用户名: 密码: 验证码:
肿瘤坏死因子α在人免疫缺陷病毒相关神经病变机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大约40%的HIV患者出现不同程度的远端对称性多神经病变(Distal symmetrical polyneuropathy,DSP)。他们具有明显的感觉异常,持续性和阵发性疼痛。目前认为造成HIV-DSP的原因主要有两个:第一,HIV病毒本身,尤其是衣壳蛋白gp120;第二,抗艾滋病药物,艾滋病人使用抗逆转录药物(nucleoside reverse transcriptase inhibitors,NRTI),尤其是双脱氧类药物比如zalcitabine (ddC),didanosine (ddI)和stavudine (d4T)等等,这些药物是鸡尾酒疗法疗法(highly active anti-retroviral therapy, HAART)的重要组成部分。HAART疗法的应用延长了病人寿命,但也加剧了HIV-DSP病变。这个缺陷使得病毒抑制策略受到局限,甚至中断抗病毒治疗。因此,针对DSP病变的疗法亟待开发。然而,HIV及NRTI引起DSP的具体机制尚不清楚。
     HIV不直接感染神经元,而是与胶质细胞CXCR4或CCR5受体结合,释放细胞因子,例如肿瘤坏死因子(TNFα)白介素1 (IL-1β)等,间接与神经元相互作用,引起神经毒性。TNFα在炎症,脊髓损伤,以及脊髓神经结扎等模型中起着起着重要作用。为了了解HIV和NRTI导致神经病变的机制,我们建立了三个大鼠模型,将HIV糖蛋白gp120施用于坐骨神经,腹腔注射ddC以及gp120+ddC共同施用模型,然后通过行为学评定,以及Western Blots,定量PCR,免疫组化等方法检测中枢神经和外周神经病理学和细胞因子的变化,探索胶质细胞与神经元细胞的关系以及TNFα在HIV相关神经疼痛中的作用。
     实验结果显示,单独使用gp120或ddC即可导致大鼠异常疼痛,将gp120和ddC联合施用后,相比单独使用时疼痛加剧。免疫组化发现,三个大鼠模型中,外周神经纤维密度出现不同程度的减少,且gp120+ddC联合使用模型中减少最为明显;Western Blots和定量PCR结果显示gp120和ddC模型中腰4/5脊髓和背根经节中的GFAP和TNFα蛋白水平和mRNA水平都上调,在gp120和ddC共同施模型中显著上升。多重免疫组化染色发现,TNFα在背根神经节中主要由神经元细胞表达,在脊髓中则由神经胶质细胞表达。
     大鼠蛛网膜下腔注射TNFSR或TNF-siRNA都能够逆转异常机械疼痛,恢复趋性运动。此外,蛛网膜下腔注射胶质细胞抑制剂己酮可可碱,也能有效的抑制异常疼痛。
     这些结果表明,我们成功建立了HIV-gp120施用于坐骨神经,腹腔注射ddC以及gp120+ddC共同施用三个大鼠DSP模型;同时也发现在HIV和NRTI的神经病变过程中存在胶质细胞活化增生和外周神经纤维的枯萎;TNFα在HIV-DSP疼痛中起着重要作用,且在TNFα炎性通路中gp120,ddC具有协同加强作用。本研究对阐明HIV相关神经病变机制,验证和评估抗DSP药物,减轻HIV病人痛苦奠定基础。
Distal symmetrical polyneuropathy afflicts about 40% of people living with Human Immunodeficiency Virus (HIV), most of whom have measurable sensory abnormalities and on-going, paroxysmal pain. Currently two reasons are thought to induce HIV-related neuropathy. First, a disease-related DSP associated with HIV-infection itself, especially the coat protein gp120; or secondly a drug- induced DSP associated with the use of nucleoside reverse transcriptase inhibitors (NRTI), particularly the dideoxynuleosides; zalcitabine (ddC), didanosine (ddI) and stavudine (d4T), as part of highly active anti-retroviral therapy (HAART). The use of HAART has markedly increased patient survival making, painful DSP an important source of morbidity in otherwise reasonably healthy HIV-infected individuals. This limits viral suppression strategies and may precipitate discontinuation of anti-retroviral therapy. Therefore, it is important that analgesic strategies are developed to combat this pain. The exact pathogenesis of HIV-associated neuropathies is unclear
     Direct infection of the nervous system by HIV is thought to be unlikely. Instead, HIV appears to interact with the nervous system via binding of the external envelope protein, gp120, to the chemokine receptors CXCR4 and/or CCR5 expressed on glial cells. Such interactions can result in neurotoxocity. Previous studies indicate that HIV virus infection is able to increase the production and utilization of several cytokines, such as TNFαand IL-1β. Cerebrospinal fluid from most of the patients with AIDS has increased levels of TNFα, TNFαis involved in the development of pain shown in our previous studies of neuropathic pain induced by spinal cord injury, spinal nerve ligation, and of inflammatory pain. In order to elucidate the mechanisms underlying drug-induced neuropathy in the context of HIV infection, we have characterized pathological events in the peripheral and central nervous system following peripheral gp120 application, anti-retroviral agent, ddC (Zalcitabine) with or without the concomitant delivery of HIV-gp120 to the rat sciatic nerve (gp120+ddC). The results showed that HIV-gp120 or systemic ddC treatment alone is associated with a persistent mechanical hypersensitivity that when combined with perineural HIV-gp120 is exacerbated. We found that chemokine GFAP and TNFαare significantly expressed in the DRG and spinal cord of rats treated with perineural HIV-gp120 and/or ddC and there is a reduction in intraepidermal nerve fiber density. Furthermore, a spinal gliosis is apparent at times of peak behavior sensitivity that is exacerbated in gp120+ddC as compared to either treatment alone.
     Moreover, intrathecal administration of TNF siRNA or soluble TNF receptor reversed mechanical allodynia in these three models. Treatment with the glial inhibitor, pentoxifylline, is associated with delayed onset of hypersensitivity to mechanical stimuli in the gp120, ddC and gp120+ddC models and reversal of some measures of thigmotaxis.
     These data suggests that HIV-gp120 and ddC may have a synergistic effect on neuropathic pain. They therefore merit further investigation for the elucidation of underlying mechanisms and may provide useful evidence for preclinical assessment of drugs for the treatment of HIV-related peripheral neuropathic pain.
引文
[1]Dworkin R H, Backonja M, Rowbotham M C, et al., Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol, 2003, 60(11): 1524-34.
    [2]Streit W J, Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002, 40(2): 133-9.
    [3]Chan W Y, Kohsaka S, and Rezaie P, The origin and cell lineage of microglia: new concepts. Brain Res Rev, 2007, 53(2): 344-54.
    [4]Hanani M, Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev, 2005, 48(3): 457-76.
    [5]Perkins N M and Tracey D J, Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience, 2000, 101(3): 745-57.
    [6]Mueller M, Wacker K, Ringelstein E B, et al., Rapid response of identified resident endoneurial macrophages to nerve injury. Am J Pathol, 2001, 159(6): 2187-97.
    [7]Perrin F E, Lacroix S, Aviles-Trigueros M, et al., Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain, 2005, 128(Pt 4): 854-66.
    [8]Shubayev V I, Angert M, Dolkas J, et al., TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci, 2006, 31(3): 407-15.
    [9]Zochodne D W, Levy D, Zwiers H, et al., Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience, 1999, 91(4): 1515-27.
    [10]Stoll G, Jander S, and Myers R R, Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J Peripher Nerv Syst, 2002, 7(1): 13-27.
    [11]Guertin A D, Zhang D P, Mak K S, et al., Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci, 2005, 25(13): 3478-87.
    [12]Carroll S L, Miller M L, Frohnert P W, et al., Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration.J Neurosci, 1997, 17(5): 1642-59.
    [13]Esper R M and Loeb J A, Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J Neurosci, 2004, 24(27): 6218-27.
    [14]Malin S A, Molliver D C, Koerber H R, et al., Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci, 2006, 26(33): 8588-99.
    [15]Ma W and Eisenach J C, Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience, 2003, 121(3): 691-704.
    [16]Tofaris G K, Patterson P H, Jessen K R, et al., Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci, 2002, 22(15): 6696-703.
    [17]Zhang N, Inan S, Cowan A, et al., A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci U S A, 2005, 102(12): 4536-41.
    [18]Oh S B, Tran P B, Gillard S E, et al., Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci, 2001, 21(14): 5027-35.
    [19]Melli G, Keswani S C, Fischer A, et al., Spatially distinct and functionally independent mechanisms of axonal degeneration in a model of HIV-associated sensory neuropathy. Brain, 2006, 129(Pt 5): 1330-8.
    [20]Keswani S C, Polley M, Pardo C A, et al., Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol, 2003, 54(3): 287-96.
    [21]Cunha T M, Verri W A, Jr., Silva J S, et al., A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A, 2005, 102(5): 1755-60.
    [22]Schafers M, Lee D H, Brors D, et al., Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci, 2003, 23(7): 3028-38.
    [23]Wolf G, Gabay E, Tal M, et al., Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain, 2006, 120(3): 315-24.
    [24]Schafers M, Svensson C I, Sommer C, et al., Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci, 2003, 23(7): 2517-21.
    [25]Aggarwal B B, Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003, 3(9): 745-56.
    [26]Myers R R, Campana W M, and Shubayev V I, The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today, 2006, 11(1-2): 8-20.
    [27]Lindholm D, Heumann R, Meyer M, et al., Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature, 1987, 330(6149): 658-9.
    [28]Mack T G, Reiner M, Beirowski B, et al., Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci, 2001, 4(12): 1199-206.
    [29]Sommer C and Schafers M, Painful mononeuropathy in C57BL/Wld mice with delayed wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res, 1998, 784(1-2): 154-62.
    [30]Zhuang Z Y, Kawasaki Y, Tan P H, et al., Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun, 2007, 21(5): 642-51.
    [31]Morin N, Owolabi S A, Harty M W, et al., Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol, 2007, 184(1-2): 164-71.
    [32]White F A, Sun J, Waters S M, et al., Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A, 2005, 102(39): 14092-7.
    [33]Zhang J and De Koninck Y, Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem, 2006, 97(3): 772-83.
    [34]Hu P and McLachlan E M, Distinct functional types of macrophage in dorsal root ganglia and spinal nerves proximal to sciatic and spinal nerve transections in the rat. Exp Neurol, 2003, 184(2): 590-605.
    [35]Tandrup T, Woolf C J, and Coggeshall R E, Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J Comp Neurol, 2000, 422(2): 172-80.
    [36]Shi T J, Tandrup T, Bergman E, et al., Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6J mouse: marked changes both in cell numbers and neuropeptide expression. Neuroscience, 2001, 105(1): 249-63.
    [37]Costigan M, Befort K, Karchewski L, et al., Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci, 2002, 3: 16.
    [38]Arruda J L, Sweitzer S, Rutkowski M D, et al., Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res, 2000, 879(1-2): 216-25.
    [39]Jin X and Gereau R W t, Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci, 2006, 26(1): 246-55.
    [40]Burnstock G, Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev, 2007, 87(2): 659-797.
    [41]Khakh B S, Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci, 2001, 2(3): 165-74.
    [42]Kobayashi K, Fukuoka T, Yamanaka H, et al., Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. J Comp Neurol, 2005, 481(4): 377-90.
    [43]Kobayashi K, Fukuoka T, Yamanaka H, et al., Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol, 2006, 498(4): 443-54.
    [44]Di Virgilio F, Chiozzi P, Ferrari D, et al., Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 2001, 97(3): 587-600.
    [45]Zhang X, Chen Y, Wang C, et al., Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A, 2007, 104(23): 9864-9.
    [46]Chen Y, Li G W, Wang C, et al., Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain, 2005, 119(1-3):38-48.
    [47]Jarvis M F, Burgard E C, McGaraughty S, et al., A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A, 2002, 99(26): 17179-84.
    [48]Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al., P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003, 424(6950): 778-83.
    [49]Chessell I P, Hatcher J P, Bountra C, et al., Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 2005, 114(3): 386-96.
    [50]McGaraughty S, Chu K L, Namovic M T, et al., P2X7-related modulation of pathological nociception in rats. Neuroscience, 2007, 146(4): 1817-28.
    [51]Amaya F, Wang H, Costigan M, et al., The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci, 2006, 26(50): 12852-60.
    [52]Sharp C J, Reeve A J, Collins S D, et al., Investigation into the role of P2X(3)/P2X(2/3) receptors in neuropathic pain following chronic constriction injury in the rat: an electrophysiological study. Br J Pharmacol, 2006, 148(6): 845-52.
    [53]Ramer M S, Murphy P G, Richardson P M, et al., Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain, 1998, 78(2): 115-21.
    [54]Li H Y, Say E H, and Zhou X F, Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells, 2007, 25(8): 2053-65.
    [55]Hu P, Bembrick A L, Keay K A, et al., Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun, 2007, 21(5): 599-616.
    [56]Beggs S and Salter M W, Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain Behav Immun, 2007, 21(5): 624-33.
    [57]Marchand F, Perretti M, and McMahon S B, Role of the immune system in chronic pain. Nat Rev Neurosci, 2005, 6(7): 521-32.
    [58]Tsuda M, Inoue K, and Salter M W, Neuropathic pain and spinal microglia:a big problem from molecules in "small" glia. Trends Neurosci, 2005, 28(2): 101-7.
    [59]Watkins L R and Maier S F, Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev, 2002, 82(4): 981-1011.
    [60]Jin S X, Zhuang Z Y, Woolf C J, et al., p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci, 2003, 23(10): 4017-22.
    [61]Katsura H, Obata K, Mizushima T, et al., Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci, 2006, 26(34): 8680-90.
    [62]Svensson C I, Fitzsimmons B, Azizi S, et al., Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem, 2005, 92(6): 1508-20.
    [63]Zhuang Z Y, Gerner P, Woolf C J, et al., ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 2005, 114(1-2): 149-59.
    [64]Verge G M, Milligan E D, Maier S F, et al., Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci, 2004, 20(5): 1150-60.
    [65]White F A, Bhangoo S K, and Miller R J, Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov, 2005, 4(10): 834-44.
    [66]Kim D, Kim M A, Cho I H, et al., A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem, 2007, 282(20): 14975-83.
    [67]Tanga F Y, Nutile-McMenemy N, and DeLeo J A, The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A, 2005, 102(16): 5856-61.
    [68]Dorf M E, Berman M A, Tanabe S, et al., Astrocytes express functional chemokine receptors. J Neuroimmunol, 2000, 111(1-2): 109-21.
    [69]Milligan E D, Zapata V, Chacur M, et al., Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci, 2004, 20(9): 2294-302.
    [70]Abbadie C, Lindia J A, Cumiskey A M, et al., Impaired neuropathic painresponses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A, 2003, 100(13): 7947-52.
    [71]Trinchieri G and Sher A, Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol, 2007, 7(3): 179-90.
    [72]Marshak-Rothstein A, Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol, 2006, 6(11): 823-35.
    [73]Scholz J, Broom D C, Youn D H, et al., Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci, 2005, 25(32): 7317-23.
    [74]Echeverry S, Shi X Q, and Zhang J, Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain, 2008, 135(1-2): 37-47.
    [75]Coull J A, Beggs S, Boudreau D, et al., BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005, 438(7070): 1017-21.
    [76]Coull J A, Boudreau D, Bachand K, et al., Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature, 2003, 424(6951): 938-42.
    [77]Nakatsuka T and Gu J G, ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci, 2001, 21(17): 6522-31.
    [78]Clark A K, Yip P K, Grist J, et al., Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A, 2007, 104(25): 10655-60.
    [79]Winkelstein B A, Rutkowski M D, Sweitzer S M, et al., Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol, 2001, 439(2): 127-39.
    [80]Griffin R S, Costigan M, Brenner G J, et al., Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci, 2007, 27(32): 8699-708.
    [81]Kotani N, Kushikata T, Hashimoto H, et al., Intrathecal methylprednisolone for intractable postherpetic neuralgia. N Engl J Med, 2000, 343(21): 1514-9.
    [82]van Wijck A J, Opstelten W, Moons K G, et al., The PINE study of epidural steroids and local anaesthetics to prevent postherpetic neuralgia: a randomised controlled trial. Lancet, 2006, 367(9506): 219-24.
    [83]Arden N K, Price C, Reading I, et al., A multicentre randomized controlled trial of epidural corticosteroid injections for sciatica: the WEST study. Rheumatology (Oxford), 2005, 44(11): 1399-406.
    [84]Watkins L R and Maier S F, Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003, 2(12): 973-85.
    [85]Clark A K, Gentry C, Bradbury E J, et al., Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain, 2007, 11(2): 223-30.
    [86]Tawfik V L, Nutile-McMenemy N, Lacroix-Fralish M L, et al., Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun, 2007, 21(2): 238-46.
    [87]Ledeboer A, Sloane E M, Milligan E D, et al., Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain, 2005, 115(1-2): 71-83.
    [88]Raghavendra V, Tanga F, and DeLeo J A, Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther, 2003, 306(2): 624-30.
    [89]Sweitzer S M and DeLeo J A, The active metabolite of leflunomide, an immunosuppressive agent, reduces mechanical sensitivity in a rat mononeuropathy model. J Pain, 2002, 3(5): 360-8.
    [90]Goncharov N V, Jenkins R O, and Radilov A S, Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol, 2006, 26(2): 148-61.
    [91]Si Q, Nakamura Y, Ogata T, et al., Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res, 1998, 812(1-2): 97-104.
    [92]Zemke D and Majid A, The potential of minocycline for neuroprotection in human neurologic disease. Clin Neuropharmacol, 2004, 27(6): 293-8.
    [93]Umapathi T and Chaudhry V, Toxic neuropathy. Curr Opin Neurol, 2005, 18(5): 574-80.
    [94]McGaraughty S and Jarvis M F, Antinociceptive properties of a non-nucleotide P2X3/P2X2/3 receptor antagonist. Drug News Perspect, 2005, 18(8):501-7.
    [95]Donnelly-Roberts D L and Jarvis M F, Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol, 2007, 151(5): 571-9.
    [96]Stella N, Cannabinoid signaling in glial cells. Glia, 2004, 48(4): 267-77.
    [97]Valenzano K J, Tafesse L, Lee G, et al., Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology, 2005, 48(5): 658-72.
    [98]Milligan E D, Sloane E M, Langer S J, et al., Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain, 2006, 126(1-3): 294-308.
    [99]George A, Marziniak M, Schafers M, et al., Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-alpha, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain, 2000, 88(3): 267-75.
    [100]Sommer C, Marziniak M, and Myers R R, The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain, 1998, 74(1): 83-91.
    [101]Brew B J, The peripheral nerve complications of human immunodeficiency virus (HIV) infection. Muscle Nerve, 2003, 28(5): 542-52.
    [102]Dalakas M C, Peripheral neuropathy and antiretroviral drugs. J Peripher Nerv Syst, 2001, 6(1): 14-20.
    [103]Brew B J, Tisch S, and Law M, Lactate concentrations distinguish between nucleoside neuropathy and HIV neuropathy. Aids, 2003, 17(7): 1094-6.
    [104]ter Hofstede H J, Willems H L, and Koopmans P P, Serum L-lactate and pyruvate in HIV-infected patients with and without presumed NRTI-related adverse events compared to healthy volunteers. J Clin Virol, 2004, 29(1): 44-50.
    [105]Markus R and Brew B J, HIV-1 peripheral neuropathy and combination antiretroviral therapy. Lancet, 1998, 352(9144): 1906-7.
    [106]Martin C, Solders G, Sonnerborg A, et al., Antiretroviral therapy may improve sensory function in HIV-infected patients: a pilot study. Neurology, 2000, 54(11): 2120-7.
    [107]Herzberg U and Sagen J, Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol, 2001, 116(1): 29-39.
    [108]Keswani S C, Chander B, Hasan C, et al., FK506 is neuroprotective in a model of antiretroviral toxic neuropathy. Ann Neurol, 2003, 53(1): 57-64.
    [109]Kennedy J M, Hoke A, Zhu Y, et al., Peripheral neuropathy in lentivirus infection: evidence of inflammation and axonal injury. Aids, 2004, 18(9): 1241-50.
    [110]Feldman D, Brosnan C, and Anderson T D, Ultrastructure of peripheral neuropathy induced in rabbits by 2',3'-dideoxycytidine. Lab Invest, 1992, 66(1): 75-85.
    [111]Anderson T D, Davidovich A, Feldman D, et al., Mitochondrial schwannopathy and peripheral myelinopathy in a rabbit model of dideoxycytidine neurotoxicity. Lab Invest, 1994, 70(5): 724-39.
    [112]Patterson T A, Schmued L C, Sandberg J A, et al., Temporal development of 2',3'-dideoxyinosine (ddI)-induced peripheral myelinopathy. Neurotoxicol Teratol, 2000, 22(3): 429-34.
    [113]Joseph E K, Chen X, Khasar S G, et al., Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain, 2004, 107(1-2): 147-58.
    [114]Apostolski S, McAlarney T, Quattrini A, et al., The gp120 glycoprotein of human immunodeficiency virus type 1 binds to sensory ganglion neurons. Ann Neurol, 1993, 34(6): 855-63.
    [115]Cui L, Locatelli L, Xie M Y, et al., Effect of nucleoside analogs on neurite regeneration and mitochondrial DNA synthesis in PC-12 cells. J Pharmacol Exp Ther, 1997, 280(3): 1228-34.
    [116]Mitsuya H, Yarchoan R, and Broder S, Molecular targets for AIDS therapy. Science, 1990, 249(4976): 1533-44.
    [117]Lewis W and Dalakas M C, Mitochondrial toxicity of antiviral drugs. Nat Med, 1995, 1(5): 417-22.
    [118]Brinkman K, ter Hofstede H J, Burger D M, et al., Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. Aids, 1998, 12(14): 1735-44.
    [119]Brinkman K, Smeitink J A, Romijn J A, et al., Mitochondrial toxicityinduced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet, 1999, 354(9184): 1112-5.
    [120]Carr A, Samaras K, Burton S, et al., A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. Aids, 1998, 12(7): F51-8.
    [121]Carr A, Samaras K, Thorisdottir A, et al., Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet, 1999, 353(9170): 2093-9.
    [122]Miller K D, Cameron M, Wood L V, et al., Lactic acidosis and hepatic steatosis associated with use of stavudine: report of four cases. Ann Intern Med, 2000, 133(3): 192-6.
    [123]Verma A, Schein R M, Jayaweera D T, et al., Fulminant neuropathy and lactic acidosis associated with nucleoside analog therapy. Neurology, 1999, 53(6): 1365-7.
    [124]Bozzette S A, Santangelo J, Villasana D, et al., Peripheral nerve function in persons with asymptomatic or minimally symptomatic HIV disease: absence of zidovudine neurotoxicity. J Acquir Immune Defic Syndr, 1991, 4(9): 851-5.
    [125]Jay C, Ropka M, and Dalakas M C, The drugs 2',3'-dideoxyinosine (ddI) and 2',3'-dideoxycytidine (ddC) are safe alternatives in people with AIDS with zidovudine-induced myopathy. J Acquir Immune Defic Syndr, 1994, 7(6): 630-1.
    [126]Dalakas M C, Illa I, Pezeshkpour G H, et al., Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med, 1990, 322(16): 1098-105.
    [127]Dalakas M C and Cupler E J, Neuropathies in HIV infection. Baillieres Clin Neurol, 1996, 5(1): 199-218.
    [128]Simpson D M and Tagliati M, Nucleoside analogue-associated peripheral neuropathy in human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol, 1995, 9(2): 153-61.
    [129]Cornblath D R and McArthur J C, Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology, 1988, 38(5): 794-6.
    [130]Maschke M, Kastrup O, Esser S, et al., Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry, 2000, 69(3): 376-80.
    [131]Berger A R, Arezzo J C, Schaumburg H H, et al., 2',3'-dideoxycytidine (ddC) toxic neuropathy: a study of 52 patients. Neurology, 1993, 43(2): 358-62.
    [132]Faraj A, Fowler D A, Bridges E G, et al., Effects of 2',3'-dideoxynucleosides on proliferation and differentiation of human pluripotent progenitors in liquid culture and their effects on mitochondrial DNA synthesis. Antimicrob Agents Chemother, 1994, 38(5): 924-30.
    [133]Kieburtz K D, Giang D W, Schiffer R B, et al., Abnormal vitamin B12 metabolism in human immunodeficiency virus infection. Association with neurological dysfunction. Arch Neurol, 1991, 48(3): 312-4.
    [134]Abrams D I, Goldman A I, Launer C, et al., A comparative trial of didanosine or zalcitabine after treatment with zidovudine in patients with human immunodeficiency virus infection. The Terry Beirn Community Programs for Clinical Research on AIDS. N Engl J Med, 1994, 330(10): 657-62.
    [135]Feldman D and Anderson T D, Schwann cell mitochondrial alterations in peripheral nerves of rabbits treated with 2',3'-dideoxycytidine. Acta Neuropathol, 1994, 87(1): 71-80.
    [136]Benbrik E, Chariot P, Bonavaud S, et al., Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. J Neurol Sci, 1997, 149(1): 19-25.
    [137]Richardson F C, Engelhardt J A, and Bowsher R R, Fialuridine accumulates in DNA of dogs, monkeys, and rats following long-term oral administration. Proc Natl Acad Sci U S A, 1994, 91(25): 12003-7.
    [138]Wallace D C, Lott M T, Shoffner J M, et al., Diseases resulting from mitochondrial DNA point mutations. J Inherit Metab Dis, 1992, 15(4): 472-9.
    [139]Wallace D C, Diseases of the mitochondrial DNA. Annu Rev Biochem, 1992, 61: 1175-212.
    [140]Simpson D M, Olney R, McArthur J C, et al., A placebo-controlled trial of lamotrigine for painful HIV-associated neuropathy. Neurology, 2000, 54(11): 2115-9.
    [141]Berger J R and Nath A, Remedies for HIV-associated peripheral neuropathy. Neurology, 2000, 54(11): 2037-8.
    [142]McArthur J C, Yiannoutsos C, Simpson D M, et al., A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology, 2000, 54(5): 1080-8.
    [143]Schifitto G, McDermott M P, McArthur J C, et al., Incidence of and risk factors for HIV-associated distal sensory polyneuropathy. Neurology, 2002, 58(12): 1764-8.
    [144]Simpson D M, Kitch D, Evans S R, et al., HIV neuropathy natural history cohort study: assessment measures and risk factors. Neurology, 2006, 66(11): 1679-87.
    [145]Newshan G, Pain in human immunodeficiency virus disease. Semin Oncol Nurs, 1997, 13(1): 36-41.
    [146]Dorsey S G and Morton P G, HIV peripheral neuropathy: pathophysiology and clinical implications. AACN Clin Issues, 2006, 17(1): 30-6.
    [147]Zhou B Y, Liu Y, Kim B, et al., Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci, 2004, 27(3): 296-305.
    [148]Michaels J, Sharer L R, and Epstein L G, Human immunodeficiency virus type 1 (HIV-1) infection of the nervous system: a review. Immunodefic Rev, 1988, 1(1): 71-104.
    [149]Lipton S A, Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Dev Neurosci, 1994, 16(3-4): 145-51.
    [150]Milligan E D, O'Connor K A, Nguyen K T, et al., Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci, 2001, 21(8): 2808-19.
    [151]Wallace V C, Blackbeard J, Pheby T, et al., Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain, 2007, 133(1-3): 47-63.
    [152]Eron J J, Jr., Ashby M A, Giordano M F, et al., Randomised trial of MNrgp120 HIV-1 vaccine in symptomless HIV-1 infection. Lancet, 1996, 348(9041): 1547-51.
    [153]Milligan E D, Mehmert K K, Hinde J L, et al., Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res, 2000, 861(1): 105-16.
    [154]Reid W, Sadowska M, Denaro F, et al., An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci US A, 2001, 98(16): 9271-6.
    [155]Merrill J E and Chen I S, HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J, 1991, 5(10): 2391-7.
    [156]Tyor W R, Glass J D, Griffin J W, et al., Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol, 1992, 31(4): 349-60.
    [157]Cedeno-Laurent F, Bryant J, Fishelevich R, et al., Inflammatory papillomatous hyperplasia and epidermal necrosis in a transgenic rat for HIV-1. J Dermatol Sci, 2009, 53(2): 112-9.
    [158]Potash M J, Chao W, Bentsman G, et al., A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A, 2005, 102(10): 3760-5.
    [159]Ilyin S E and Plata-Salaman C R, HIV-1 envelope glycoprotein 120 regulates brain IL-1beta system and TNF-alpha mRNAs in vivo. Brain Res Bull, 1997, 44(1): 67-73.
    [160]Yamamoto N, The role of cytokines in the acquired immunodeficiency syndrome. Int J Clin Lab Res, 1995, 25(1): 29-34.
    [161]Kumar M, Kumar A M, Waldrop D, et al., HIV-1 infection and its impact on the HPA axis, cytokines, and cognition. Stress, 2003, 6(3): 167-72.
    [162]Zimmermann M, Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 1983, 16(2): 109-10.
    [163]Hao S, Wolfe D, Glorioso J C, et al., Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain, 2009, 13(4): 380-6.
    [164]Wallace V C, Blackbeard J, Segerdahl A R, et al., Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain, 2007, 130(Pt 10): 2688-702.
    [165]Chaplan S R, Bach F W, Pogrel J W, et al., Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994, 53(1): 55-63.
    [166]Dixon W J, Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol, 1980, 20: 441-62.
    [167]Livak K J and Schmittgen T D, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-8.
    [168]Hao S, Liu S, Zheng X, et al., The role of TNFalpha in the periaqueductalgray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology, 2011, 36(3): 664-76.
    [169]Tan P H, Yang L C, Shih H C, et al., Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther, 2005, 12(1): 59-66.
    [170]He X H, Zang Y, Chen X, et al., TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain, 2010, 151(2): 266-79.
    [171]Mika J, Osikowicz M, Rojewska E, et al., Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol, 2009, 623(1-3): 65-72.
    [172]Shohami E, Bass R, Wallach D, et al., Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab, 1996, 16(3): 378-84.
    [173]Saito O, Svensson C I, Buczynski M W, et al., Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol, 2010, 160(7): 1754-64.
    [174]Peng X M, Zhou Z G, Glorioso J C, et al., Tumor necrosis factor-alpha contributes to below-level neuropathic pain after spinal cord injury. Ann Neurol, 2006, 59(5): 843-51.
    [175]Hao S, Mata M, Glorioso J C, et al., Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Ther, 2007, 14(13): 1010-6.
    [176]Zhou Z, Peng X, Hao S, et al., HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. Gene Ther, 2008, 15(3): 183-90.
    [177]Gelman B B, Spencer J A, Holzer C E, 3rd, et al., Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol, 2006, 1(4): 410-20.
    [178]Jernigan T L, Gamst A C, Archibald S L, et al., Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry, 2005, 162(8): 1461-72.
    [179]Meeker R B, Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol, 2007, 2(2): 154-70.
    [180]Roth M D, Tashkin D P, Whittaker K M, et al., Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. Life Sci, 2005, 77(14): 1711-22.
    [181]Mahajan S D, Schwartz S A, and Nair M P, Immunological assays for chemokine detection in in-vitro culture of CNS cells. Biol Proced Online, 2003, 5: 90-102.
    [182]Berman J W, Carson M J, Chang L, et al., NeuroAIDS, drug abuse, and inflammation: building collaborative research activities. J Neuroimmune Pharmacol, 2006, 1(4): 351-99.
    [183]Williams K C and Burdo T H, HIV and SIV infection: the role of cellular restriction and immune responses in viral replication and pathogenesis. APMIS, 2009, 117(5-6): 400-12.
    [184]Kaul M, Zheng J, Okamoto S, et al., HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ, 2005, 12 Suppl 1: 878-92.
    [185]Garzino-Demo A, DeVico A L, Conant K E, et al., The role of chemokines in human immunodeficiency virus infection. Immunol Rev, 2000, 177: 79-87.
    [186]Zou W, Kim B O, Zhou B Y, et al., Protection against human immunodeficiency virus type 1 Tat neurotoxicity by Ginkgo biloba extract EGb 761 involving glial fibrillary acidic protein. Am J Pathol, 2007, 171(6): 1923-35.
    [187]Cepeda E J, Williams F M, Ishimori M L, et al., The use of anti-tumour necrosis factor therapy in HIV-positive individuals with rheumatic disease. Ann Rheum Dis, 2008, 67(5): 710-2.
    [188]Aukrust P, Liabakk N B, Muller F, et al., Serum levels of tumor necrosis factor-alpha (TNF alpha) and soluble TNF receptors in human immunodeficiency virus type 1 infection--correlations to clinical, immunologic, and virologic parameters. J Infect Dis, 1994, 169(2): 420-4.
    [189]Scholz J and Woolf C J, Can we conquer pain? Nat Neurosci, 2002, 5 Suppl: 1062-7.
    [190]Hashizume H, DeLeo J A, Colburn R W, et al., Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine (Phila Pa 1976), 2000, 25(10): 1206-17.
    [191]Raghavendra V, Rutkowski M D, and DeLeo J A, The role of spinalneuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci, 2002, 22(22): 9980-9.
    [192]Homma Y, Brull S J, and Zhang J M, A comparison of chronic pain behavior following local application of tumor necrosis factor alpha to the normal and mechanically compressed lumbar ganglia in the rat. Pain, 2002, 95(3): 239-46.
    [193]Sommer C, Schmidt C, and George A, Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol, 1998, 151(1): 138-42.
    [194]Sweitzer S, Martin D, and DeLeo J A, Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience, 2001, 103(2): 529-39.
    [195]Sweitzer S M, Schubert P, and DeLeo J A, Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther, 2001, 297(3): 1210-7.
    [196]Xu J T, Xin W J, Zang Y, et al., The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain, 2006, 123(3): 306-21.
    [197]Wei F, Guo W, Zou S, et al., Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci, 2008, 28(42): 10482-95.
    [198]Horiuchi T, Mitoma H, Harashima S, et al., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford), 2010, 49(7): 1215-28.
    [199]DeLeo J A, Tanga F Y, and Tawfik V L, Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist, 2004, 10(1): 40-52.
    [200]Sacktor N, The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol, 2002, 8 Suppl 2: 115-21.
    [201]Beck E J, Mandalia S, Williams I, et al., Decreased morbidity and use of hospital services in English HIV-infected individuals with increased uptake of anti-retroviral therapy 1996-1997. National Prospective Monitoring System Steering Group. Aids, 1999, 13(15): 2157-64.
    [202]Haas D W, Geraghty D E, Andersen J, et al., Immunogenetics of CD4lymphocyte count recovery during antiretroviral therapy: An AIDS Clinical Trials Group study. J Infect Dis, 2006, 194(8): 1098-107.
    [203]Dubinsky R M, Yarchoan R, Dalakas M, et al., Reversible axonal neuropathy from the treatment of AIDS and related disorders with 2',3'-dideoxycytidine (ddC). Muscle Nerve, 1989, 12(10): 856-60.
    [204]Pardo C A, McArthur J C, and Griffin J W, HIV neuropathy: insights in the pathology of HIV peripheral nerve disease. J Peripher Nerv Syst, 2001, 6(1): 21-7.
    [205]Reliquet V, Mussini J M, Chennebault J M, et al., Peripheral neuropathy during stavudine-didanosine antiretroviral therapy. HIV Med, 2001, 2(2): 92-6.
    [206]Simpson D M, Selected peripheral neuropathies associated with human immunodeficiency virus infection and antiretroviral therapy. J Neurovirol, 2002, 8 Suppl 2: 33-41.
    [207]Luciano C A, Pardo C A, and McArthur J C, Recent developments in the HIV neuropathies. Curr Opin Neurol, 2003, 16(3): 403-9.
    [208]McCarthy W F, Gable J, Lawrence J, et al., A retrospective study to determine if hydroxyurea augmentation of antiretroviral drug regimens that contain ddI and/or d4T increases the risk of developing peripheral neuropathy in HIV-1 infected individuals. Pharmacoepidemiol Drug Saf, 2000, 9(1): 49-53.
    [209]Arenas-Pinto A, Bhaskaran K, Dunn D, et al., The risk of developing peripheral neuropathy induced by nucleoside reverse transcriptase inhibitors decreases over time: evidence from the Delta trial. Antivir Ther, 2008, 13(2): 289-95.
    [210]Lopez O L, Becker J T, Dew M A, et al., Risk modifiers for peripheral sensory neuropathy in HIV infection/AIDS. Eur J Neurol, 2004, 11(2): 97-102.
    [211]Dalakas M C, Semino-Mora C, and Leon-Monzon M, Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2'3'-dideoxycytidine (ddC). Lab Invest, 2001, 81(11): 1537-44.
    [212]Kakuda T N, Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther, 2000, 22(6): 685-708.
    [213]Bhangoo S K, Ren D, Miller R J, et al., CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun, 2007, 21(5): 581-91.
    [214]Cui Y, Liao X X, Liu W, et al., A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun, 2008, 22(1): 114-23.
    [215]Choi H C, Song P, Xie Z, et al., Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem, 2008, 283(29): 20186-97.
    [216]Hao S, Mata M, and Fink D J, Viral vector-based gene transfer for treatment of chronic pain. Int Anesthesiol Clin, 2007, 45(2): 59-71.
    [217]DeLeo J A, Colburn R W, and Rickman A J, Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res, 1997, 759(1): 50-7.
    [218]DeLeo J A, Rutkowski M D, Stalder A K, et al., Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. Neuroreport, 2000, 11(3): 599-602.
    [219]Svensson C I, Schafers M, Jones T L, et al., Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci Lett, 2005, 379(3): 209-13.
    [220]Lewis W, Day B J, and Copeland W C, Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov, 2003, 2(10): 812-22.
    [221]Muscoli C, Cuzzocrea S, Ndengele M M, et al., Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest, 2007, 117(11): 3530-9.
    [222]Opii W O, Sultana R, Abdul H M, et al., Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)--2',3'-dideoxycytidine (ddC): relevance to HIV-dementia. Exp Neurol, 2007, 204(1): 29-38.
    [223]Mattioli B, Giordani L, Quaranta M G, et al., Effect of indinavir used alone or in double or triple combination with AZT and ddC on human immune functions. Life Sci, 2004, 74(18): 2291-300.
    [224]Costigan M, Scholz J, and Woolf C J, Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci, 2009, 32: 1-32.
    [225]Smyth K, Affandi J S, McArthur J C, et al., Prevalence of and risk factorsfor HIV-associated neuropathy in Melbourne, Australia 1993-2006. HIV Med, 2007, 8(6): 367-73.
    [226]Martin C, Solders G, Sonnerborg A, et al., Painful and non-painful neuropathy in HIV-infected patients: an analysis of somatosensory nerve function. Eur J Pain, 2003, 7(1): 23-31.
    [227]Verma S, Estanislao L, and Simpson D, HIV-associated neuropathic pain: epidemiology, pathophysiology and management. CNS Drugs, 2005, 19(4): 325-34.
    [228]Fiala M, Murphy T, MacDougall J, et al., HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovasc Toxicol, 2004, 4(4): 327-37.
    [229]Gazzard B, Bernard A J, Boffito M, et al., British HIV Association (BHIVA) guidelines for the treatment of HIV-infected adults with antiretroviral therapy (2006). HIV Med, 2006, 7(8): 487-503.
    [230]Polomano R C, Mannes A J, Clark U S, et al., A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain, 2001, 94(3): 293-304.
    [231]Authier N, Gillet J P, Fialip J, et al., A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology, 2003, 24(6): 797-805.
    [232]Cryan J F and Holmes A, The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov, 2005, 4(9): 775-90.
    [233]Wright D E, Ryals J M, McCarson K E, et al., Diabetes-induced expression of activating transcription factor 3 in mouse primary sensory neurons. J Peripher Nerv Syst, 2004, 9(4): 242-54.
    [234]Keswani S C, Jack C, Zhou C, et al., Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci, 2006, 26(40): 10299-304.
    [235]Wynick D, Thompson S W, and McMahon S B, The role of galanin as a multi-functional neuropeptide in the nervous system. Curr Opin Pharmacol, 2001, 1(1): 73-7.
    [236]Sun J H, Yang B, Donnelly D F, et al., MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J Neurophysiol, 2006, 96(5): 2189-99.
    [237]Milligan E D, Twining C, Chacur M, et al., Spinal glia andproinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23(3): 1026-40.
    [238]Tanga F Y, Raghavendra V, and DeLeo J A, Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int, 2004, 45(2-3): 397-407.
    [239]Hempenstall K, Nurmikko T J, Johnson R W, et al., Analgesic therapy in postherpetic neuralgia: a quantitative systematic review. PLoS Med, 2005, 2(7): e164.
    [240]Finnerup N B, Otto M, McQuay H J, et al., Algorithm for neuropathic pain treatment: an evidence based proposal. Pain, 2005, 118(3): 289-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700