lei Deli , Liao Qizheng , Zhang Guifang . Generalized Stewart-Gough platforms and their direct kinematics[J] . IEEE Transactions on Robotics,April 2005,vol.21,no.2:141-151.
    [34] Fang Hairong, Fang Yuefa, Guo Sheng. Structure aynthesis of 4-DOF parallel robot mechanisms based on screw theory[J].Chinese Journal of Mechanical Engineering,2004,vol.17,No.4:486-489.
    [35] K. Cleary,T. Arai.A prototype parallel manipulator: Kinematics, construction,soft-ware,workspace results,and singularity analysis[J]. Proceedings of the International Conference on Robotics and Automation, Sacramento, Califonia,April 1991,pp.566-571
    [36] Zhao M Y Yuan P Z Wen B C.The kinematics model of general six DOF parallel manipulators for simulation and control[C].Proc of hat.ASME Conf on Modeling,simulation&control,Hefei,China,1992:22275-2283.
    [37] Cai G C,Hu M,Gou C.Development and study of a new kind of 3 DOF tripod[J].Annals ofthe CIRP,1999,48(1):333-336.
    [38]吕崇耀,6-6 SPS 6自由度Stewart并行机构位姿正解单解存在条件[J].机器人,2000,22(2).
    [39]文福安,梁崇高,廖启征.并联机器人位置正解[J].中国机械工程.1999,10(9).
    [40]刘辛军,汪劲松,李剑锋.一种新型空间3自由度并联机构的正反解及工作空间分析[J].机械工程学报,2001,37(10):36-39
    [41]王玉新,王仪明,等.并联机器人的位置正解及构型分析[J].中国机械工程,2002(9):734.737.
    [42]董彦良,吴盛林.一种实用的6-6Stewart平台的实时位置正解法[J].哈尔滨工业大学学报,2002 (1):116-119.
    [43]杨光,文福安,等.用于并联机构位置正解的坐标法[J].机械科学与技术(西安),2002(3),339-440.
    [44] Lee, K. and Shah, K.D.:Kinematic Analysis of A Three Degrees of Freedom In-Parallel Actuated Manipulator,Proceedings of IEEE International Conference on Robotics and Automation,345/350(1987)
    [45] Pfreundschun, G.H., Khmer, V.and Thomas, G.S.:Design and Control of a 3 DOF in-parallel Actuated Manipulator, Proceedings of IEEE International Conference on Robotics and Automation, 1659/1664 (1991)
    [46] Warldron, K.J., Raghavan, M. and Roth, B.: Kinematics of a Hybrid Series-parallel Manipulation System, Trans. ASME, J. Dan. Syst., Meas. Control, 111, 211/221(1989)
    [47]韩先国,陈五一,陈鼎昌.基于路径跟踪原理求解6-Stewat并联机构位置正解[J].北京航空航天大学学报,2002(6):370-372.
    [48] Zhuxin Zhang, Tiehua Chen, Dingxuan,Zhao.Modeling and movement simulation of a manipulator of 6-DOF based on Stewart platform with Pro/E.Proceedings of 2007 10th IEEE International Conference on Computer Aided Design and Computer Graphics, CAD/Graphics 2007,p 533-536, 2007.
    [49]周冰,方浩.一类3-3Stewart平台的正向运动学闭式解[J].机械科学与技术,2001.20(2):194-195.
    [50] Lung-Wen,Tsai,Sameer Joshi.Comparison Study of Architectures of Four 3 Degree-Of-Freedom Translation Parallel Manipulators.International Conference On Robotics&Automation. 2001:1283-1288.
    [51]王玉新,王仪明,柳杨,朱殿华.对称结构Stewart并联机器人的位置正解及构型分析[J].中国机械工程,2002(9).
    [52]刘文涛,王知行等.Stewart平台的运动可控制条件[J].中国机械工程,2001(5),502-504.
    [53]郑春红,焦李成.基于遗传算法的Stewart并联机器人位置正解分析[J].西安电子科技大学学报(自然科学版),2003(2).
    [54]王朋,段志善,贺利乐.基于遗传算法的并联机器人运动学正解研究[J].机械科学与技术,2005(8).
    [55]陈学生,陈在礼,孔民秀,谢涛.基于神经网络的6-SPS并联机器人正运动学精确求解[J].哈尔滨工业大学学报,2002(1).
    [56]宋伟刚,张国伟.基于径向基函数神经网络的并联机器人运动学正问题[J].东北大学学报(自然科学版),2004(4).
    [57]潘芳伟,段志善,贺利乐,王朋.基于遗传算法的新型六自由度并联机器人运动学分析[J].机械科学与技术,2007(6).
    [58]朱殿华,柳杨,王仪明,王玉新.基于同伦法的对称并联机器人机构位置分析[J].天津大学学报(自然科学与工程技术版),2001(4).
    [59] FANG Hao.Closed-Form Direct Kinematics Solution for a Class of 3-3 RSR Stewart Platform Manipulators[J] . Mechanical Science and Technology for Aerospace Engineering,2001(2).
    [60] WU Bo,WU Sheng-lin,ZHAO Ke-ding.Current Status and Development Tendence of Stewart Platform Control Strategy[J]. Machine Tool & Hydraulics,2005(10).
    [61] Huang Zhen . Modeling Formulation of 6-DOF multi-loop Parallel Manipulators[J]. Part-2: Dynamic Modeling and Example, Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, 1985, Bucharest, Romania, Vol. D -1, 163 -170.
    [62] Innocent; C and Parenti - Castelli V, Direct Position Analysis of the Stewart Platform Mechanism[J]. Mechanism and Machine Theory, 1990,25(6): 611-621.
    [63] Wen F. and Liang C G. Displacement Analysis of the 6-6 StewartPlatform Mechanism[J]. Mechanism and Machine Theory,1994,29 (4):547-557.
    [64] L W Tsai, A P Morgan. Solving The Kinematics of The Most GeneralSix And Five - Degree - Of - Freedom Manipulators By ContinuationMethods[J]. ASME Journal of Mechanisms, Transmission and Automa-tion in Design, 1985, 107: 189-200.
    [65] Raghava M.,The Stewart Platform of General Geometry Has 40 Con-figurations, Trans[J]. ASME J. Mechanical Design, 1993, 115: 277-282.
    [66]刘安心,杨廷力.空间并联机构位置分析的连续法[J].机械科学与技术,1994(3): 19-25.
    [67] Zhao dingxuan, Wei hailong, Zhang,hongyan.Explicit solution for inverse kinematics of 3-RPS parallel link manipulator.2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, v 2, p 425-429, 2010.
    [68]梁崇高,荣辉.一种Stewart平台型机械手位移正解[J].机械工程学报.1991,27(2)6-30.
    [69] Zhang C D,Song S M.Forward Position Analysis of Nearly General StewartPlatforms[J].ASME Confon Rob,Spatial Mechanisms and Mechanical 117.Systems,1992,De-Vol.45:81-84.
    [70] Kumar V . Instantaneous Kinematics of Parallel Chain Robotic Mecha-nisms[J].J.Mech.Des,1992b,114:349-358.
    [71] Fichter E F.A Stewart Platform - Based Manipulator: General Theory and Practical Construction[J].Int.J.of Rob.Res.,1986,5(2):157-182.
    [72]李树军,王玥.一种求解6-3构型并联机器人机构位置正解的逼近算法[J].机械科学与技术,2002, 21(1):81-85.
    [73]李树军,王玥,王晓光.3-RPS并联机器人机构位置正解的杆长逼近法[J].东北大学学报(自然科学版),2001,22(3):285-287.
    [74]易大义.计算方法[M].浙江大学出版社,1989.
    [75]仇原鹰.Stewart平台的运动奇异性与力奇异性研究[J].西安电子科技大学学报.2000(2).
    [76]陈丽.Stewart平台6-DOF并联机器人完整动力学模型的建立[J].燕山大学学报,2004(3).
    [77]刘敏杰,李从心.基于速度变换的Stewart平台机械手动力学分析[J].机械工程学报,2000(5).
    [78] Feng Shizhu, Xu Ming, Zhao Dingxuan.Research on RBF-PID control for the 6-DOF motion base in construction tele-robot system . MACS Multiconference on "Computational Engineering in Systems Applications", CESA, p 1915-1920, 2006.
    [79]陈丽.Stewart平台6-DOF并联机器人完整动力学模型的建立[J].燕山大学学报,2004(3).
    [80] T . Charters , R . Enguica , P . Freitas . Detecting singularities of stewart platforms[J].Mathematics-in-Industry Case Studies Journal, 2009, vol.1, pp 66-80.
    [81] Bai Xiaoli,James D.Turner,John L.Junkins.Dynamic analysis and control of a platform using a novel automatic differentiation method[J].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,AIAA 2006-6286:1-11.
    [82]王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究[M].河北大学出版社,2001.
    [83]吴宇列,吴学忠,等.并联机构的奇异与冗余[J].机械科学与技术(西安),2002(4).593.595.
    [84] Pemkopf, F, Husty M L. Singularity -Analysis of Spatial Stewart-Gough Platforms With Planar Base and Platform[J]. Proc.ASME DETC 2002/MECH - 34267,2002b,Montreal,Canada.
    [85] Li H D,Gosselin C M,Marc J R.and St-Onge B M.Analytic Form of the Six -Dimensional Singularity Locus of the General Gough - Stewart Platform[J].Proc.ASME DETC 2004/MECH - 57135,2004b,SaltLake City,Utah,USA.
    [86] Cao Y, Huang Z, Ge Q J. Orientation - Singlarity and Orientation Capability Analysis of the Stewart - Gough Manipulator[J] . 2005 , ASME paper ,DETC/2005-84556.
    [87]刘红阁,郑丽萍,张少方.本体论的研究和应用现状[J].信息技术快报,2005,3(1):1-12.
    [88]李善平,伊奇,胡玉杰,等.本体论研究综述[J].计算机就与发展,2004,41(7).
    [89] Mohammad M.Aref,Hamid D.Taghirad.Geometrical workspace analysis of a cable-driven redundant parallel manipulator:KNTU CDRPM.Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Sustems,Nice,Sept 22-26,2008IEEE [C].France:Acropolis Convention Center:1958-1963.
    [90] Gosselin C M . Determination of the Workspace of 6-DOF Parallel Manipulators[J]. Mech.Des.,1990c,112:331-336.
    [91] Ilian A.Bonev, Jeha Ryu. A new approach to orientation workspace analysis of 6-DOF parallel manipulators[J].Mechanism and Machine Theory,2001,36(2001):15-28.
    [92] Kevin Cleary. A prototype parallel manipulator.Proceedings of the 1991 IEEE,Intemational Conference on Robotics and Automatian , Sacramento , 1991[C].California:April,1991:566-571.
    [93] Wang Zhe,Wang Zhixing,Liu Wentao,Lei Yucheng.A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools[J]Mechanism and Machine Theory,2001,36(2001):605-622.
    [94] Karim Abedel-Malek,Frederick Adkins,Harn-Jou Yeh,Edward Haug.On the determination of boundaries to manipulator workspaces[J].Robotics & Computer Integrated Manufacturing,1997,vol.13,no.1,pp.63-72.
    [95] Sunil K.Agrawal.Workspace boundaries of In-parallel manipulator syatems,Proceedings of the 1991 IEEE,1991[C].1991 IEEE:1147-1152.
    [96] Sergiu-Dan Stan,Vistrian Maties,Radu Balan.Kinematics analysis Design and optimization a six degrees-of-freedom parallel robot[J].ENOC 2008,Saint Petersburg,Russia,June,30-July,42008.
    [97] Jean-Pierre Merlet,Clément M.Gosselin,Nicolas Mouly.Workspaces of planar parallel manipulators[J]. MechMach,Theory,1998,vol.33,no.1/2,pp.7-20.
    [98] Daniel Glozman,Moshe Shoham.Novel 6-DOF parallel manipulator with large workspace,2009[C].Cambridge University Press,2009,Robotica:1-5.
    [99] Jason Pusey,Abbas Fattah,Sunil Agrawal,Elena Messina,Adam Jacoff.Design and workspace analysis of a 6-6 cable-suspended parallel robot. Proceedings of the 2003 IEEE/RSJ,Intl.Conference on Inteligent Robots and Systems,Las Vegas, October 2003[C].Nevada.October 2003:2090-2095.
    [100]刘辛军,汪劲松.一种新型空间3自由度并联机构的正反解及工作空间分析[J].机械工程学报,20001,37(10):36-39.
    [101] KC.Gupta.On the nature of robot workspaces[J].Int.J.Rob.Res,1986,5(2):112-121.
    [102] JK. Davison,KH. Hunt.Rigid body location and robot workspace:some alternative manipulator forms[J].ASME J.Mech.Transmissions AutomatDes,1987,109(2):224-232.
    [103] SK . Agrawal . Workspace boundaries of in-parallel manipulator systems[J].Int.J.Robotics Automat,1990,6(3):281-290.
    [104] SK . Agrawal . Workspace boundaries of in-parallel manipulator systems[J].IEEE Transactions on Robotics and Automation,1991,7(2):94-99.
    [105] F. Pernkopf and M. Husty.Reachable workspace and manipufacturing errors of stewart-gough manipulators[J].Proceedings of MUSME 2005,the Int.Sym.On Multibody Systems and Mechatronics Brazil,2005,p.293-304.
    [106]王哲,王知行,等.并联机床工作空间分析及实时运动仿真的研究[J].中国机械工程,2001(9):969-972.
    [107]金振林,赵现朝.新型6-SPS三维平台并联机床工作空间研究[J].机床与液压,2001(5).
    [108]魏世民,廖启征.6-PSS型并联机床的仿真研究[J].机械设计与研究,2001,17(4):51-53.
    [109]王奇志,谭民,徐心和.一类具有对称结构并联机器人的工作空间[J].机器人ROBOZ,2001,23(4):322-325.
    [110]范守文,徐扎矩.并联机器人工作空间的边界曲面分析方法[J].机械科学与技术,2002,21(1):66-71.
    [111]杨传言,黄真.三角平台并联机器人工作空间的研究.机械科学与技术,1992(43):32-36.
    [112]李瑞琴,刘惠民.关于6-SPS并联机器人机构工作空间的研究[J].北京理工大学学报,1992,12(4):100-108.
    [113]李兴山,蔡光起.2SPS并联机器人工作空间的研究.机械设计与制造,2002(4):69-70.
    [114]李兴山,蔡光起. 2SPS并联机床结构参数优化及工作空间仿真[J].东北大学学报(自然科学版),2002,23(11):1059-1062.
    [115]文涛.并联杆系机床工作空间分析.机械设计,1998(11):24-27.
    [116]王哲,刘文涛.并联机床工作空间和工件位置[J].南京航空航天大学学报,2000,32(2):l37-143.
    [117]张顺心.并联机床工作空间分析[J].机械设计,2003,20(3):39-43.
    [118]吴生富.并联机器人工作空间研究[J].机器人,1991,13(3):33-39.
    [119]孟卓,陈刚.并联六坐标测量机的工作空间及其仿真研究[J].工具技术,2002,36(8):51-55.
    [120]张俞平,黄真.并联机械手的工作空间分析[J].太原重型机械学院学报,1990,11(2):68-74.
    [121]俞宏波,王玉新.多杆空间机构三维实体仿真[J].机械设计,1999(9):16-18.
    [122]于晖,张秀峰.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用[J].中国机械工程,2002,13(21):1830-1834.
    [123]刘辛军,张立杰等.基于AutoCAD平台的六由度并联机器人位置工作空间的解析求解方法[J].机器人ROBOT,2000,22(6):457-464.
    [124] D.I.Kim,W.K.Chung,Y.Youm.Geometrical Approach for the Workspace of 6-DOF Parallel Manipulators[C] . International Conference On Robotics&Automa-tion.1 997:2986.2989.
    [125] Ji Z M. Workspace analysis of Stewart platforms via vertex space[J].Robotics systems 1994,1 1(7):631-639.
    [126] Kim DI,Chung WK,Youm Y Geometrical approach for the workspaee of 6-DOF parallel manipulator[A].Proe of the.1997 IEEE Int.Cont on.Robotics and Automation[C].Albuquerque,New Mexico 1997.2986-2991.
    [127] Kumar . V . Characterization of Workspaces of Parallel Manipulators[J].ASME.Mech.Des.1992a,114:368-375.
    [128]陈鼎昌,陈五一,单颖春,郭祖华.Stewart平台式并联机床的干涉计算[J].机械设计,2001年(11).
    [129] C. Ferraresi, G. Montacchini, M. Sorli. Workspace and dexterity evaluation of 6 d.o.f. spatial mechanisms[J]. Proceedings of the ninth World Congress on the theory of Machines and Mechanism,Milan,August 1995,pp.57-61.
    [130] Masory O. Wang J. On the accuracy of a Stewart Platform - Part n Kine-matic Calibration and Compensation[J].Proc.IEEE Conf.on Rob.1993,ut.,725-731.
    [131] Bajpai A , Roth B . Workspace and mobility of a closed-loopmanipulator[J].Int.Robotics Research.1986,5(2):131-142.
    [132]黄田,汪劲松.并联机器人位置空间解析[J].中国科学(E),1998,28(2):136-145.
    [133]王知行等.并联机床工作空间分析及实时运动仿真的研究.中国机械工程,2001,12(009):969-972.
    [134]李群明.并联桁架结构曲面加工机床工作空间分析[J].机器人,1996,18(4):700-703.
    [135]吴生富,王洪波,黄真.并联机器人工作空间的研究[J].机器人,1991,13(3):33-39.
    [136] Lapusan Ciprian,Maties Vistrian,Hancu Olimpiu.Workspace analysis and design of a 6-DOF parallel robot[J].Proceedings of the 8th WSEAS International Conference on SIGNAL PROCESSING, ROBOTICS and AUTOMATION, ISSN:1790-5117:337-340.
    [137] Cristian Szep,Sergiu-Dan Stan,Member,IEEE,Vencel Csibi,Milos Manic, Senior Member,IEEE,Radu Balan.Kinematics,workspace,design and accuracy analysis of RPRPR medical parallel robot[J].Catania,May 21-23,2009[C].Italy:HSI 2009:75-80.
    [138]高峰,张立杰,刘辛军.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法[J].机器人,2000(06).
    [139]王玉新,王仪明.一种判别Stewart并联机器人机构连杆干涉的新方法[J].机械工程学报,2002(3).
    [140]范晋伟,李俊勤.多体系统运动学理论的并联机床运动空间分析[J].机械工程学报,2001,37(1):32-36.
    [141]郑亚青,刘雄伟.六自由度绳牵引并联机构的可达工作空间分析[J].华侨大学学报(自然科学版),2002,23(4):393-398.
    [142]高峰,黄王美.3-RPS并联机构工作空间分析的球坐标搜索法[J].西安理工大学学报,2001,17(3):239-242.
    [143]金振林,王军,高峰.新型6-PSS并联机器人工作空间分析[J].中国机械工程, 2002(13).
    [144] FANG Hao.Preliminary Analysis of the Workspace of Operation Force of Stewart Platform Manipulators[J] . Mechanical Science and Technology for Aerospace Engineering.
    [145]刘伟,房海蓉,郭盛.一种三自由度并联机床的工作空间分析[J].机器人技术,2005,32(4):67-69.
    [146]赵景山.机器人机构自由度分析理论[M].科学出版社,2009.
    [147] B.Bayle, J.-Y.Fourquet . Manipulability Analysis for Mobile Manipulators[C].International Conference On Robotics&Automation.2001:1251-1256.
    [148]张铁军,刘全凯.六自由度并联机器人工作空间分析[J].沈阳工业学院学报,1999,18(3):21-25.
    [149]王奇志,徐心和.并联机器人运动学正解的实解分析[J].东北大学学报,1999,20(4).
    [150]赵新华,彭商贤,张伟军,等.一种分析并联机器人位置正解的高效算法[J].天津大学学报(自然科学与工程技术版),2000,33(2):134-137.
    [151]张辉,王启明,叶佩青,等.通用Stewart平台运动学正向数值求解方法及应用[J].机械工程学报,2002,38(z1).
    [152]董彦良,吴盛林.一种实用的6-6 Stewart平台的实时位置正解法[J].哈尔滨工业大学学报,2002,34(1).
    [153]刘安心,杨廷力.求一般6SPS并联机器人机构的全部位置正解[J].机械科学与技术,1996,4.
    [154]高洪.并联机器人机构学理论研究综述[J].安徽工程科技学院学报,2006,21(1).
    [155]胡国胜.并联机器人的工作空间研究现状[J].仪器仪表用户,2004,11(6).
    [156]毕树生,张体娟,等.并联微操作机构的研究与应用[J].高技术通讯.2001(2):107-110.
    [157]汪劲松,李铁民,段广洪.并联构型装备的研究进展及若干关键技术[J].中国工程科学,2002.(6):63—70.
    [158]肖英奎,赵丁选,石祥钟等.六自由度电业伺服并联机构的设计[J].液压与气动,2004(8):36-38.
    [159]马晓丽,陈艾华,张雪莲,张庆功.并联机器人机构的创新与应用研究进展[J].机床与液压,2007(02).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700