用户名: 密码: 验证码:
水杨酸对大豆耐铝性的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝(Aluminum,Al)作为酸性土壤上最主要的非生物胁迫因子严重影响了植物生长和作物产量。对大多数植物而言,土壤中微摩尔浓度的Al即能明显地抑制根伸长。根尖是Al毒害最敏感的部位,Al离子与根尖相互作用,在几分钟之内就能导致植物根伸长受到显著抑制,根尖膨大,严重阻碍植物对养分和水分的吸收。Al诱导大豆根系分泌柠檬酸被认为是其最重要的耐Al机制之一。然而,调控柠檬酸分泌的过程和Al抑制根伸长的机理目前尚不十分清楚。
     水杨酸(Salicylic acid,SA)作为关键的信号分子参与调控植物体内的多种生理功能,如种子萌发、幼苗生长和各种生物和非生物胁迫响应。在过去几年的研究中,SA在植物抗病方面起着重要的信号调节作用,如诱导植物抗病基因(PR)的表达、激活过敏反应(HR)和系统获得性抗性(SAR)。而最近的研究表明,SA在植物抗非生物胁迫(紫外线辐射、低温、热激、干旱、盐胁迫和重金属毒害等逆境)方面也发挥着至关重要的作用。有证据显示,SA不仅与柠檬酸代谢关键酶-顺乌头酸酶(ACO)和柠檬酸转运体MATE家族密切相关,而且SA介导ROS的产生以及诱导相关基因的表达很可能与调控植物的防御反应有关。因此,本文以大豆耐Al品种吉育70(Glycine max L. cv Jiy u 70)为试验材料,采用液体培养方法,分别从柠檬酸分泌、抗氧化系统、转录因子(Gm-WRKY58和Gm-NPR1)和ABC转运体(Gm-STAR1和Gm-PDR12)基因表达的角度深入探讨外源SA对大豆耐铝性的调控机制,得到如下主要研究结果。
     1.水杨酸对大豆耐铝性的调控作用
     外源SA缓解Al对根伸长的抑制作用,且存在浓度依赖及“低促高抑”效应,低浓度(10μmmol/L)SA处理能显著缓解Al对根伸长的抑制,降低Al在根尖中的积累。外源供给SA能快速被根尖吸收,同时大豆内源SA能响应外源Al胁迫与SA处理,内源自由态SA含量在Al胁迫处理4 h达到最高,结合态SA(SAG)含量随Al处理时间的延长而显著增加。SA生物合成抑制剂多效挫(PAC)能抑制Al诱导自由态SA的产生,但对SAG没有影响。这说明外源SA在缓解大豆Al毒害过程中起作用,SA很可能作为Al胁迫的早期信号分子调控大豆耐Al性。
     2.水杨酸对铝胁迫诱导大豆根系柠檬酸分泌的调控作用
     Al胁迫下植物根系分泌有机酸是植物重要的抗Al机制之一。目前关于SA是如何促进Al胁迫下柠檬酸分泌的调控机制尚不清楚。本文试图从顺乌头酸酶(ACO)和柠檬酸转运体(MATE)的角度来阐明SA与Al胁迫诱导大豆根系柠檬酸分泌的关系。Al胁迫条件下,外源SA显著提高了Al诱导大豆根系柠檬酸的分泌,PAC不但降低了Al诱导柠檬酸的分泌,且能够抑制自由态SA的产生,表明内源SA对柠檬酸分泌起调控作用。Al和SA共处理与单独Al处理相比进一步降低线粒体ACO的活性,但各处理在不同时间点(2、4、9、12h)对ACO基因的表达差异并不显著,说明ACO很可能在蛋白水平上受到调控;Al和SA共处理与单独Al处理相比提高了大豆根尖柠檬酸转运体Gm-MATE1基因的转录表达,然而Al胁迫条件下外源SA对大豆根尖Gm-MATE1基因的表达和Al诱导柠檬酸分泌之间并不呈线性关系,说明Gm-MATE1基因的表达很可能是柠檬酸分泌的一个前提。以上试验结果表明,Al胁迫条件下SA在柠檬酸的代谢和运输过程中起着至关重要的作用。
     3.水杨酸对铝诱导大豆根尖氧化胁迫的调控作用
     Al能诱导活性氧(ROS)的产生,而ROS的产生和清除可以通过抗氧化系统相关酶来控制。近年来的诸多研究结果表明,SA在调控受胁迫的植物体内氧化还原内稳态上起了十分重要的作用。为了进一步探讨SA的效果,本文对抗氧化系统的相关生理指标进行了测定。结果表明,Al胁迫条件下,通过内源SA的快速应答,可引起大豆根尖H_2O_2水平发生显著变化。外源SA能迅速激活H_2O_2且在6h达到峰值,随着处理时间的延长(9、12h),SA反而降低了Al诱导H_2O_2的积累。说明外源SA增强大豆抗Al胁迫能力可能与过氧化氢(H_2O_2)的变化存在一定的联系,且Al胁迫条件下SA很可能激活了H_2O_2的信号转导途径。SA通过调控H_2O_2代谢相关酶如SOD、CAT、APX的活性,使大豆根尖H_2O_2含量维持在一定水平,进而缓解Al诱导的氧化胁迫伤害。外源SA降低了Al诱导大豆根尖质膜过氧化产物丙二醛(MDA)和超氧阴离子(O_2~(·–))的累积。上述试验结果表明,SA也可以通过对抗氧化系统的调控进一步缓解Al毒害。
     4.水杨酸对铝诱导转录因子Gm-WRKY58、Gm-NPR1及ABC转运体Gm-STAR1、Gm-PDR12基因表达的影响
     已有证据表明,在植物响应胁迫的过程中SA能有效地调控转录因子WRKY和NPR1基因的表达。ABC转运体基因编码膜结合蛋白,是目前已知功能最广泛的超蛋白家族之一。ABC转运体不仅涉及激素、脂类、金属、次生代谢物以及异生物质的运输,而且对离子通道的调控也起着十分重要的作用。本试验结合前期大豆在铝胁迫下基因芯片的分析结果,利用实时荧光定量PCR技术进行分析,结果表明,单独Al处理均显著增加了大豆根尖Gm-WRKY58、Gm-NPR1、Gm-STAR1、Gm-PDR12基因的相对表达水平;而与单独Al处理相比,外源SA分别不同程度地增加了Al诱导的这些基因在根尖的相对表达。表明,转录因子Gm-WRKY58、Gm-NPR1以及ABC转运体Gm-STAR1、Gm-PDR12可能在SA调控的大豆根尖Al胁迫响应过程中起到一定的作用。
Approximately 40% of the word’s potentially arable soils are acidic and negatively impacted by the Aluminum (Al). It is a universal problem that Al toxicity has therefore been represented one of the major constraint on plant growth and crop production in acid soil worldwide. Al-induced citrate exudation has been identified as an important Al-resistance mechanism in plants. Salicylic acid (SA), considered as a crucial signal molecule, plays an important role in regulating the plant disease resistance. It has been proposed that SA can involve in modulation of acclimation responses to abiotic stresses such as low temperature, heat shock, drought, salinity, heavy metal toxicity. Thus, this study was to research the changes of endogenous SA under Al stress; clarify SA involved in the process of Al induced-citrate exudation from soybean roots; explore the effect of exogenous SA on the antioxidant system under Al stress.
     Root elongation is a rapid and efficient parameter to assessment of Al resistance. The obtained results indicated that Al-inhibited root elongation response to different concentrations of applied SA differs and the obvious relief in Al toxicity caused by exogenous 10μM SA. The proper concentration of SA is an important factor in determining plant response to Al stress. 10μM SA decreased the Al accumulation in soybean root tips. Endogenous SA content of soybean root tips have a rapidly response to Al stress and exogenous SA treatment. The data was shown that external supply of SA to roots is quickly taken up by the root. the SA content of the root tips increased up 4 h, and following decrease with the elongation of Al treatment duration. SAG accumulated gradually throughout the treatment period. In order to further elucidate the role of SA under Al stress, an inhibitor of SA biosynthesis (PAC) was used in this study. PAC application slightly but significantly reduced endogenous free SA content in root tips of Al and SA-treated plants. However the effect on SAG was less clear. Al and SA together treatment increased the amount of Al-induced citrate secretion from soybean roots, further decreased aconitase (ACO) activity and enhanced the transcriptional expression of Gm-MATE1 compared to the sole Al treatment. From the above results, it is suggested that SA production might act as an early signal to regulate the metabolism and transportation of citrate in soybean roots.
     SA modulated the H_2O_2 level in root tips of soybean by regulating the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) which could take response to Al stress. Exogenous SA decreased the Al-induced enhancement of MDA in soybean root tips. Taken together, the possible of mechanisms of SA under Al stress are reducing the ACO activity and increasing Gm-MATE1 gene expression, leading to enhance citrate efflux, and then, alleviated the Al-induced inhibition of root elongation and decreased the Al accumulation in soybean root tips. SA may also regulate the antioxidant system to alleviate Al toxicity.
     There is evidence that SA can be effective in regulating the transcription factor WRKY and NPR1 in the process of plants respond to stress.ABC transporter genes encoding membrane-bound protein, is the most widely known function of the ultra-protein family.ABC transporters are not only involved in hormones, lipids, metals, secondary metabolites and xenobiotic transport, but also play an important role in regulation of ion channels. In this study, according to microarray results, using real-time quantitative PCR technology, analysis the genes expression of transcription factors Gm-WRKY58 and Gm- NPR1 as well as ABC transporters Gm-STAR1 and Gm- PDR12 under Al and/or SA treatments. The results show that, Al induced an increase genes relative expression of Gm-WRKY58、Gm-NPR1、Gm-SATR1 and Gm-PDR12 rapidly;adding exogenous SA enhanced the Al induced these genes expression. The obtained results indicated that the genes expression of Gm-WRKY58 and Gm-NPR1 as well as Gm-SATR1 and Gm-PDR12 response to Al stress, may play a crucial role in SA regulate Al resistance in soybean roots.
引文
[1]von Uwxküll HR, Mutert E. Global extent, development and economic impact of acid soils[J].Plant Soil,1995,171:1-15.
    [2]Marienfeld S, Lehmann H, Stelzer R. Ultrastructural investigations and EDX-analyses of Al-treated oat(Avena sativa) roots[J].Plant Soil.1995,171:167-175.
    [3]Eswaran H, Reich P, Beinroth F. Global distribution of soil with acidity. In AC Moniz , AMC Furlani, RE Schaffert, NK Fageria, CA Rosolem, H Cantarella, eds Plant-soil interactions at low pH.1997,pp159-164.
    [4]Horst WJ. The role of the apoplast in aluminum toxicity and resistance of higher plants: a review[J].Jouranl of Plant Nutrition and Soil Science,1995,158:419-428.
    [5]Lindsay WL. Chemical equilibria in soils.John Wiley and Sons, New York.1979.
    [6]Matsumoto H.Cell biology of aluminum toxicity and tolerance in higher plants[J].Int Rev Cytol,2000,200:1-46.
    [7]Kochian LV, Hoekenga OA, Pińeros MA.How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J].Annu Rev Plant Biol,2004,55:459-493.
    [8]Martin RB.Bioinorganic chemistry of aluminum.In H Sigel, A Sigel, eds Metal Ions in Biological Systems:Aluminum and its role in Biology. Macel Dekker, New York,1988,PP2-57.
    [9]Ma JF. Plant Root Responses to Three Abundant Soil Minerals: Silicon, Aluminum and Iron[J]. Crit Rev Plant Sci ,2005,24 :267-281.
    [10]Hartwell BL,Pember FR.The presence of aluminum as a reason for the difference in the effect of so-called acid on barley and rye[J]. Soil Science,1918,6:259.
    [11]Gassmann W, Schroeder JI. Inward-rectifying K+ Channels in root hairs ofwheat(A mechanism for aluminum-sensitive low-affinity K+ uptake and memberane potential control)[J].Plant Physiol,1994m105:1399-1408.
    [12]Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants[J].Annu Rev Plant Physiol Plant Mol Biol,1995,46:237-260.
    [13]Blamey FPC. The role of the root cell wall in aluminum toxicity.In N Ae, J Arihara K Okada,A Srinivasan, eds Plant Nutrient Acquisition:New Perspectives. Springer Verlag, Tokyo,2001,pp201-226.
    [14]Ownby JD, Popham HR. Citrate reverses the inhibition of wheat growth caused by aluminum[J]. J Plant Physiol,1989,35:588-591.
    [15]Ryan PR, Ditomaso JM, Kochian LV. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap[J].Journal of Experimental Botany,1993,44:437-446.
    [16]Sivaguru M, Horst WJ. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize[J].PlantPhysiology,1998,116:155-163.
    [17]Rangel AF, Ral IM, Horst WJ. Spatial aluminum sensitivity of root apices of two common bean(Phaseolus vulgaris L.) genotypes with contrasting aluminum resistance[J].Journal of Experimental Botany,2007,58:3895-3904.
    [18]Sun P, Tian QY, Zhao MG, Dai XY, Huang JH, Li LH,Zhang WH.Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicas L[J]. Plant and Cell Physiology,2007,48:1229-1235.
    [19]Eticha D, Zahn M, Bremer M, Yang ZB, Rangel AF, Rao IM, Horst WJ. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot ,2010,105:1119-1128.
    [20]Sasaki M,Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminum in wheat(Triticum aestivum) roots[J]. Physiologia Plantarum, 2006,96:193-198.
    [21]Doncheva S, Amenos M, Poschenrieder C, Barcelo J. Root cell patterning: A primary target for aluminum toxicity in maize[J]. J. Exp Bot,2005,56:1213-1220.
    [22]Ma JF. Plant root responses to three abundant soil minerals:Silicon, aluminum and iron[J].Crit.Rev. Plant Sci,2005b,24:267-281.
    [23]Clarkson DT. Interactions between aluminum and phosphorus on root surfaces and cell wall material[J].Plant Soil,1967,27:347-356.
    [24]Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminum in the cell wall pectin in cultured tobacco(Nicotiana tabacum L.)cells treated with a combination of aluminum and iron[J].Plant Cell Environ,1999,22:1009-1017.
    [25]Ma JF,Yamamoto R, Nevins DJ,Matsumoto H, Brown PH. Al binding in the epidermis cell wall inhibits cell elongation of okra hypocotyls[J].Plant Cell Physiol,1999,40:549-556.
    [26]Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat(Triticum aestivum) roots during aluminum-induced growth inhibiton[J].Physiol.Plant,2001,112:353-358.
    [27]Pineros MA, Kochian LV. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels[J].2001,125,292-305.
    [28]Ahn SJ, Sivafuru M, Chung GC, Rengel Z, Mastumoto H. Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash(Cucurbita pepo)[J].J Exp Bot,2002,53:1959-1966.
    [29]Kochian LV, Pineros MA, Hoekenga OA. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity[J].Plant Soil,2005,274,175-195.
    [30]Jones DJ,and Kochian LV.Aluminum inhibition of the inositol 1,4,5-trisphosphate signal-transduction pathway in wheat roots-a role in aluminum toxicity[J].Plant Cell,1995,7:1913-1922.
    [31]Ramos D A, Brito AL, Munnik T, Hernandez SSMT.Aluminim inhibits phosphatidic acid formation by blocking the phospholipase C pathway[J].Planta,2007,225:393-401.
    [32]Shen H, Ligaba A, Yanmaguchi M, Osawa H, Schibata K, Yan X,Matsumoto H.Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots[J].J Exp Bot,2004,55(397):663-571.
    [33]Kollmeie M, Felle HH, Horst WJ.Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxinflow involved in inhibition of root elongation by aluminum[J].Plant Physiol,2000,122:945-956.
    [34]Mohapatra S, Cherry S, Minocha R, Majumdar R, Thangavel P, Long S, Minocha SC. The response of high and low polyamine-producing cell lines to aluminum and calcium stress[J].Plant Physiol Biochem,2010,48:612-620.
    [35]Tian QY, Sun DH,Zhao MG, Zhang WH. Inhibition of nitric oxide synthase(NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos[J]. New Phytol,2007,174:322-331.
    [36]Yamamoto Y, Kobayashi Y Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots[J].Plant Physiol,2001,125:199-208.
    [37]Basu U, Good AG, Talylor GJ. Transgenic Brassica napus plants overexpressing aluminum-inhibited mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum[J].Plant Cell Environ,2001,24:1269-1278.
    [38]Ezaki B, Katsuhara M,Kawamura M, Matsumoto H.Different mechanisms of four aluminum(Al)-resistant transgenes for Al toxicity in Arabidopsis[J].Plant Physiol.2001,127:918-927.
    [39]Darko E, Ambrus H,Stefanovits-Banyai E.Fodor J, Bakos F,Barnaba B.Aluminum toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection[J].Plant Sci,2004,166,583-591.
    [40]Taylor GJ, Scott R, Hoddinott J, Briggs KG. The influence of aluminum on growth, carbohydrate and organic acid content of an Al-tolerant and Al-sensitive cultivar of wheat[J].Can J Bot,1991,69:711-716.
    [41]Kitagawa T,Morishita T, Tachibana Y, Namai H, Ohta Y. Genotypic variations in Al resistance in wheat and organic acid secretion[J].Jpn J Soil Sci.Plant Nutr,1986,57:352-358.
    [42]Ma JF, Furukawa J. Recent progress in the research of extental Al detoxification in higher plants: A minireview J. Inorg. Biochem,2003,97:46-51.
    [43]Ma JF.Physiological mechanisms of Al resistance in higher plants[J].Soil Sci. PlantNutr,2005a,51:609-612.
    [44]Kollmeier M, Dietrich P, Bauer CS, Horst WJ and Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar[J].Plant Physiol,2001,126:397-410.
    [45]Zhang WH, Ryan PR, Tyerman SD. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots[J].Plant Physiol,2001,125,1459-1472.
    [46]Ohno T,Koyama H, Hara T. Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion[J].Plant Cell Physiol,2003,44,156-162.
    [47]Shen H, He LF,Sasaki T, Yamamoto Y, Zheng SJ, Ligabba A, Yan XL, Ahn SJ, Yamaguchi M, Hideo S, Matsumoto H. Citrate sectetion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation and threonine-oriented phosphorylation of plansma membrane H+-ATPase [J]. Plant Physiol, 2005,138:287-296.
    [48]Delhaize E, Hebb DM, Ryan PR. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux[J].Plant Physiol,2001,125:2059-2067.
    [49]Yang ZM, Wang J, Wang SH, Xu LL. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta ,2003, 17:168-174.
    [50]Yang ZM, Sivaguru M, Horst W, J,, Matsumoto H. Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plantarum,2000, 110:72-77.
    [51]Zhao ZQ, Ma JF, Sato K, Takeda K. Differential Al resistance and citrate secretion in barely(Hordeum vulgare L.)[J].Planta,2003,217:794-800.
    [52]Jorge RA, Arruda P. Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize[J].Phytochemistry,1997,45:675-681.
    [53]Pińeros MA, Magalhaes JV, Alves VMC, Kochian.The physiology andbiophysics of an aluminum tolerance mechanism based on root citrate exudation in maize[J].PlantPhysiol,2002,129:1194-1206.
    [54]Ma JF, Nagao S, Sato K, Ito H, Furukawa J and Takeda K. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley[J].J Exp Bot.2004a,55:1335-1341.
    [55]Furukawa J,Yamaji N, Wang H, Mitani N,Murata Y,Sato K, Katsuhara M, Takeda K, Ma JF.An aluminum-activated citrate transporter in barely[J].Plant Cell Physiol.2007,48:1081-1091.
    [56]Magalhaes JV, Liu JP, Guimaráes CT, Lana UGP, Alves VMC,Kochain LV, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J].Nature genetics,2007,39:1156-1161.
    [57]Liu J,Magalhaes JV, Shaff J, Kochian LV.Aluminum-activated citrate and malate transporter from the MATE and ALMT families function independetnly to confer Arabidopsis aluminum tolerance[J].Plant J,2009,57:389-399.
    [58]Sasaki T, Yamamoto Y, Ezaki B,Katsuhara M,Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter[J].Plant J,2004,37:645-653.
    [59]Raman H,Zhang KR, Cakir M, Appels R, Garvin DF,Marson LG, Kochian LV, et al. Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat(Triticum aestivum L) [J]. Genome,2005,48:781-791.
    [60]Ma HX,Bai GH, Carver BF, Zhou LL. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66[J].Theor. Appl Genet,2005,112,51-57.
    [61]Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H. Evidence for the plasma membrane localization of Al-activated malate transporter(ALMT1)[J].Plant Cell Physiol,2005,46:812-816.
    [62]Sasaki T, Ryan PR, Delhaize E, Hebb DM, et al. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene AND its relationship to aluminum resistance[J].Plant Cell Physiol,2006,47:1343-1354.
    [63]Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical foraluminum tolerance in Arabidopsis[J].Proc.Natl.Acad. Sci,USA, 2006,103:9738-9743.
    [64]Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Mastumoto H.The BnALMT1 and BnALMT2genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J].Plant Physiol,2006,142:,1294-1303.
    [65]Fontecha G,Silva NJ, Benito C,Mestres MA, Espino FJ, et al.Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye(Secale cereal L.)[J]. Theor Appl Genet,2007,114,249-260.
    [66]Hoekenga OA,Vision TJ, Shaff JE, Monforte AJ, Lee, GP, Howell SH, Kochian LV.Identification and characterization of aluminum tolerance loci in Arabidopsis(Landsberg erecta x Columbia) by quantitative trait loxus mapping. A physiologically simple but genetically complex trait[J]. Plant Physiol,2003,132:936-948.
    [67]Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat. II. Oxalic acid detoxidies aluminum internally[J].Plant Physiol,1998,117(3):753-759.
    [68]Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat-I. Al induced specific secretion of oxalic acid from root tips[J].Plant Physiol,1998,117:745-751.
    [69]Yang JL, Zheng SJ, He YF, Matsumoto H. Aluminum resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress[J]. J Exp Bot, 2005,56(414):1197-1203.
    [70]Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat I.Al-induced specific secretion of oxalic acid from root tips[J].Plant Physiologsis,1998,117:745-751.
    [71]Hayes JE, Ma JF. Aluminum-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots[J].J Exp Bot,2003,54:1753-1759.lhaize
    [72]Zhao ZQ, Ma JF, Sato K, Takeda K. Differential Al resistance and citrate secretion inbarley(Hordeum vulgare L.). Planta,2003,217:794-800.
    [73]Mugai, EN,Agong SG, Matsumoto H. Aluminum tolerance mechanisms in Phaseolus vulgaris L.:Citrate synthase activity and TTC reduction are well correlated with citrate secretion[J]. Soil Sci Plant Nutr,2000,46:939-950.
    [74]Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil[J]. Plant Cell Physiol,2000,41:1030-1037.
    [75]Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J].Plant Physiol,2001,127:1836-1844.
    [76]Anoop VM, Basu U,McCammon MT,McAlister-Henn L, Taylor GJ. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase[J]. Plant Physiol,2003,132:2205-2217.
    [77] Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene[J]. Proc Natl Acad Sci U S A, 2004, 101:15249-15254.
    [78]Yang J L,Zhang L,Li Y Y,You J F,Wu P,Zheng S J.Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean(Vigna umbellata)roots.Ann.Bot ,2006,97:579-584.
    [79]Kidd PS, Liugany M , Poschenrieder C, Gunse B, Barcelo J. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.) J Exp Bot,2001,52:1339-1352.
    [80]Degenhardt J, Larsen PB,Howell SH, Kochian LV. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiol,1998,117:19-27.
    [81]Gabrielson KM, Cancel JD, Morua LF, Larsen PB.Identification of dominant mutations that confer increased aluminum tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1. J Exp Bot,2006,57:943-951.
    [82]Schmohl N, Horst WJ. Cell wall pectin content modulates aluminum sensitivity ofZea Mays(L.) cells grown in suspension culture[J]. Plant Cell Environ,2000,23,735-742.
    [83]Eticha D, Stass A, Horst WJ. Cell wall pectin and its detree of methylation in the maize root-apex:significande for genotypic differences in aluminum resistance[J].Plant Cell Environ,2005,28:1410-1420.
    [84]Larsen PB, Geisler MJB, Jones CA, Williams KM,Cancel JD.ALS3 encodes a a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. Plant J,2005,41:353-363.
    [85]Larsen PB,Cancel J, Rounds M ,Ovhoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment[J].Planta,2007,225:1447-1458.
    [86]Wenzl P, Patino GM, Chaves AL, Mayer JE, Rao IM.The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices[J]. Plant Physiol,2001,125,1473-1484.
    [87]Ma JF, Nagao S, Huang CF, Nishimura M. Isolation and characterization of a rice mutant hypersensitive to Al[J].Plant Cell Physiol,2005,46:1054-1061.
    [88]Huang CF, Ma JF.Cloning and characterization of a rice Al-tolerant gene Als1[J].Plant Cell Physiol,2006,47:S121.
    [89]Ma JF,Ryan PR, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids[J]. Trends Plant Sci,2001,6:273-278.
    [90]Ma JF, Hiradate S. Form of aluminum for uptake and translocation in buckwheat(Ffagopyrum esculentum Moench)[J].Planta,2000,211:355-360.
    [91]Watanabe T, Osaki M, Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil,2001,237:63-70.
    [92]Ofei-Manu P, Wagatsuma T, Ishikawa S, Tawaraya K. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants[J]. Soil Sci, Plant Nutr,2001,47:359-375.
    [93]Ma JF,Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in hydrangea-identification of Al form in the leaves[J]. Plant Physiol,1997,113,1033-1039.
    [94]Shen RF, Iwashita T, Ma JF. Form of Al changes with Al concentration in leaves of buckwheat[J].J Exp Bot,2004,55:131-136.
    [95]Watanable T, Jansen S, and Osaki M. The beneficial effect of aluminum and the role of citrate in Al accumulation in Melastoma malabathricum[J].New Phytol,2005,165:773-780.
    [96]Raskin I, Skubatz H, Tang W, and Meeuse BJD. Salicylic acid levels in thermogenic and nonthermogenic plants[J]. Ann. Bot.,1990,66: 376-383.
    [97]Popova L, Pancheva T, Uzunova A. Salicylic acid: properties, biosynthesis and physiological role[J]. Bulg. J. Plant Physiol,1997,23, 85–93.
    [98]Raskin I. Role of salicylic acid in plants[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1992a, 43: 439-463.
    [99]Norman C, Howell KA, Millar AH, Whelan JM, Day DA. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport[J]. Plant Physiol,2004, 134:492–501.
    [100]Hayat Q, Hayat S, Irfan M, Ahmad A.Effect of exogenous salicylic acid under changing environment: a review[J].Environmental and Experimental Botany,2010,68:14-25.
    [101]Yalpani N, Balke NE, Schulz M. Indution of UDP-Glucose: salicylic acid glucosyltransferase in Oat roots[J].Plant Physiol,1992,100(3):114-1119.
    [102]Silverman P, Seskar M, Kanter D, Schweizer P, Metraux J P, and Raskin I. Salicylic acid in rice, biosynthesis, conjugation and possible role[J]. Plant Physiol, 1995,108:633-639.
    [103]Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis[J]. Proc Natl Acad Sci USA 1995, 92:10413-10417.
    [104]Yalpani N, Leen J, Lawthon MA, and Raskin I. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco[J]. Plant Physiol, 1993, 103: 315-321.
    [105]Klambt HD. Conversion in plants of benzoic acid to salicylic acid and its b-D-glucoside[J]. Nature 1962, 196:491.
    [106] Coquoz JL, Buchala A, Metraux JP. The biosynthesis of salicylic acid in potato plants[J]. Plant Physiol, 1998, 117:1095-1101.
    [107]Meuwly P, Molders W, Buchala A, Metraux JP. Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol, 1995, 109:1107-1114.
    [108]Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis[J]. Proc Natl Acad Sci USA 1995, 92:10413-10417.
    [109]El-Basyouni SZ, Chen d, Ibrahim RK, Neish AC, Towers GHN. The biosynthesis of hydroxybenzoic acids in higher plants[J]. Phytochemistry, 1964, 3:485-92.
    [110]Garcion C, M′etraux J-P. Salicylic acid. In Plant Hormone Signaling, 2006,24:229–255. Oxford: Blackwell Publishing Ltd
    [111]Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414:562-5.
    [112]Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, et al. Characterization and biological function of the isochorismate synthase2 gene of Arabidopsis[J]. Plant Physiol ,2008, 147:1279-87.
    [113]Catinot J, Buchala A, Abou-Mansour E, Metraux JP. Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana[J]. FEBS Lett 2008, 582:473-478.
    [114]Alvarez ME. Salicylic acid in the machinery of hypersensitive cell death and disease resistance[J].2000,44(3):429-442.
    [115]Vasyukova NI, Zinoveva SV,Udalova ZV, Panina YS, Ozeretskovskaya OL and Sonin MD. The role of salicylic acid in systemic resistance of Tomato to Nematodes[J].Doklasy Biological Science,2003,391:343-345.
    [116]Gaffney T, Friedrich L, Vernooij B,Negrotto D, Nye G, Uknes S, Ward E,Kessmann H, Ryals J.Requirement of salicylic acid for the induction of systemic acquired resistance[J].Science,261:754-756.
    [117]Lee HI, Raskin I. Glucosylation of salicylic acid in Nicotiana tabacum cv. Xanthi-nc[J]. Phytopathology,1998, 88:692–697.
    [118]Hennig J, Malamy J, Grynkiewicz G, Indulski J, Klessig DF. Interconversion of the salicylic acid signal and its glucoside in tobacco[J]. Plant J,1993,4:593–600.
    [119]Enyedi AJ,Raskin I. Induction of UDP-Glucose: salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves[J].Plant Physiol,1993,101(4):1375-1380.
    [120]刘洪涛,杨皓茹,黄卫东,侯智霞,唐柯.葡萄基水杨酸:一种可能参与植物诱导型耐热性形成的信号物质[J].植物学报,2009,44(2):211-215.
    [121]Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science 2007, 318:113–116.
    [122]Hayat Q, Hayat S, Irfan M, Ahmad A.Effect of exogenous salicylic acid under changing environment: a review[J].Environmental and Experimental Botany,2010,68:14-25.
    [123]Malamy J,Carr JP, Klessig DF. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science,1990,250:1002-1004.
    [124]Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B. Increase in salicylic acid at the onset of systemic acquire resistance in cucumber[J].Science,1990,250,1004-1006.
    [125]Rasmussen JB, Hammerschmidt R, Zook MN. Sytemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. Syringae[J]. Plant Physiol,1991,97: 1342–1347.
    [126]Smith JA, Hammerschmidt R, Fulbright DW. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringae[J]. Physiol. Mol. Plant Pathol, 1991, 38: 223–235.
    [127]Antoniw JF, White RF. The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco[J].Phytopathol. Z,1980,98:331–341.
    [128]Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic for the induction of systemic acquired resistance[J].Science,1993,261:754-756.
    [129]Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, et al. A central role of salicylic acid in plant disease resistance[J]. Science,1994,266:1247–50.
    [130]Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, et al. Induced resistance responses in maize[J]. Mol Plant-Microbe Interact, 1998, 11:643–658.
    [131]Hwang SH, Lee IA, Yie SW, Hwang DJ. Identification of an OsPR10a promoter region responsive to salicylic acid[J]. Planta, 2008,227:1141–50.
    [132]Kogel KH, Beckhove U, Dreschers J, M¨unch S, Romm′e Y. Acquired resistance in barley: the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance[J].Plant Physiol,1994, 106:1269–1277.
    [133]Anand A, Schmelz EA, Muthukrishnan S. Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration[J]. Mol. Plant-Microbe. Interact, 2003,16:916–925.
    [134]Singh B and Usha K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress[J]. Plant Growth Regulation,2003,39:137-141.
    [135]Kohler A, Schwindling S, Conrath U.Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and in?ltration of water into leaves require the NPR1/NIM1 gene in Arabidopsis[J]. Plant Physiol,2002,128:1046–1056.
    [136]Lamb C, Dixon RA, The oxidative burst in plant disease resistance[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol,1997, 48: 251–275.
    [137]Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid[J]. Science,1993, 262: 1883–1886.
    [138]Rhoads DM and McIntosh L. Salicylic acid regulation of respiration in higher plants; alternative oxidase expression. Plant Cell,1992,4: 1131-1139.
    [139]Mishra A, Choudhuri MA. Effect of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice[J]. Biologia Plantarum, 1999,42 (3):409–415.
    [140]Pal M, Szalai G, Horvath E, Janda T, Paldi E. Effect of salicylic acid during heavy metal stress[J]. Acta Biol. Szegediensis, 2002, 46: 119–120.
    [141]Yang ZM, Wang J, Wang SH, Xu LL. Salicylic acid induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L[J]. Planta ,2003,217:168–174.
    [142]Wang YS, Wang J, Yang ZM et al. Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora[J].Acta Botanica Sinica,2004,46(7):819-828.
    [143]Metwally A, Finkemeier I, Georgi M and Dietz KJ. Salicylic acid alleviates the cadmium toxicity in barley seedlings[J].Plant Physiology,2003,132:272-281.
    [144]Mishra A, Choudhuri MA. Effect of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice[J]. Biologia Plantarum,1999,42 (3):409–415.
    [145]Zhou ZS, Guo K, Elbaz AA, Yang ZM, Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa[J]. Environ Exp Bot, 2009,65:27–34.
    [146]Drazic G, Mihailovic N, Lojic M. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid[J]. Biol Plant, 2006, 50 (2):239–244.
    [147]Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants[J]. J. Plant Physiol,2008, 165:920–931.
    [148]Choudhury S, Panda SK. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots[J]. Bulg. J. Plant Physiol,2004,30 (3–4): 95–110.
    [149]Shi Q, Zhu Z. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber[J]. Environ. Exp. Bot, 2008,63:317–326.
    [150]Panda SK, Patra HK. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves[J]. Acta Physiol Plant,2007,29: 567–575.
    [151]Smirnoff N. The role of active oxygen in response of plants to water dficit and desiccation[J]. New Phytol, 1993,125:27–58.
    [152]Hamada AM, Al-Hakimi, AMA. Salicylic acid versus salinity-drought induced stress on wheat seedlings[J]. Rostl. Vyr,2001,47:444–450.
    [153]Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci, 2003, 164: 317–322.
    [154]Sakhabutdinova AR, Fatkhutdinova DR, Shakirova FM. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination[J]. Appl. Biochem. Microbiol,2004,40: 501–505.
    [155] El Tayeb MA. Response of barley grains to the interactive effect of salinity and salicylic acid[J]. Plant Growth Regul, 2005,45: 215–224.
    [156]Borsani O, Valpuestan V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J]. Plant Physiol, 2001, 126:1024–1030.
    [157]Kaydan D, Yagmur M, Okut N. Effects of Salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.)[J]. Tarim Bilimleri Dergisi ,2007, 13 (2): 114–119.
    [158]Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q. Ahmad A. Effect of salicylic acid on salinity induced changes in Brassica juncea[J]. J. Integrative Plant Biol,2008,50 (8): 1–4.
    [159]Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. Plant Physiol ,1998, 116: 1351–1357.
    [160]Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. J. Plant Physiol,2004, 161: 405–413.
    [161]He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BG. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J]. Crop Sci, 2005, 45: 988–995.
    [162]Chakraborty U, Tongden C. Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L[J]. Curr.Sci,2005, 89: 384–389.
    [163]Janda T, Szalai G, Tari I, Paldi E. Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants[J]. Planta ,1999, 208: 175–180.
    [164]Horvath E, Janda T, Szalai G, Paldi E. In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance[J]. Plant Sci, 2002,163: 1129–1135.
    [165]Kang HM, Saltveit ME. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid[J]. Physiol.Plant,2002, 115:571–576.
    [166]Pal M, Szalai G, Horvath E, Janda T, Paldi E. Effect of salicylic acid during heavy metal stress[J]. Acta Biol. Szegediensis, 2002,46: 119–120.
    [167]Szalai G, Tari I, Janda T, Pestenacz A, Paldi E. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling[J]. Biol. Plant,2002,43:637–640.
    [168]Tasgin E, Atici O, Nalbantoglu B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves[J]. Plant Growth Regul, 2003, 41: 231–236.
    [169]Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants[J].Plant Growth Regul,2000, 30, 157–161.
    [170]Kang GZ, Wang ZX, Sun GC. Participation of H_2O_2 in enhancement of cold chilling by salicylic acid in banana seedlings[J]. Acta Bot. Sin, 2003b, 45: 567–573.
    [171]Tasgin E, Atici O, Nalbantoglu B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves[J]. Plant Growth Regul, 2003,41:231–236.
    [172]Bowling SA, Guo A, Cao H, et al. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance[J].Plant Cell. 1994,6:1845-1857.
    [173]Malamy J, Henning J, Klessig DF. Temperature-dependent of salicylic acid its conjugate during the resistance response to tobacco mosaic virus infection[J].The Plant Cell,1992,4(2):359-366.
    [174]Rasmussen JB, Hammerschmidt R, Zook MN. Systemic induction of salicylic acid accumulation with Pseudomonas syringae pv. Syringae[J].Plant Physiol,1991,97:1342-1347.
    [175]Raskin I. Role of salicylic acid in plants[J].Annu Rev Plant Physiol Mol Biol,1992,43:439-463.
    [176]Dat JF, Lopez-Delgado H, Foye CH, et al. Change in salicylic acid and antioxidants during induced thermo-tolerance in mustard seedlings[J]. Plant Physiol,1998a,118:1455-1461.
    [177]Senaratna T, Touchell D, Bunn T, et al. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants[J].Plant Growth Regul,2000,30:157-161.
    [178]Magda P, Gabriella S, Eszter H, Tibor J, Emil P. Effect of salicylic acid during heavy metal stress[J]. Proceedings of Hungarian Congress on Plant Physiology,2001,46(3-4):119-120.
    [179] Horst WJ, Asher CJ, Cakmak I, Szulkiewicz P, Wissemeier AH. Short-term responses of soybean roots to aluminum[J]. J Plant Physiol,1992, 140:174-178.
    [180]张玉,陈昆松,张上隆.猕猴桃果实中内源水杨酸的提取、测定及其在采用研究中的应用[J].中国食品学报,2004,4(3):6-9.
    [181]Ková? ik J, Klejdus B, Hedbavny J, Backor M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants[J]. Ecotoxicology,2009, 18:544-554.
    [182]BarcelóJ, Poschenricder C. Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance[J].Environ Exp Bot,2002,48:75-92.
    [183]Sivaguru M, Horst WJ. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize[J].Plant Physiol,1998,116:155-163.
    [184]Shakirova FM. Salicylic acid as a defense-related plant hormone: Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid[J].In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone, 2007,1st edn. Springer, Netherlands, pp 69-89.
    [185]Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, and Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity[J].Plant Sci,2003,164:317-322.
    [186]Matsumoto H,Senoo Y, Kasai M, Maeshima M. Response of the plant root to aluminum stress:analysis of the inhibiton of the root elongation and changes in membrane function[J]. Journal of Plant Research,1996,109:99-105.
    [187]Hou NN,You JF,Pang JD,Xu MY,Chen G, Yang ZM.The accumulation and transport of abscisic acid in soybean (Glycine max L.) under aluminum stress[J].Plant Soil,2010,330:127-137.
    [188]Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?[J].Plant Physiol,2000,122:945-956.
    [189]Rock CD. Pathways to abscisic acid-regulated gene expression[J].New Phytol,2000,148:357-396.
    [190]Malamy J, Hennig J, Klessig DF. Temperature-Dependent Induction of Salicylic Acid and Its Conjugates during the Resistance Response to Tobacco Mosaic Virus Infection[J]. Plant Cell ,1992,4:359-366.
    [191]Dean JV, Shah RP, Mohammed LA. Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures[J]. Physiol Plantarum ,2003, 118:328-336.
    [192]Edwards R. Conjugation and metabolism of salicylic acid in tobacco[J]. J Plant Physiol,1994, 143:609-614.
    [193]Kawano T, Tanaka S, Kadono T, Muto S. Salicylic acid glucoside acts as a slow inducer of oxidative burst in tobacco suspension culture[J]. Z Naturforsch C ,2004,59:684-692.
    [194]Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves[J]. J Exp Bot ,2006, 57:3337-3347.
    [195]Enyedi AJ, Yalpani N, Silverman P, Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus[J]. Proc Natl Acad Sci U S A ,1992,89:2480-2484.
    [196]Vasyukova NI, Ozeretskovskaya OL. Induced plant resistance and salicylic acid: A Review[J]. Appl Biochem Micro ,2007),43:367-373.
    [197]Liu YY, Liu HT, Pan QH, Yang HR, Zhan JC, Huang WD. The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves[J]. Planta ,2009, 229:1087-1098.
    [198]Magalhaes J. Molecular genetic and physiological investigations of aluminum tolerance in sorghum (Sorghum bicolor L. Moench). 2002, PhD thesis:pp 192.
    [199]Ryan PR, Delhaize E, Randall PJ.Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots[J]. Planta ,1995,196 :103-110-110.
    [200]Ma JF, Zheng SJ, Matsumoto H, Hiradate S. Detoxifying aluminium with buckwheat[J]. Nature ,1997,390:569-570.
    [201]Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW.Differential aluminum tolerance in soybean: An evaluation of the role of organic acids[J]. Physiol Plantarum ,2001, 112:200-210.
    [202]Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar[J]. Plant Physiol ,2001, 126:397-410.
    [203]Ryan PR, Delhaize E. Function and mechanism of organic anion exudation from plant roots[J].Annu.Rev.Plant Physiol. Plant Mol.Biol,2001,52:527-560.
    [204]Miyasaka SC, Buta JG, Howell RK, Foy CD. Mechanism of Aluminum Tolerance in Snapbeans : Root Exudation of Citric Acid[J]. Plant Physiol ,1991),96:737-743.
    [205]Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.)(II.Aluminum-stimulated excretion of malic acid from root apices)[J].Plant Physiology,1993b,103:695-702.
    [206]Hayes JE, Ma JF. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots[J]. J Exp Bot,2003,54:1753-1759.
    [207]Delhaize E, Hebb DM, Ryan PR. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux[J]. Plant Physiol, 2001, 125:2059-2067.
    [208]Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H. Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants[J]. Physiol Plantarum ,2001,113:64-71.
    [209]Rangel AF, Rao IM, Braun HP, Horst WJ. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices[J]. Physiol Plantarum ,2010, 138 :176-190.
    [210]Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol ,2001, 127:1836-1844.
    [211]Mailloux RJ, Lemire J, Kalyuzhnyi S, Appanna V. A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity[J].Extremophiles , 2008, 12 :451-459.
    [212]Pineros MA, Magalhaes JV, Alves VMC, Kochian LV. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize[J]. Plant Physiol ,2002,129:1194-1206.
    [213]Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter[J] Plant J. ,2004, 37: 645-653.
    [214]Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis[J]. Proc Natl Acad Sci U S A ,2006, 103:9738-9743.
    [215]Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley[J]. Plant Cell Physiol,2007, 48:1081-1091.
    [216]Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, SchaffertRE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nat Genet,2007, 39:1156-1161.
    [217]Abreu ME, Munne-Bosch S. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants[J]. Environ Exp Bot,2008, 64:105-112.
    [218]Rüffer M, Steipe B, Zenk MH. Evidence against specific binding of salicylic acid to plant catalase[J]. FEBS Lett,1995,377 :175-180.
    [219]Nawrath C, Heck S, Parinthawong N, Metraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family[J]. Plant Cell ,2002,14:275-286.
    [220]Moore TS, Beevers H. Isolation and characterization of organelles from soybean suspension cultures[J]. Plant Physiol. Plant Physiol ,1974,53:261-265.
    [221]Bradford MM,A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binging[J].Anal Biochem,1976,72:248-254.
    [222]Villafranca JJ, Mildvan AS. The Mechanism of Aconitase Action[J]. J Biol Chem,1971, 246:772-779.
    [223]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method[J]. Methods ,2001,25:402-408.
    [224]Xu MY, You JF, Hou NN, Zhang HM, Chen G, Yang ZM. Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots[J]. Funct Plant Biol ,2010, 37:478-482.
    [225]Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiol ,2000,122:573-582.
    [226]Verniquet F, Gaillard J, Neuburger M, Douce R. Rapid inactivation of plant aconitase by hydrogen peroxide[J]. Biochem J ,1991,276:643-648.
    [227]Chao YY, Chen CY, Huang WD, Kao CH. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves[J]. PlantSoil,2010,329:327-337
    [228]Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang SQ, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense[J]. Proc Natl Acad Sci U S A ,2000,97:8849-8855.
    [229]Rengel Z.Genetic control of root exudation[J].Plant and Soil,2002,245:59-70.
    [230]Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family[J].Biochmica et Biophysica Acta ,2009,1794: 763-768.
    [231]Omote H, Hiasa M,Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cation[J]. Trends Pharmacol Sci ,2006,27:587-593.
    [232]Durrett TP, Gassmann W, Rogers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant Physiol ,2007, 144:197-205.
    [233]Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley[J]. Plant Cell Physiol,2007,48:1081-1091.
    [234]Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nat Genet ,2007, 39:1156-1161.
    [235]Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E. A Second Mechanism for Aluminum Resistance in Wheat Relies on the Constitutive Efflux of Citrate from Roots[J]. Plant Physiol,2009, 149 :340-351.
    [236]Yokosho K, Yamaji N, Ma JF. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant J,2011, doi: 10.1111/j.1365-313X.2011.04757.x.
    [237]Liu JP, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. Plant J,2009,57:389-399.
    [238]Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ. Physiological and molecularanalysis of polyethylene glycol-induced reduction of aluminum accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytologist ,2011,doi: 10.1111/j.1469-8137.2011.03784.x.
    [239]Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K. Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance[J].Plant Soil,2008,307:167-178.
    [240]Demopoulos HB. Control of free radicals in biological systems[J].Fed Proc,1973,32:1903-1908.
    [241]Vladimirov YA, Olenev VI, Suslova TB&Cheremisina ZP.Lipid peroxidation in mitochondrial membrane[J].Adv, Lipid Res,1980,17:173-249.
    [242]Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. Oxidative stress triggered by aluminum in plant roots[J].Plant Soil,2003,255:239-243.
    [243]Dat J, Vandenabeele S,VranováE, Van Montagu M, InzéD, Van Breusegem F. Dual action of the active oxygen species during plant stress responses[J].Cellular and Molecular Life Sciences,2000,57:779-795.
    [244]Foyer CH, Noctor G. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J].Plant Cell and Environment, 2005,28:1066-1071.
    [245]Enyedi AJ, Yalpani N, Siverman P, Raskin I. Signal molecules in systemic plant resistance to pathogens and pests[J].Cell,1992,70:879-886.
    [246]Chen ZX, Silva H, Klessig DF. Active oxygen species in the induction of plant systematic acquired resistance by salicylic acid[J]. Science,1993,262:1883-1886.
    [247]Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J].Plant Physiology,2001,126:1024-1030.
    [248]Guo B, Liang YC, Zhu YG, Zhao FJ. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress[J].Environmental Pollution,2007,147:743-749.
    [249]Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase catalase and peroxidase activities in root tips of soybean (Glycine max)[J].Physiol Plant, 1991, 83,:463^68.
    [250]Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress[J]. Physiol Plant, 1996,96: 21-28.
    [251]Ezaki B, Gardner RC, Ezaki Y, Matsumoto H. Expression of aluminum induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress[J]. Plant Physiol, 2000,122: 657-665.
    [252]Tamas L, Huttova J, Mistrik I, Simonovicova M, Siroka B. Aluminum-induced drought and oxidative stress in barley roots[J]. J. Plant Physiol,2006), 163:781-784.
    [253]Conrath U, Chen ZX, Ricigliano JR, Klessig DF. Two inducers of plant defense responses, 2,6-dichloroisionicotinic acid and salicylic acid, inhibit catalase activity in tobacco[J]. ProcNatl Acad Sci USA,1995,92:7143-7147.
    [254]Dumer J and Klessig DF. Salicylic acid is a modulator of tobacco and mammalian catalses[J].J Biol Chem,1996,271:28492-28501.
    [255]Kauss H, Jeblick W. Influence of salicylic acid on the induction of competence forH2O2 elicitation. Plant Physiol, 1996,111:755-763.
    [256]Heath RL, Packer KLeaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J].JExp Bot, 1968,32:93-191.
    [257]Rodriguez-Serrano M, Romero-Puertas MC,Zabalza A, Corpas FJ, Gomez M, del Rio LA, Sandalio LM. Cadmium effect on oxidative metabolism of pea(Pisum sati urn L.) roots: imaging of reactive oxygen species and nitric oxide accumulation in i o[J]. Plant Cell Environ, 2006,29:1532-1544.
    [258]Castillo FI, Penel LGreppin RPeroxidase release induced by ozone in Swdum album leaves[J]. Plant Physiol, 1984,74:846-851.
    [259]Cakmak I,Srtboe D, Marschner HActivities of hydrogen peroxide scavenging enzymes in germinating wheat seeds[J]. J Exp Bot,1993,44:127-132.
    [260]Dhindsa RS,Plumb-Dhindsa P,Throne TA.Leaf senescence: correlated with increasedsuperoxide dismutase and catalase[J]. J Exp Bot, 1981,32:93-101.
    [261]Asada K.Chloroplasts: formation of active oxygen and its scavenging[J]. Methods Enzymol,1984,105:422-429.
    [262]Boscolo P R S, Menossi M, Jorge R A.Aluminum-induced oxidative stress in maize[J]. Phytochemistry,2003,62:181-189.
    [263]Yamamoto Y, Kobayashi Y, Devi SR, Rikishi S,Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J]. Plant Physiol,2002,128:63-72.
    [264]Cakmak I,Horst WJ. Effect of aluminum on lipid peroxidation,superoxide dismutase, catalase, and peroxidase activities in root tips of soybean(Glycine max) [J].Physiol Plantarum,1991,83:463-468.
    [265]Mittler R. Oxidative stress, antioxidants and stress tolerance[J].Trends in Plant Science. 2002,9:405-410.
    [266]van Camp W, van Montagu M,InzéD. H2O2 and NO: redox signals in disease resistance[J].Trends Plant Sci,1998,3:330-334.
    [267]Lopez-Delgado H, Dat JF, Foyer CH, Scott IM. Induction of thermotolerance in potato microplants microplants by acetylsalicylic acid and H2O2[J].J Exp Bot,1998,49:713-720.
    [268]Chen J, Zhu C, Li LP, Sun ZY, Pan XB. The effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress[J]. Journal of Environmental Sciences,2007,19(1):44-49.
    [269]Mutlu S, Atici (O|¨) and Nalbantoglu B. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance[J]. Biologia Plantarum,2009,53(2):334-448.
    [270]Raskin I, Skubatz H, Tang W, et al. Salicylic acid levels in thermogenic and non-thermogenic plants[J]. Ann Bot,1992,43:439-463.
    [271]Yalpani N, Enyedi AJ, Lon J, et al. Ultraviolet light and ozone stimulate accumulation of salicylic acid pathogen-related proteins and virus resistance in tobacco[J]. Planta, 1994, 193: 372– 376.
    [272] Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid[J]. Plant Growth Regul,2010,60:35-42.
    [273]Silverman P, Seskar M, Kanter D, et al. Salicylic acid in rice (biosynthesis, conjugation and possible role)[J].Plant Physiol,1995,108:633-639.
    [274]Hua L. Dissection of salicylic acid-mediated defense signaling networks[J].Plant Signaling&Behavior,2009,4(8):713-717.
    [275]Heather M, Tomeko VG, Mijitaba H. The effects of aluminum toxicity on the protein expression of Arabidopsis thaliana[J].BIOS,2005,76(2):84-88.
    [276]Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J].The Plant Cell,2009,21,3339-3349.
    [277]Xia JF, Yamaji Naoki, Kasai T, Ma JF. Plasma membrane-localized transporter for aluminum in rice[J].PNAS,2010,107(43):18381-18385.
    [278]Shinozaki K and Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways[J].Curr. Opin. Plant Biol,2000,3,217-223.
    [279]Che WQ, Provart NJ et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J].The Plant Cell, 2002,14,559-574.
    [280]Singh K, Foley RC, Ońate-Sánchez L. Transcription factors in plant defense and stress response[J]. Curr Opin Plant Biol,2002,5:430-436.
    [281]Chen C, Chen Z. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol,2000,42:387-396.
    [282]MaréC, Mazzucotelli E, et al. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley[J].Plant Molecular Biology,2004,55:399-416.
    [283]Huang T, Duman JG. Cloning and characterization of a thermal hysterwsis(antifreeze) protein with DNA-binding activity from winter bittersweet nighshade Solanum dulcamara[J]. Plant Mol Biol, 2002, 48:339-350.
    [284]Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zatl2 is required for cytosolic ascorbate peroxidase1 expression during oxidative stress in Arabidopsis[J]. J Biol Chem,2004,279:11736-11743.
    [285]Rizhsky L, Liang H, Mittle R. The combined effect of drough stress and heat shock on gene expression in tobacco[J]. Plant Physiol,2002,130:1143-1151.
    [286]林国强,陈志雄,胡润芳,张广庆,滕振勇.大豆防御应答相关WRKY转录因子的克隆与表达分析[J].福建农业学报,2011,26(1):29-32.
    [287]Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic axquired resistance encodes a novel protein containing ankyrin repeats[J].Cell,1997,88:57-63.
    [288]Cao H, Li X, Dong X. Generation of broad-spextrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance[J].Proc Natl Acad Sci USA,1998,95:6531-6536.
    [289]Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases[J].Transgenic Res,2004,13(6):567-581.
    [290]Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1[J]. Mol Plant Microbe Interact,2006,19(2):123-129.
    [291]Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis[J].Plant J,2001,27(2):101-113.
    [292]Yu DQ, Chen CH, Chen ZX. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].The Plant Cell,2001,13:1527-1539.
    [293]Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J].Cell, 2003,113:935-944.
    [294]Quilis J, Peńas G, Messeguer J, Brugidou C, Segundo BS. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogenswhile conferring hypersensitivity to abiotic stresses in Transgenic rice[J]. MPMI,2008,21(9):1215-1231.
    [295]Huang CF, Yamaji N,Mitani N, Yano M, Nagamura Y, Ma JF. A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J].The Plant Cell,2009,21:655-667.
    [296]Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J].Plant J,2007,50:207-218.
    [297]Ducos E, Fraysse AS,Boutry M. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum[J].FEBS Lett,2005,579:6791-6795.
    [298]Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K. The Pdr13 ABC transporter is required for the development of weak organic acid resistance in yeast[J]. EMBO J,1998,17:4257-4265.
    [299]Eichhorn H, Klinghammer M, Becht P, Tenhaken R. Isolation of a nover ABC-transporter gene from soybean induced by salicylic acid[J]. J Exp Bot,2006,57:2193-2201.
    [300]Qiu YP, Jing SJ, Fu J,Li L,Yu DQ, Sun QX. Cloning and expression profiles of 13 WRKY genes in rice[J].2004,49:2159-2168.
    [301]Jiang YQ, Deyholos MK.Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J].BMC Plant Biol,2006,6:25.
    [302]Wei W, Zhang YX, Han L, Guan ZQ. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Rep,2008, 27:795-803.
    [303]Kumari M, Taylor GJ, Deyholos MK. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J].Mol Genet Genomics,2008,279:339-357.
    [304]Goodwin SB, Sutte TR. Microarray analysis of Arabidopsis genome response to aluminum stress[J].Biol Plant, 2009,53(1):85-99.
    [305]Guo RY, Yu FF, Gao Z, An HL, Cao XC, Guo XQ.GhWRKY3, a novel cotton(Gossypium hirsutum L.) WRKY gene, is involved in diverse stressresponses[J].Mol Biol Rep,2011,38:49-58.
    [306]Dong JX, Chen CH, Chen ZX. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J].Plant Molecular Biology,2003,51:21-37.
    [307]Delaney TP, Friedrich L, Ryals JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance[J].Proc Natl Acad Sci USA,1995,92:6602-6606.
    [308]Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J].Cell Research,2005,15(8):593-603.
    [309]Despres C, Delong C, Glaze S, Liu E, Fobert PR. The Arabidopsis NPR1/NIMI protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors[J].Plant Cell,2000,12:279-290.
    [310]Sandhu D, Tasma IM, Frasch R, Bhattacharyya MK. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1[J].BMC Plant Biology,2009,9:105
    [311]Smart CC, Fleming AJ. Hormonal and environmental regulation of a plant PDR5-like ABC transporter[J].Journal of Biological Chemistry,1996,271(32):19351-19357.
    [312]Wolfger H, Mamnun YM, Kuchler K.Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification[J].Res Microbiol,2001,152:357-389.
    [313]Jasiński M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion[J].Plant Cell,2001,13:1095-1107.
    [314]Kang J,Hwang JU, Lee M, Kim YY, Assmann SM, Maetinoia E, Lee Y. A PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid[J].Pro Natl Acad Sci USA,doi:10.1073/pnas.0909222107.
    [315]Bednarek P, Pislewska-Bednarek M, et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense[J].Science,2009,323:101-106.
    [316]Lee M, Lee K, Lee J, Noh EW,Lee Y. AtPDR12 contributes to lead resistance in Arabidopsis[J].Plant Physiol,2005,138:827-836.
    [317]Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J].Plant J,2007,50:207-218.
    [318]Ducos E, Fraysse S, Boutry M. NtPDR3,an iron-deficiency inducible ABC transporter in Nicotiana tabacum[J].FEBS Letter,2005,579:6791-6795.
    [319]Moons A.OsPDR9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J].FEBS Lett,2003,553:370-376.
    [320]Von Uexkull H.R. Global extent, development and economic impact of acid[J].Plant and Soil,1995,171(1):1-15.
    [321]Wagatsuma T, Ejoe Y. Effect of pH on ionic species of aluminum in medium and on aluminum toxicity under solution culture[J].Soil Sci and Plant Nutr,1985,31(4):547-561.
    [322]Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling[J].J Plant Growth Regul,2007,26:290-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700