用户名: 密码: 验证码:
椒苯酮胺对大鼠脑缺血再灌注损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     脑血管疾病是世界三大致死性疾病之一,具有高发病率、高致残率、高死亡率、高复发率的特点。脑血管病是指在脑血管壁病变或血流障碍基础上发生的局限性或弥漫性脑功能障碍,65岁以上的中老年人多发,是中老年人致死和致残的主要疾病,严重危害人类的健康和生活质量。缺血性脑缺血疾病占脑血管疾病的70-80%。截止目前,脑缺血损伤的病理生理机制尚未完全明确,大量研究认为其发病机制可能与能量代谢障碍、兴奋性氨基酸毒性作用、一氧化氮的大量合成、氧自由基损伤、脂质过氧化反应、细胞内Ca2+超载、炎症反应、细胞凋亡等机制相关。目前,临床上对缺血性脑血管疾病治疗主要有溶栓治疗和神经保护治疗两大类。一方面,溶栓治疗虽然取得明确的临床治疗效果,但是受到治疗时间窗,颅内出血、脑水肿等并发症,以及再闭塞率等方面的限制。另一方面,神经保护药物治疗虽然具有广阔的前景,但是大多数药物虽然在动物实验中具有效果,但是进入临床效果亦不甚理想或者存在严重的不良反应,因此目前仍然缺乏理性的神经保护药物。本课题在以往研究的基础上,研究钙离子增敏剂椒苯酮胺对大鼠脑缺血再灌注损伤是否具有神经保护作用,以及进一步探讨其可能的作用机制,为该化合物进一步发展为具有自主知识产权的,治疗缺血性脑血管病的创新药物寻找理论基础。
     方法:
     第一部分,实验大鼠随机分为假手术组、模型组、PPTA低、中、高剂量组(2.5mg/kg、5mg/kg、10mg/kg)和阳性对照依达拉奉组(6mg/kg)。首先,采用经典的栓线法致大鼠大脑中动脉阻塞(MCAO)方法造成局灶性脑缺血再灌注损伤模型,脑缺血1h后静脉注射给药。模型动物缺血2h再灌注24h后,进行Zea-longa 5分制神经功能学评分方法,以评估动物神经损伤程度;测定实验大鼠脑组织含水量,以评估其脑水肿的程度;用2,3,5-氯化三苯基四氮唑(TTC)染色法测定梗死体积百分比。其次,使用Pulsinelli法建立全脑缺血20min再灌注模型,采用提前给药7d,运用Morris水迷宫,进行定向航行实验和空间探索实验,检测PPTA对全脑缺血再灌注大鼠模型空间认知能力的影响。
     第二部分,采用栓线法致大鼠大脑中动脉阻塞(MCAO)方法造成局灶性脑缺血再灌注损伤模型。实验动物缺血2h再灌注24h后,采用黄嘌呤氧化法检测SOD活力,用硫代巴比妥酸显色法测定脑组织MDA含量,用硝酸还原法测定脑组织中NO含量,用NOS检测试剂盒测定脑组织提取液NOS活性,用考马斯亮蓝法组织蛋白含量测定,从而综合反映缺血再灌注时,实验动物脑组织中脂质过氧化反应以及氧自由基损伤的程度,从而研究PPTA是否具有对抗脂质过氧化反应和氧自由基损伤的作用。
     第三部分,采用栓线法致大鼠大脑中动脉阻塞(MCAO)方法造成局灶性脑缺血再灌注损伤模型。缺血2h再灌注24h后,采用real-time PCR检测动物脑组织中炎症反应因子(IL-1β、TNF-a),及细胞凋亡因子(caspase-3、Hsp70)的表达,检测缺血再灌注时,动物脑组织中炎症反应以及细胞凋亡的变化程度,研究PPTA是否具有抑制炎症反应和抗细胞凋亡的作用。
     结果:
     缺血2h再灌注24h后,假手术组大鼠表现正常,评分为0分。与假手术组相比,模型组大鼠神经功能评分显著升高,其脑组织含水量和梗死体积较假手术组也有显著增加;全脑缺血20min后,运用Morris水迷宫进行定向航行实验和空间探索实验中,模型组大鼠潜伏期增加,空间认知能力下降,提示大鼠脑缺血后神经功能严重损伤;MCAO模型组大鼠较假手术组脑组织中SOD活力和GSH含量降低,NOS活力、MDA和NO含量显著增高,提示其神经细胞在脑缺血再灌注时受到氧自由基和脂质过氧化损伤;同时脑组织中IL-1β、TNF-a、Caspase-3、Hsp70等因子表达升高,验证了炎症反应和细胞凋亡也参与了缺血再灌注损伤病理损伤过程。
     第一部分,PPTA中剂量组和高剂量组可显著降低行为评分,与模型组比较有显著性差异(P=0.027,P=0.017);中剂量组和高剂量组脑组织含水量显著低于模型组(P=0.001,P=0.001);PPTA中、高剂量组均可显著缩小缺血侧脑组织梗塞体积,与模型组相比有非常显著差异(P=0.035,P=0.003)。Morris水迷宫实验中PPTA低、中、高剂量组,定向航行实验中的潜伏期第4天,模型组的定向航行实验潜伏期显著高于假手术组(P<0.05);第5天,PPTA低、中、高剂量组潜伏期显著低于模型组(P<0.01)。第6天,空间探索实验表明,PPTA低、中、高剂量组第一次到达平台所在位置的时间均显著低于模型组(P<0.01);与模型组相比,PPTA低、中、高剂量组可显著增加实验动物留在目的象限的探索时间和探索路程(P<0.05,P<0.01,P<0.01);不同时间点的各组两两比较发现,各组大鼠的游泳速度没有明显差异,提示PPTA具有神经保护作用。
     第二部分:与模型组比较,PPTA高剂量组(10mg/kg),大脑SOD活力显著高于模型组(P=0.041);PPTA低、中、高剂量(2.5 mg/kg、5 mg/kg、10 mg/kg)脑组织MDA含量显著低于模型组(P=0.000,P=0.000,P=0.000);高剂量组(10mg/kg)大脑GSH含量显著高于模型组(P=0.007);脑组织NOS活力均显著低于模型组(P=0.030,P=0.006,P=0.004);NO含量显著降低(P=0.000,P=0.000,P=0.000),提示PPTA可能通过提高抗氧化酶活性,清除氧自由基,抑制脂质过氧化反应,抑制NOS活性,减少NO的生成,抑制NO介导的毒性作用,发挥神经保护作用。
     第三部分:与模型组比较,PPTA低、中剂量的IL-1βmRNA表达无显著性差异(P=0.254,P=0.099),PPTA高剂量组较模型组显著降低IL-1βmRNA的表达(P=0.001); PPTA高剂量较模型组亦可显著降低TNF-a mRNA的表达(P =0.018); PPTA中、高剂量组(5mg/kg、10mg/kg)则显著降低Caspase-3 mRNA的表达(P=0.007, P=0.001); PPTA低剂量、中、高剂量组(2.5mg/kg、5mg/kg、10mg/kg)与模型组比较显著降低HSP70表达(P=0.046,P=0.038,P=0.027),提示PPTA可能通过抗炎、抗细胞凋亡等机制,发挥神经保护作用。
     结论:
     1. PPTA具有神经保护作用;
     2. PPTA可能通过对抗氧自由基损伤和脂质过氧化反应,实现神经保护作用;
     3. PPTA可能通过抑制炎症反应和细胞凋亡,实现神经保护作用。
Objective: Cerebrovascular diseases have the characteristics of high morbility, high rate of mutilation and high mortality; therefore they can do great harm to human health. The patho-physiological mechanisms of cerebrovascular diseases haven't been fully made out till now. Ideal drugs for successful prevention and treatment cerebrovascular diseases still lack according to recent reports. Based on previous study, present study was performed to test the neuroprotective effect of piperphentonamine hydrochloride (PPTA) and investigate the potential underlying mechanisms in focal cerebral ischemia-reperfusion in rats. And this study may have an important implication in piperphentonamine hydrochloride growing to a new creative drug which has independence intellectual property rights for future treatment of patients suffered with cerebrovascular diseases.
     Methods:There are four parts of the study.
     1. Sprague-Dawley rats were randomly divided into the sham group, the ischemia-reperfusion group, the PPTA treated group (2.5,5,10 mg·kg-1) and the edaravone treated group (6 mg·kg-1). Rats were subjected to 24h of reperfusion following ischemia for 2h induced by middle cerebral artery occlusion (MCAO). The different doses of PPTA were intravenously administered to rats after 1h of the onset of ischemia. The neurological behavioral test was performed 24h after reperfusion by using the Zea-longa scores. Infarction volumes with TTC-staining and moisture content were calculated. Using global brain ischemia produced by the four vessels occluding method (Pulsinelli,1986), the MORRIS water maze test had been carried out in rats.
     2. Sprague-Dawley rats were randomly divided into group as some as Part1. Rats were subjected to 24h of reperfusion following ischemia for 2h induced by middle cerebral artery occlusion (MCAO). The different doses of PPTA were intravenously administered to rats after 1h of the onset of ischemia. The changes of water content, the activity of SOD, GSH, NOS and the content of MDA and NO in brain tissue were measured.
     3.Middle cerebral artery occlusion(MCAO)was employed to establish focal cerebral ischemia-reperfusion model in rats, then IL-1β, TNF-a, Caspase-3 and hsp-70 mRNA expression were measured by Real Time-PCR.
     Result:
     1. Focal cerebral ischemia-reperfusion, induced by MCAO, PPTA administration groups(5mg/kg、10 mg/kg) improved neurological deterioration score, compared with model group. PPTA administration indicated by a significant decrease in the infarction volume and brain tissue water content in rats after focal ischemia and reperfusion (P<0.01). PPTA displayed escape latency improvement as indicated by a significant increase in the swimming distance and duration in the target quadrant after global brain ischemia and reperfusion.
     2. Compared with model group, in addition, less oxidative damage was detected in the PPTA-treated brain of rats, especially with the dose of 10 mg/kg, including the reduction of MDA levels and NOS activity, the increased activity of SOD and GSH which are antioxidant enzymes especially with the dose of 10 mg/kg, including the reduction of MDA levels and NOS activity, the increased activity of SOD and GSH which are antioxidant enzymes.
     3. Compared with the model group, the expression levels of TNF-a, IL-1β, Caspase-3, HSP70 mRNA in PPTA treated group were distinctively lower.
     Conclusion:
     1. Piperphentonamine hydrochloride (PPTA) have the neuroprotective effect
     2. The neuroprotective effects of PPTA were greatly associated with inhibition of lipid peroxidation reaction and scavenging free radical.
     3. The neuroprotective effects of PPTA may performan with inhibiting apoptosis and inflammatory reaction.
引文
[1]Warlow C.P. Epidemiology of stroke [J]. Lance,1998,352:SⅢ1-SⅢ4.
    [2]Feigin VL, Lawes CM, Bennet DA, Anderson CS. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century [J]. Lancet Neurol,2003,2:43-53.
    [3]Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebal ischemia for developing novel therapeutics [J]. Brain Res Rev,2007,54:34-66.
    [4]Richard Green A, Odergren T, Ashwood T. Animal models of stroke: Do they have value for discovering neuroprotective agents? [J]. Trends Pharmacol Sci, 2003,24:402-408.
    [5]沈洪妹.牛膝多肽神经保护作用的实验研究[D].苏州:苏州大学人体解剖与组织胚胎学教研室,2009.
    [6]Hossmann K.A, Zimmermann V. Resuseitation of the monkey brain after 1h complete isehemia: Physiologiealand morphologieal observations [J]. Braiz:Res, 1974,81:59-64.
    [7]Nordstron C. H, Rehnerona S, Siesjo BK. Restitution of cerebral energy state after complete and incomplete isehemia of 30 min duration[J]. Acta Physiol. Scand,1976,7:270-272.
    [8]陈修,陈维洲,曾贵云主编.心血管药理学.第三版[W].北京:人民卫生出版社,2002;236-270.
    [9]张立群,陈洁丽,程焱,等.尼莫地平对局灶性脑缺血鼠脑血浆蛋白的影响[J].中风与神经疾病杂志,2001,18:300.
    [10]Yasmemin G, Bolay H.Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion in reperfusion injury after forcal cerebral ischemial [J]. Stroke,2000,31(8):1974.
    [11]黄文胜.缺血性脑卒中神经保护剂的研究进展[J].海南医学,2010,21(22):143-145.
    [12]王拥军.脑卒中神经保护剂治疗的研究进展[J].中国医疗前沿,中国医疗前沿,2007(5):85-88.
    [13]周力践,衷小惠,刘铁球.椒苯酮胺、椒苯酮胺盐及其制备方法:中国,ZL02125318.8[P].2004-09-01.椒苯酮胺或其盐用制备治疗心血管疾病药物的应用:中国,ZL021251316.1[P].2005-06-15.N-甲基胡椒乙胺盐的制备方法:中国,ZL021251317.X[P].2004-09-15.
    [14]杨向阳,李茹冰,万华印.新型钙增敏剂左西孟旦和盐酸椒苯酮胺研究进展[J].国际药学研究杂志,2010,37(1):32-35.
    [15]牟英,孟志云,窦桂芳.椒苯酮胺在比格犬体内的药代动力学研究[J].中国血液流变学杂志,2006,16(3):338-340.
    [16]牟英.椒苯酮胺临床前药代动力学研究[D].沈阳:沈阳药科大学,2003.
    [17]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989; 20(1):84-91.
    [18]Kuluz JW, Prado RJ, Dietrich D, et al. The effect of nitric oxide synthase inhibition on infarct volume after reversible focal ischemia in conscious rats [J]. Stroke,1993,24(12):2023-2025.
    [19]罗勇,董为伟Wistar大鼠插线法局灶性脑缺血-再灌注模型的实验研究[J].重庆医科大学学报,2002,27(1):1-4.
    [20]Pulsinelli WA, James B, Brierley M. A new mode of bilateral ischemia in the unanesthetized rat [J]. Stroke,1979,10(3):267-272.
    [21]Oyanagai Y. Revaluation of assay methods and establishment of kit for superoxide dismutase activity [J]. Anal Biochem 1984,142:290-294.
    [22]Ohkewa H. Assay for lipid peroxides in animal tissue by thiobarbituric and reaction [J]. Anal Biochem 1975,95:351-355.
    [23]蔡洪信ICAM-1于脑缺血再灌注损伤研究进展[J].中国微循环,2005,9(5):362-365.
    [24]Culmsee C, Stumm RK, Schafer MKH, et al. Clenbuterol induces growth factor mRNA, activates astr ocytes, and protects rat brain tissue against ischemic damage [J]. Eur J Pharmacol,1999,379 (1):33.
    [25]Oktem IS, Menku A, Akdemir H, et al. Therapeutic effect of tirilazad mesylate (U-74006F), mannitol, and their combination on experimental ischemia [J]. Res Exp Med (Berl),2000,199(4):231.
    [26]张仲苗,江波.脑缺血药物的研究进展[J].中国现代应用药物杂志,2006,23(1):23-26.
    [27]张成英,苗华,田鹤村,等.大鼠椎-基底动脉的解剖学观察及其在脑缺血模型中的应用.中国临床解剖学杂志,1995,139(1):53-55.
    [28]郑小影,赵淑敏,孔祥玉.脑缺血动物模型的制备及其应用的进展[J].承德医学院学报,2008,(02):82-84.
    [29]张拥波,秦新月,王得新.规范化脑缺血动物模型[J].中风与神经疾病杂志,2007,(01).121-123.
    [30]马志健,罗刚,易西南.脑缺血再灌注动物模型的制备及评价[J].海南医学院学报,2009,(06):32-35.
    [31]Julio H, Garcia J. Experimental ischemic strok [J]. Stroke,1984,15:5.
    [32]Bremer AM, Waranbe O, Bourke RS. Artificial embolization of the middle cerebal artery in primates:Description of on experiment model with extracranial technique [J]. Stroke,1975,6:387.
    [33]曲友直.神经保护剂联合应用对局灶性脑缺血再灌注损伤的保护作用及其 机制研究[D].西安:第四军医大学唐都医院神经外科,2004.
    [34]Koizumi J, Yoshida Y, Nakazawa T, et al. Experiment studies of ischemic brain edema. A new experimental model of cerebral embolish in rat s in which recirculation can be int roduced in the ischemic area [J]. Jpn J Stroke,1986, 8:128.
    [35]Laing RJ, Jakubowski J, Laing RW. Middle cerebral artery occlusion without crainiectomy in rats. Which method works best? [J]. Stroke,1993:24:294-298.
    [36]Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion [J]. Stroke. 1989,20:1037-1043.
    [37]Dhar-Mascareno M, Carcamo JM, Golde DW. Hypoxia-reoxygenatoin-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C [J]. Free Radic Biol Med.2005,38:1311-1322.
    [38]Yoshida H, Yanai H, Namiki Y, et al. Neuroprot ect ive ef fects of edaravone: a novel free radical scavenger in cereb rovascular injury[J]. CNS Drug Rev,2006, 12(1):9-20.
    [39]Lapchak PA, Zivin JA. Th eipophilic mul tifunct ion al a tioxidant edaravone (radicut) im proves behavior f ollow ing embolic st r ok es in rabbit s:a com binati on therapy study w ith t is sueplasminogen acti vat or [J]. Exp Neurol, 2009,215(1):95-100.
    [40]尹静,李俐涛,杨燚,等.全脑缺血动物模型的建立及评价[J].河北医科大学学报,2006,(05):206-207
    [41]刘劲睿,王帅,赵风毛等.短暂全脑缺血再灌注大鼠长期记忆与再学习能力的评价及NGF的干预作用[J].黑龙江医药科学,2009,34(2):68-69.
    [42]赵雅宁,李建民,安朝旺,等.参芎化瘀胶囊对全脑缺血再灌注大鼠脑组织超微结构及学习记忆功能的影响[J].中国方剂学杂志,2010,16(7)138-141.
    [43]Bhardwaj A, Alkayed NJ, Kirsch JR, et al. Mechanisms of ischemic brain damage [J]. Curr Cardiol Rep,2003,5(2):160.
    [44]Lo EH, Dalkara T, Moskowitz MA. Neurological disease:Mechanism, challenges and opportunities in stroke [J]. Nat Rew Neurosci,2003,4(5):399.
    [45]Ryter SW, Tyrrell RM. Singlet molecular oxygen (02):A possible effecter of eukaryotic gene expression [J]. Free Radic Biol Med,1998,24(9):1520-1534.
    [46]Honde HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury [J]. Ann NY Acad Sci,2005,1047:248-258
    [47]Lin RCS, Matesic DFM. Immunohistochemical demonstration of neuron-specific endase and microtubule-associated protein2 in reactive astrocytes after injury in the adult forebrain [J]. Neuroscience,1994,60:11-16
    [48]Hellenbeck JM, Dutka AJ. Background review and current concepts of reperfusion injury [J]. Arch Neurol,1990,47(11):1245-1254
    [49]Chan PH. Role of oxidants in ischemic brain damage. Stroke,1996, 27(6):1124-1129.
    [50]Zhang N. Komine-Kobayashi M, Tanaka R, et al. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain [J]. Stroke,2005,36:2220-2225.
    [51]Mack WJ, Mocco J, Ducruet AF, et al. A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is corredlated with increased cerebral ascorbic acid and inbibited lipid peroxidation after murine reperfuses stroke [J]. Neurosurgery,2006,59:383-388.
    [52]Cherubini A, Ruggiero C, Polidori C. Mecocci P. Potential markers of oxidative stress in stroke [J]. Free Rad.Biol. Med,2005,39:841-852.
    [53]Braughler JM, Hall ED. Free Radical [J]. Biol Med,1989,6(3):289
    [54]Bredt DS. Isolation of nitric oxidesynthetase, a calmodrlin-requiring enzyme [J]. Proc Natl Acad Sci USA,1990,87(2):682.
    [55]Bredt DS, Snyder SH. Nitric oxide: a physiological messenger molecular [J]. Annu Rev Biochem,1994,63:175.
    [56]Pelligrino DA. Saying NO to cerebral ischemia [J]. J Neurosurg Anesthesiol, 1993,5(4):221-231.
    [57]Iadecola C, Zhang F, Casey R,e. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia [J]. Stroke 1996, 27(8):1373-1380.
    [58]Johnston MV, Trescher WH, Ishida A, et al. Novel treatments after experiment brain injury[J]. Semin Neonatol,2000,5(1):75-86.
    [59]Brown GC, Borutaite V. Nitric oxide, cytochrome c and mitochondria [J]. Biochem Soc Symp,1999,66(1):17-25.
    [60]Bolanos JP, Aimedia A, Midina JM. Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Res:1998,787(1):117-120.
    [61]Takei N, Endo Y. Ca2+ ionophore-induced apoptosis on cultured embryonic rat cortical neurons [J]. Brain Res,1994,652(1):65-70.
    [62]Pelligrino DA. Saying NO to cerebral ischemia[J]. J Neurosurg Anesthesiol, 1993,5(4):221-231.
    [63]Iadecola C, Zhang F, Casey R, Clark HB.Ross ME. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia [J]. Stroke 1996,27(8):1373-1380.
    [64]Viktorov IV. The role of nitric oxide and other free radicals in ischemic brain pathology. Vestn Ross Akad Med Nauk,2000, (4):5-10.
    [65]Iadecola C, Zhang F, Xu S, et al. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia[J]. Cereb Blood Flow Metab,1995, 15(3):378-384.
    [66]Wang X, Baronc F C, Aiyar NV, et al. Interleukin-1 receptir and receptor antagonist gene expression after focal stroke in rats [J]. Stroke,1997,28(1): 155-61.
    [67]Czermak BJ, Sarma V, Bless NM, Schmal H, Friedl HP, Ward PA. In vitro and in vivo dependency of chemokine generaton on C5a and TNF-alpha. Immunol, 1999,162(4):2321-2325.
    [68]李力仙,戴黎萌.脑缺血再灌注相关免疫细胞和细胞因子[J].国外医学免疫学分册,2000.23(3):140-142
    [69]陈寿权,王万铁,王明山,等.醒脑静对家兔脑缺血再灌注时TNF、IL-1β, IL-6水平及脑超微结果影响的实验研究[J].中国急救医学2000,20(11):637-639.
    [70]Liu T, Clark RK, McDonnell PC, Young PR, et al. Tumor necrosis factor-a expression in ischemia neurons [J]. Stroke,1994,25(27):1481-1488.
    [71]Uno H, Matsuyama T, Akita H, Sugita M. Induction of tumor necrosis factor-ain the mouse hippocampus following transient forebrain ischemia[J]. J Cereb Blood Flow Metab,1997,17(5)491-499.
    [72]王涛,文亮,李大江.全脑缺血再灌注损伤后炎性细胞因子的变化及其意义[J].中国危重病急救医学,2000,12(5):290-292.
    [73]李伟,乔健,吕传真.大鼠局灶性脑缺血灌注模型纹状体内IL-β和TNF-a动态变化及药物干预[J].中风与神经疾病,1998,15(5):262-264.
    [74]Barone FC, Arvin B, White RF,et al. Tumor necrosis facetor-a:a mediator of focal ischemic brain injury [J].1997,28(6):1233-1244.
    [75]Nawashiro H, Martin D, Halienbeck JM. Neuroprotective effects of TNF Binding protein in focal cerebral ischemia [J]. Brain Res,1997,778(2):265-271.
    [76]Lavine SD, Hofinan FM, Zlokovic BV. Criculating antibody against tumor necrosis factor-aprotects rat brain from reperfusion injury [J]. J Cereb Blood Flow Metab,1998,18(1):52-58.
    [77]AkopovSE, SimonianNA, GrigorianGS. Dynamic polymorphonuclear leukocyteaccumulation in acute cerebral infarction and theircorrelation with brain tissue damage [J].Stroke,1996,27:1739-43.
    [78]Thomas J, DeGraba, MD. The role of inflammation after acute stroke [J]. Neurol, 1998,51(33):62-8.
    [79]Ra WX, Rong ZC. Study about the relationship between IL-1 receptor and the pathogenesis of epilepsies [J].1997,38(3):191.
    [80]Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia Part II mechanism of damage and treatment [J]. J Neurosurg,1992,77:337.
    [81]Kaplanski G, Faruarie R, Kaplanski S, et al. IL-1 induce IL-8 secretion fromendothelial cells by a juxtreactine mechanism [J]. Blood,1994,84(12): 4242-4248.
    [82]Caso JR, Moro MA, Lorenzo P, et al. Involvement of IL-1 beta in acute stress-induced worsening of cerebral ischaemia in rats [J]. Eur Neuropsychopharmacol,2007,17(9):600-607.
    [83]柳洪胜,张允岭,刘雪梅,等.从局灶性缺血再灌注炎症因子动态变化探讨内毒形成及作用[J].北京中医药大学学报,2007,30,(4):246-248.
    [84]Dirnagl U, Iadecola C, Moskowitz MA, et al. Pathobiology of ischaemic stroke:An integrated view[J].Trends Neurosci,1999,22(9):391-397.
    [85]Lim KL, Dawson VL, Dawson TM. The cast of molecular characters in Parkinson's disease:felons, conspirations, and suspects [J]. Ann NY Acad Sci, 2003,991:80-92.
    [86]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26:239-257.
    [87]Wood KA, Youle RJ. Apoptsis and free radicals [J]. Ann N Y Acad Sci,1994, 738:400-407.
    [88]Williams GT, Smith CA. Molecular regulation of apoptosis:genetic controls on cell death [J]. Cell,1993,74:777-779.
    [89]Du C, Hu R, Csernansky CA et al.Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? [J]. J Cereb Blood Flow Metab,1996, 16:195-201.
    [90]Charriaut-Marlangue C, Margaill I, Represa A et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis[J]. J Cereb Blood Flow Metab,1996,16:186-194.
    [91]Gareia JH, Liu KF, Ye ZR, Gutierrez JA. Ineomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats [J]. Stroke.1997,28:2303-309.
    [92]Lee SH, Kim M, Kim YJ, et al. Ischemic intensity influences the distribution of delayed infarction and apoptotic cell death following transient focal cerebral ischemia in rats [J]. BrainReseareh2002; 956:14-23.
    [93]Endres M, Namura S, Shimizu-Sasamata M et al.Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family[J]. Cereb Blood FlowMetab,1998,18:238-247.
    [94]Renolleau S, Aggoun-Zouaoui D, Ben-Ari Y, Charriaut-Marlangue C. A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis [J]. Stroke,1998,29:1454-1460.
    [95]LI Y, powers C, Jiang N, Chopp M. Intaet, injured, necrotie and apoptotic cells after focal cerebral isehemia in the rat [J]. Neurol Sei,1998,156:119-132.
    [96]Gillardon F, Lenz C, Waschke KF, et al. Altered expression of Bcl-2, Bcl-X, Bax, and c-Fox colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats [J]. Brain Res Mol Brain Res, 1996,40:254-260.
    [97]Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel forming activity by Bcl-2 [J]. Science,1997,277:370-376.
    [98]Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis[J]. Science,1997,275:1132-1136.
    [99]Schwab BL, Guerini D, Didszun,C, et al. Cleavage of plasma membrane calcium pumps by caspases:a link botween apeptosis and necrosis [J]. Cell Death Differ, 2002,9(8);818-31.
    [100]Budihardjo I, O liver H, Lutter, et al. Biochemical pathways of caspase activation during apoptosis [J]. Ann Neurol,1999,45:421-429.
    [101]Wang X. The expanding role of mitochondria in apoptosis [J]. Genes Dev,2001, 15:2922-2933.
    [102]Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family:highly homologous proteins with overlapping and distinct func-tions[J]. FEBS Lett, 2007,581(19):3702-3710.
    [103]Barbe MF, Tytell M, Gower DJ, et al. Hyperthermia protects against ligh damage in rat retina [J]. Seienee,1988,241(4874):1817-1820.
    [104]Sun Y, Ouyang Y B, Xu L, et al. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro [J]. Cereb Blood Flow Metab,2006,26:937-950.
    [105]Choi S, Park K A, Lee H J, et al. Expression of Cu/Zn SOD protein is suppressed in hsp 70 in knockout mice [J]. Biochem Mol Biol,2005, 38:111-114.
    [106]Lai Y, Du L, Dunsmore K E, et al. Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity [J]. Neurochem,2005,94:360-366.
    [107]Zheng Z, Kim JY, Ma H, et al. Anti-inflammatory effects of the 70k Da heat shock protein in experimental stroke [J]. Cereb Blood Flow Metab,2008, 28:53-63.
    [108]Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: Life and death struggle in the penumbra [J]. Neuropathol Exp Neurol,2003,62 (17):329-339.
    [109]Wang X. The expanding role of mitochondria in apoptosis [J]. Genes Dev,2001, 15:2922-2933.
    [110]Moseiey P. Stress proteins and the immune response [J]. Immunopharmacology, 2000,48 (3):299-302.
    [111]Ohtsuka K, Suzuki T. Roles of molecular chaperones in the nervous system [J]. Brain Res Bull,2000,53 (2):141-146.
    [112]Haddad M, Rhinn H, Bloquel C, et a.l Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor in transient focal cerebral ischemia in mice [J]. Br J Pharmacol,2006,149(1):23.
    [113]Franze'n B, Duvefelt K, Jonsson C, et al. Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-a [J]. Mo.l Brain Res,2003,115(2):130.
    [114]WangX, Feuerstein G. Z, Xu L, eta.l Inhibition of tumornecrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats [J]. Mo.l Pharmacol,2004,65(4):890.
    [115]钱海蓉,王鲁宁.缺血性卒中的神经保护剂研究进展[J].中国药物应用与监测,2006(1):30-34.
    [1]史艳萍,戴得哉.新型抗心衰药物—钙增敏剂作用机制的研究进展[J].中国 新药杂志,2004,13(3):201.
    [2]Masao Endoh. Regulation of myocardial contractility by a downstream mechanism [J]. Circ Res,1998,83:230-232.
    [3]Herzig JW, Feile K, Ruegg, JC. Activating effects of AR-L115BS on the Ca2+ sensitize force stiffness and unloaded shorting velocity [J]. Arz-Fosc,1981, 31:188.
    [4]Solaro RJ, Ruegg JC. Stimulation of Ca2+binding and ATPase activity of dog cardiac myofibrils by AR-L115BS, a novel cardiotonic agent [J]. Circ Res,1982, 51:290-294.
    [5]Kitada Y, Morita M, Narimatsu A. Comparison of the effect of MCI-154, a new cardiotonic agent, and some Ca2+ sensitizing agents on the response of the contractile system to Ca2+ in skinned cardiac muscle [J]. Jap J Pharmacol,1989, 50:411.
    [6]HHaikala, Nissinen E, Zaden E. TroponinC-mediated calcium sensitization induced by Levosimendan does not impair relaxation [J]. Cardiovasc Pharmacol, 1995,26:794-801.
    [7]Hajjr RJ, Gwathmey JK. Calcium-sensitizing inotropic agents in the treatment of heart failure:a critical view [J]. Br J Pharmacol,1991,5:961-966.
    [8]Herzig JW. On the role of calcium binding proteins as possible targets for Ca+ sensitizing agent [J]. Z Kardiol,1992,81(S4):49-51.
    [9]Schiwinger HG, Boehm M, Mittmann C, et al. Evidence for a sustained effectiveness of sodium channel activators in failing hurnan myocardium [J]. Mol Cell Cardiol,1991,23:461-471.
    [10]Herold P, Herzig JW, Wenk P.5-Meththyl-6-Phenyl-1,3,5,6-tetrahydro-3,6-Methano-1,5-Benzodiazocine-2,4-dione(BA41899) representative of a novel class of purely calcium sensitizing agent [J]. Med Chem,1995,38:2946-2954.
    [11]程增江.转让盐酸椒苯酮胺及其冻干针临床批件[EB/OL].(2009-07-28) [2009-08-01]. http://www.chemdrug.com/tra-deinfo/offerdetail/1-3-0-7254. html.
    [12]Pacher P, Schulz R, Liaudet L, et al. Nitrosative stress and pharmacological modulation of heart failure [J]. Trends Pharmacol Sci,2005,26:302-310.
    [13]Pacher P, Liaudet L, Bai P, et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin induced cardiac dysfunction [J]. Circulation,2003,107:896-904.
    [14]De Luca L, Colucci WS, Nieminen MS, et al. Evidence-based use of levosimendan in different clinical settings [J]. Eur Heart J,2006,27:1908-20.
    [15]Michaels AD, McKeown B, Kostal M, et al. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake [J]. Circulation,2005,111:1504-1509.
    [16]Ozdem SS, Yalcin O, Meiselman HJ, et al. The role of potassium channels in relaxant effect of levosimendan in rat small mesentericarteries [J]. Cardiovasc Drugs Ther,2006,20:123-127.
    [17]Grossini E, Caimmi PP, Molinari C, et al. Hemodynamic effect of intracoronary administration of levosimendan in the anesthetized pig[J]. Cardiovasc Pharmacol, 2005,46:333-342.
    [18]Kopustinskiene DM, Pollesello P, Saris NE. Levosimendan is a mitochondrial K (ATP) channel opener[J]. Eur J Pharmacol,2001,428:311-314.
    [19]Avgeropoulou C, Andreadou I, Markantonis-Kyroudis S, et al. The Ca2+-sensitizer levosimendan improves oxidative damage[J]. BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine [J]. Eur J Heart Fail,2005,7:882-887.
    [20]Turko IV, Murad F. Protein nitration in cardiovascular diseases [J]. Pharmacol Rev,2002,54:619-634.
    [21]Ischiropoulos H. Biological tyrosine nitration:a pathophysiological function of nitric oxide and reactive oxygen species [J]. Arch Biochem Biophys,1998, 356:1-11.
    [22]White M, Ducharme A, Ibrahim R, et al. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support [J]. ClinSci,2006,110:483-489.
    [23]John T. Parissis, Ioanna Andreadou, Sophia L. Markantonis, et al. Effects of Levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure[J]. Atherosclerosis,2007,195:210-215.
    [24]Takahashi M, Takeda S, Kurokawa S, et al. Cyclic GMP production by ANP, BNP, and NO during worsening and improvement of chronic heartfailure[J]. Jpn Heart J,2003,44:713-724.
    [25]Mebazaa A, Nieminen M, Packer M, et al. SURVIVE investigators Levosimendan vs dobutamine for patients with acute decompensated heart failure:the SURVIVE Randomized Trial [J]. JAMA,2007,297:1883-1891.
    [26]Parissis J, Adamopoulos S, Antoniades C, et al. Effects of levosimendan on circulating pro-inflammatory cytokines and soluble apoptosis mediators in patients with decompensated heart failure [J]. Am J Cardiol,2004, 93:1309-1312.
    [27]徐腾达,于学忠.现代急症诊断治疗学[M].北京:中国协和医科大学出版社,2007:6.
    [28]Matsuda T, ArakawaN, Takuma K, et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models [J]. Pharmacol Exp Ther,2001,298(1): 249-256.
    [29]Xiong ZG, Zhu XM, Chu XP, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels [J]. Cell,2004,118:687.
    [30]Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain [J]. Free Radic BiolMed,2006,40(3):388-397.
    [31]Yan YP, SailorKA, Lang BT, et al. Monocyte chemoat-tractantprotein-1 plays a critical role in neuroblastmigration after focal cerebral ischemia [J]. Cereb Blood FlowMetab,2007,27(6):1213-1224.
    [32]鲁启洪.银杏活脑胶囊对大鼠缺血性脑卒中微血管增殖和神经干细胞再生的影响[J].湖北民族学院学报(医学版),2009,26(4):7-9.
    [33]McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke [J]. Neuro-science,2009,158(3):1049-1461.
    [34]Truettner J S, Hu K, Liu C L, et al. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats[J]. Brain Res,2009,1249:9-18.
    [35]Choi S, Park K A, Lee H J, et al. Expression of Cu/Zn SOD protein is suppressed in hsp 70 in knockout mice [J]. Biochem Mol Biolm,2005, 38:111-114.
    [36]Lai Y, Du L, Dunsmore K E, et al. Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity [J]. J Neurochem,2005,94:360-366.
    [37]Zheng Z, Kim J Y, Ma H, et al. Anti-inflammatory effects of the 70kDa heat shock protein in experimental stroke [J]. Cereb Blood Flow Metab,2008, 28:53-63.
    [1]Feigin VL, Lawes CM, Bennet DA, Anderson CS. Stroke epidemiology:A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century [J]. Lancet Neurol,2003,2:43-53.
    [2]饶明俐.中国脑血管病防治指南[W].人民卫生出版社,2007.
    [3]Loh KP, Huang SH, De Silva R, et al. Oxidative stress:apotosis in neuronal injury[J]. Cereb Blood Flow Metab,2003,23(9):1010-1019.
    [4]Honde HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury [J]. Ann NY Acad Sci,2005,1047:248-258.
    [5]Morita-Fujimura Y, Fujimura M, Yoshimoto T, et al. Superoxide during reperfusion contributes to caspase-8 expression and apoptosis after transient focal stroke [J]. Stroke,2001,32:2356-2361.
    [6]Szeto H H. Mitochondria-targeted cytoprotective peptites for ischemia reperfusion injury [J]. Antioxid Redox Signal,2008,10:601-619.
    [7]Noshita N, Sugawara T, Fujumura M, et al. Manganese superoxide dismutase effects cytochrome cerelease and caspase-9 activation after trancient focal cerebral ischemia in mice [J]. Cereb blood Flow Metab,2001,21:557-567.
    [8]Sugawara T, Noshita N, Lewen A, et al. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation [J]. Neuroscience,2002,22:209-217.
    [9]Chan PH, Kawase M, Murakami K, et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebal ischemia and reperfusion [J]. Neuroscience,1998,18:8292-8299.
    [10]Huang CY, Fujimura M, Noshita N, et al. SOD1 downregulates NF-k B and C-myc expression in mice after transient focal cerebral ischemia [J]. Cereb Blood Flow Metab,2001,21:163-173.
    [11]杨倩,朱武生,吴家幂.大鼠脑缺血再灌注模型ICAM1表达与白细胞浸润关系及亚低温干预治疗的研究[J].临床神经病学杂志,2002,15(4):196-199.
    [12]李岚.川芎嗪对局部脑缺血再灌注模型纹状体内IL-1β的影响[J].中国临床神经科学,2001,9,(1):36-37
    [13]董瑞芳IL-1、IL-4基因多态性与脑梗塞相关性研究[D].河北医科大学,2009.
    [14]AkopovSE, SimonianNA, GrigorianGS. Dynamic polymorphonuclear leukocyteaccumulation in acute cerebral infarction and theircorrelation with brain tissue damage [J].Stroke,1996,27:1739-43.
    [15]Thomas J, DeGraba, MD. The role of inflammation after acute stroke [J].Neurol, 1998,51(33):62-8.
    [16]Ra WX, Rong ZC. Study about the relationship between IL-1 receptor and the pathogenesis of epilepsies [J]. Epilepsia,1997,38(3):191
    [17]Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia Part II mechanism of damage and treatment [J]. J Neurosurg,1992,77:337
    [18]Kaplanski G, Faruarie R, Kaplanski S, et al. IL-1 induce IL-8 secretion fromendothelial cells by a juxtreactine mechanism [J]. Blood,1994,84(12): 4242-4248.
    [19]Czermak BJ, Sarma V, Bless NM, Schmal H, Friedl HP, Ward PA. In vitro and invivo dependency of chemokine generaton on C5a and TNF-alpha [J]. Immunol, 1999,162(4):2321-2325.
    [20]Liu T, Clark RK, McDonnell PC, Young PR, et al. Tumor necrosis factor-a expression in ischemia neurons [J]. Stroke,1994,25(27):1481-1488.
    [21]Barone FC, Arvin B, White RF,et al. Tumor necrosis facetor-a:a mediator of focal ischemic brain injury [J].1997,28(6):1233-1244
    [22]Nawashiro H, Martin D, Halienbeck JM. Neuroprotective effects of TNF Binding protein in focal cerebral ischemia [J]. Brain Res,1997,778,(2):265-271
    [23]Lavine SD, Hofinan FM, Zlokovic BV. Criculating antibody against tumor necrosis factor-aprotects rat brain from reperfusion injury[J]. J Cereb Blood Flow Metab,1998,18(1):52-58.
    [24]Kimura C, Oike M, Ito Y. Hypoxia induced alterations in Ca2+ mobilization in brain microvascular endothelial cells [J]. Physiol,2000,279:H2310-H2318.
    [25]Dirang U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke:an integrated view [J]. Trends Neurosci,1999,22:391-397.
    [26]Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke:lessons from animal models [J]. Metab Brain Dis,2004,19:151-167.
    [27]Smaili SS, Hsu YT, Youle RJ, et al. Mitochondria in Ca2+signaling and apoptosis [J]. Bioenerg Biomember,2000,32(1):35-37.
    [28]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26:239-257.
    [29]Lim KL, Dawson VL, Dawson TM. The cast of molecular characters in Parkinson's disease:felons, conspirations, and suspects [J]. Ann NY Acad Sci, 2003,991:80-92.
    [30]Graham SH, Chen J. Programmed cell death in cerebral ischemia [J]. Cereb Blood Flow Metab,2001,21:99-109.
    [31]Finkei E. the mitochondrion: is it central to apoptosis [J]. Science,2001, 29(270):624-626.
    [32]Shimizu S, Nagayama T, Jin KL, et al. Bcl-2 antisense treatment prevents induction of tolerance to focal ischemia in the rat brain [J]. Cereb Blood Flow Metab,2001,21:233-243.
    [33]Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I, et al. Ionomycin-activated calpain triggers apoptosis:a probable role for Bcl-2 family members [J]. Biol Chem,2002,277:27217-27226.
    [34]Liu D, Lu C, Wan R, et al. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release[J]. Cereb Blood Flow Metab,2002,22:431-443.
    [35]Stacey MO, Rosemary AK, Frederick AM, et al. Ischemia preconditioning protects against gut dysfunction and mucosal injury after ischemia/reperfusion injury [J]. Shock,2005,23(3):258-263.
    [36]Hu BR, Liu CL, Ouyang Y, et al. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation [J]. Cereb Blood Flow Metab, 2000,20:1294-1300.
    [37]Han BH, D' Costa A, Back SA, et al. BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia [J]. Neurobiol Dis,2000,7:38-53.
    [38]Zhan RZ, Wu C, Fujihara H, et al. Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cyto-chrome c from mitochondria in a rat forebrain ischemia model [J]. Cereb Blood Flow Metab,2001,21:529-540.
    [39]Wang H, Yu SW, Koh DW, et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death[J]. Neuroscience,2004,24:10963-10973.
    [40]Cheung EC, Melanson-Drapeau L, Cregan SP, et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by bax-dependent and bax-independent mechanisms [J]. Neuroscience,2005,25:1324-1334.
    [41]Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor [J]. Nature,2002,419:367-374.
    [42]Zhao H, Yenari MA, Cheng D, et al. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat[J]. Cereb Blood Flow Metab,2004,24:681-692.
    [43]Plesnila N, Zhu C, Culmsee C, et al. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia[J]. Cereb Blood Flow Metab,2004,24: 458-466.
    [44]Cao G, Clark RS, Pei W, et al. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation [J]. Cereb Blood Flow Metab,2003,23: 1137-1150.
    [45]Saito A, Hayashi T, Okuno S, et al. Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia[J]. Cereb Blood Flow Metab,2003,23(9):1010-1019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700