用户名: 密码: 验证码:
香格里拉县森林生物量遥感估测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在全球气候变暖的背景下,森林碳储量研究成为了人们关注的焦点。而森林生物量的估算是进行陆地生态系统碳循环和碳储量及变化分析的基础,也是生态学和全球变化研究的重要内容之一。香格里拉县地处横断山脉,位于世界面积最大的滇西北“三江并流”世界自然遗产保护区腹地。研究这一区域森林植被的生物量/碳储量,对进一步开展高原陆地生态系统碳循环研究,科学评价自然遗产保护区的生态服务功能及其在全球气候变化中的作用,提高全社会对保护区生态价值的认识都具有重要意义。随着3S技术的出现和发展,为快速、无破坏地进行较大尺度森林生物量和碳储量的研究提供了可能。
     本文以香格里拉县为研究区,以2008、2009年陆地卫星数据TM为信息源,结合2008的森林资源二类调查数据和本文研究中调查的186个样地数据,在国家基金项目“滇西北三江并流区森林生态系统碳储量遥感定量研究”(No:40861009)支持下开展了香格里拉森林生物量和碳储量的遥感估测研究,建立了香格里拉县4种主要森林类型的遥感生物量估测模型。利用样地调查方法按4个森林类型估算了林下灌木、草本和枯枝落叶层的生物量,与遥感模型估测的乔木层生物量汇总,完成了香格里拉县主要森林生态系统的森林生物量和碳储量的估测。由于研究地区地处高山峡谷区,地形深切割,高差大(从1503米-5545米),导致遥感数据的预处理和标准化难度大。针对此情况,论文重点在遥感数据的地形阴影去除、森林生物量遥感特征提取、森林生物量遥感建模方法等方面重点开展研究。主要研究结论如下:
     (1)高山峡谷区遥感数据受地形影响较大,而本文采用的坡度匹配地形辐射校正方法较之常用的方法能更好地减小地形对遥感数据的影响,改善了遥感数据与森林蓄积量之间的相关性。
     研究表明:仅采用辐射定标处理的各波段数据与森林蓄积量的相关性都很低,TM的6个波段与蓄积量相关都未通过显著性检验;经过大气校正后相关性有了部分改善,但仅有TM4的相关达到p=0.05显著水平;在大气校正的基础上进行的地形校正明显地改善了各波段与样地生物量之间的相关关系。通过0.05显著性检验的波段达到了3个波段,其中TM4的相关系数通过了0.01水平的显著性检验。
     (2)与传统的遥感特征因子相比,本文提出的通过像元分解获取的森林阴影丰度特征与森林生物量的具有较好的相关性,并在3个树种的逐步回归建模中入选回归方程。
     研究表明,像元分解后的阴影丰度图像与森林生物量的相关性较之单波段的相关性都有不同程度的提高,除云冷杉外,相关性都通过了0.01水平的显著性检验。表明像元分解得出的阴影丰度特征可以作为森林生物量遥感估测的重要因子。
     (3)三种建模方法的结果表明,线性回归模型精度最低,神经网络模型精度次之,支持向量机回归模型(SVM)精度最高。
     利用相同的的建模样本数据和检验数据,采用多元线性回归、神经网络和支持向量机方法进行了森林生物量遥感估测模型的建模实验。检验结果表明,多元线性回归的检验精度最低,神经网络次之,支持向量机精度最高,除云冷杉外,模型预测值的平均相对误差小于20%。
     多元回归由于要求数据分布满足一些假设条件(如线性、正态性、等方差、独立性等),使模型中得以保留下的变量很少(2-3个),造成了遥感信息利用不充分,导致模型的估测效果较差。
     神经网络方法可以得到小的训练误差,但对于建模外的新数据,其泛化能力较差,存在过学习问题,从而导致模型的估测精度不高。
     支持向量机不同于神经网络和线性回归等传统方法以训练误差最小化作为优化目标,而是以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标。因此,SVM的泛化能力要明显优越于神经网络等传统学习方法。另外,SVM的求解最后转化成二次规划问题的求解,因此,SVM的解是唯一的、也是全局最优的。本文的研究结果中支持向量机模型精度最高也充分证明了SVM理论的正确和有效性。
     (4)研究区主要森林生态系统的生物量和碳储量
     利用支持向量机回归模型估算了香格里拉县主要森林生态系统的乔木层生物量,利用样地调查法估算了林下层生物量和土壤碳,得到香格里拉县主要森林生态系统的总碳储量为302.984 TgC,其中,乔木层、灌木层、草本层、枯落物层和土壤层的碳储量分别为60.196 TgC、5.433 TgC、1.080 TgC、3.582 TgC、232.692 TgC,分别占总碳储量的19.87%、1.79%、0.36%、1.18%和76.80%,各层按照碳储量大小排序为:土壤层>乔木层>灌木层>枯落物层>草本层。
     不同的森林类型生态系统的碳储量差异较大。研究区主要的森林生态系统按照碳储量大小排序为:云冷杉>栎类>高山松>云南松。
     (5)研究区主要森林生态系统碳密度
     香格里拉县主要森林生态系统的平均碳密度为403.480 t/hm2。其中,云冷杉林的碳密度最大,为576.889 t/hm2,其次是栎类,为326.947 t/hm2,高山松和云南松分别为279.993 t/hm2、255.792 t/hm2。香格里拉县的平均碳密度403.480 t/hm2要高于临近地区估算的四川森林生态系统平均碳密度为232.81 t/hm2。这说明,位于世界最大的自然遗产保护区的香格里拉除了具有重要的自然、人文和生物多样性的保护价值外,还是该地区的一个重要碳库,对整个区域生态系统的稳定和平衡发挥着重要的作用。
Recently, the research on forest carbon storage attracted more and more attention against the global warming. As the basis of analyzing terrestrial carbon cycle and storage and its dynamic change, forest biomass estimation has become one of the important contents of ecology and global change study. Shangri-La county, located in the alpine and gorge region in the northwest of Yunnan province, is laid at the hinterland of the largest world natural heritage site "Three Parallel Rivers". The forest biomass and carbon storage research at this region plays a significant role for developing plateau terrestrial carbon cycle study, evaluating the ecological services of natural heritage and its role in global climate change scientifically and improving the whole society awareness of the ecological value of protected areas. As the development of GIS, RS and GPS techniques, a rapid and effective research can be provided for studying forest biomass and carbon storage in large scale.
     In this study, Shangri-La was chosen as study area. The research on remote sensing estimation of forest biomass and carbon storage was carried out, which was supported by National Natural Science Foundation project (No:40861009). The Landsat data TM of 2008 and 2009, the forest management inventory of 2008 and 186 supplemental field samples were integrated. The study area is located in the high-mountain gorge area, the complex terrain (elevation from 1503m to 5545m) resulted in remote sensing data pre-processing and standardizing very difficult. For this case, the RS data terrain shadow elimination, forest biomass RS feature extraction and modeling means was focused on in this study. A forest biomass RS estimation model was built. And the forest biomass and carbon storage estimation for major forest ecosystems was completed in Shangri-La. The main conclusions as below:
     (1) The RS data, located in the high-mountain gorge area was influenced seriously by the terrain. The correlation between RS data and forest volume was improved in this study by employing the terrain radiation correction.
     The study result indicated that the correlation between each band and forest volume was very low by using Radiometric Calibration only. The six bands of TM data and forest volume were failed to significance test. After atmospheric correction, the correlation was improved in some degree. But there were also only the TM4 correlation was significant (p=0.05). By using terrain correction, the correlation between the bands and sample biomass was improved obviously based on atmosphere correction. There were three bands correlation had passed the significance test. What is more, the correlation coefficient of TM4 passed the significant test (p=0.01).
     (2) Compared with numerous traditional RS features, the shadow percent of forest obtained by pixel unmixing had represented much better correlation with forest biomass than the most other ones among the RS features in the study.
     The study result indicated that the correlation between shadow richness image and forest biomass after pixel unmixing was better in some degree than the correlation of single band. All correlation had passed the significance test (p=0.01) except Spruce-fir. It showed that the shadow feature obtained by pixel unmixing could be a significant factor in the forest biomass estimation based on RS.
     (3) The result of three model means showed that the accuracy of the linear regression model was the worst, the neural network was followed, and the support vector machine regression model was the highest.
     With the same sample data set, biomass estimation model was performed by using multiple linear regression, neural networks and support vector machine approach for different forest types, respectively. The results showed that multiple linear regressions leaded to estimates of the model less effective. It was because that the data distribution was required to meet some hypothesis (e.g. linearity, normality, equal variance, independence, etc.), which caused only a few variables (2-3) left in the model equation, and then it resulted in the insufficient use of remote sensing information.
     The neural network can obtain a smaller training error, for the new and untrained data, however, its generalization ability was poor and there were some learning problems. Consequently, its model estimation accuracy was not high.
     Unlike traditional means such as neural networks to minimize the training error, the Support Vector Machine made the training error as an optimization constraint, and minimized the value of the confidence range as its optimization objective. The generalization ability of SVM was superior to the traditional study means. Moreover, the SVM solving was transform into quadratic programming solving. Therefore, the SVM solution was unique and global optimal one. In this study results, the correctness and effectiveness of SVM theory was fully demonstrated by that Support Vector Machine model had the highest accuracy.
     (4) Dominant forest ecosystems carbon storage of the study area
     With the help of Support Vector Machine Model, carbon storage of Shangri-La can be estimated, the total carbon storage of Shangri-La is 302.984 TgC. The carbon storage of arbor Layer, Shrub Layer, Herb Layer, Litter Layer and Soil Layer is 60.196 TgC、5.433 TgC、1.080 TgC、3.582 TgC and 232.692 TgC respectively, and it accounts for 19.87%, 1.79%,0.36%,1.18% and 76.80% of total carbon storage respectively. According to the amount of their carbon storage, the sequence was Soil Layer>Tree Layer>Shrub Layer> Litter Layer>Herb Layer.
     (5) Dominant forest ecosystem carbon density of the study area
     The average carbon density of Shangri-La dominant forest ecosystem is 403.480 t/hm2. Spruce-fir has the greatest carbon density (576.889 t/hm2). The follow are Oak with 326.947 t/hm2. Alpine larch with 279.993 t/hm2 and Yunnan Pine 255.792 t/hm2 respectively. The average carbon density of Shangri-La was higher than that of its neighboring Sichuan area, which is estimated to be 232.81 t/hm2. It is demonstrated that Shangri-La, locating in the greatest world natural heritage site, was not only significant in its nature, humanities and biological value, but also a vital carbon pool, which plays an important role in maintaining stability and balance for the whole ecosystem of Shangri-La county.
引文
[1]John R. Jensen著;陈晓玲等译.遥感数字影像处理导论A Remote Sensing Perspective[M].北京市:机械工业出版社,2007.
    [2]鲍晨光,范文义,李明泽,等.2009.地形校正对森林生物量遥感估测的影响.应用生态学报,20(11):2750-2756.
    [3]陈尔学.合成孔径雷达森林生物量估测研究进展[J].世界林业研究,1999,(6):18-23.
    [4]陈强,吴慕春,薛月菊等.支持向量机回归的碳通量预测[J].计算机工程与应用,2009,45(021):235-238.
    [5]陈永义.处理非线性分类和回归问题的一种新方法(Ⅰ)—支持向量机方法简介[J].应用气象学报2004,15(3):345-354.
    [6]党承林,吴兆录.黄毛青冈群落的生产量研究[J].云南大学学报(自然科学版),1992,16(3):205-210.
    [7]邓坤枚,罗天祥,张林.云南松林的根系生物量及其分布规律的研究[J].应用生态学报2005,12(1):21-24
    [8]邓乃扬,田英杰著.支持向量机[M].北京:科学出版社,2009.
    [9]丁贵杰.马尾松人工林生物量和生产力研究——Ⅰ.不同造林密度生物量及密度效应[J].福建林学院学报,2003,23(1):34-38
    [10]董文娟,齐哗,李惠等.植被生产力的空间分布研究[J].地理与地理信息科学,2005,21(3):105-108
    [11]董文渊,黄宝龙,谢泽轩,等.筇竹无性系种群生物量结构与动态研究[J].林业科学研究,2002,15(4):416-420
    [12]范渭亮,杜华强,周国模,等.2010.大气校正对毛竹林生物量遥感估算的影响.应用生态学报,21(1):1-8.
    [13]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [14]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508
    [15]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物2002,22(4):305-310.
    [16]冯汉中,陈永义.处理非线性分类和回归问题的一种新方法(Ⅱ)—支持向量机方法在天气 预报中的应用[J]应用气象学报,2004,15(003):355-365
    [17]冯宗炜,王效科,吴刚.中国森林生态系统的生物量[M].北京科学出版社,1999.
    [18]高永年,张万昌.2008.遥感影像地形校正研究进展及其比较实验.地理研究,27(2):465-478.
    [19]耿元波等.陆地碳循环研究进展[J].地理科学进展,2000,19(4):297-306
    [20]光增云.河南森林植被的碳储量研究[J].地域研究与开发,2007,26(1):76-79
    [21]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832-1839
    [22]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13-16.
    [23]韩爱惠.森林生物量及碳储量遥感监测方法研究[D].北京,北京林业大学,2009
    [24]黄从德,张健,杨万勤,等.四川省及重庆地区森林植被碳储量动态[J].生态学报,2008,
    [25]黄从德.四川森林生态系统碳储量及其空间分异特征[D].四川:四川农业大学2008.
    [26]黄国胜,夏朝宗.基于Modis的东北地区森林生物量研究[J].林业资源管理,2005(4):4044.
    [27]黄敬峰,桑长青,金杰.天山北坡天然草场光谱植被指数的基本特征[J].遥感技术与应用1994,9(1):29-33
    [28]黄清麟,郑群瑞,阮学瑞.福建青冈萌芽林分结构及生产力的研究[J].福建林学院学报,1995,15(2):107-111
    [29]蒋延玲周广胜.中国主要森林生态系统公益的评估[J].植物生态学报1999,23(3)426-432.
    [30]金峰等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528.
    [31]康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    [32]黎锐,李存军.基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J].农业工程学报,2009,(7):114-117.
    [33]黎夏,叶嘉安.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396
    [34]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现[M].北京:科学出版社,2006:61-68.
    [35]李崇贵,赵宪文,李春干.森林蓄积遥感估测的理论与实现[M].北京:科学出版社,2006.
    [36]李海涛,王姗娜,高鲁鹏等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    [37]李健,舒晓波,陈水森.基于Landsat-TM数据鄱阳湖湿地植被生物量遥感监测模型的建立[J].广州大学学报(自然科学版),2005,4(6):494-498.
    [38]李建华,李春静,彭世揆.杨树人工林生物量估计方法与应用[J].南京林业大学学报2007.31(4):37-40.
    [39]李明诗等.结合光谱、纹理及地形特征的森林生物量建模研究[J].遥感信息,2006,(6):6-10.
    [40]李明泽.东北林区森林生物量遥感估算及分析[D].东北林业大学,2010.
    [41]李文华,周沛村.暗针叶林在欧亚大陆分布的基本规律及其数学模型的研究.自然环境[J],1979,(1):2134.
    [42]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):7192.
    [43]李文华,罗天祥.中国云冷杉林生物生产力格局及其数学模型[J].生态学报,1997,17(5):511-518.
    [44]李意德,曾庆波.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,16(2):156-162.
    [45]李意德,张振才.尖峰岭热带山地雨林生物量的初步研究[J].植物生态学与地植物学报,1992,16(4):293-300.
    [46]李意德.海南岛热带山地雨林林分生物量估测方法比较分析[J].生态学报,1993,13(4):313-320.
    [47]李英成.1994.数字遥感影像地形效应分析及校正.北京测绘,(2):14-19.
    [48]李跃林,胡成志,张云等.几种人工林土壤碳储量研究[J].福建林业科技,2004,31(4):4-7
    [49]李增元,车学俭,刘闽.ERS—1SAR影像森林应用研究初探[J].林业科学研究,1994,7(6):692-696.
    [50]林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究[J].福建林学院学报,2003,23(3):261-265.
    [51]林永标 申卫军 彭少麟等.南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究[J].植物生态学报,2003,27(3):36-97.
    [52]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [53]刘华雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[J].西北植物学报,2005,23(4):67-71.
    [54]刘纪远,于贵瑞,王绍强,岳天祥,高志强.陆地生态系统碳循环及其机理研究的地球信息 科学方法初探[J].地理研究,2003,22(4):397-405.
    [55]刘靖旭.支持向量回归的模型选择及应用研究[D];国防科学技术大学,2006.
    [56]刘靖旭.支持向量回归的模型选择及应用研究[D],国防科学技术大学,2006.
    [57]刘盛,李国伟.林分碳贮量测算方法的研究[J].北京林业大学学报,2007.29(4):166-169.
    [58]刘娟妮.基于GIS的黄龙山主要森林类型碳储量的时空分析[D],西北农林科技大学,2008.
    [59]刘兴良,马钦彦,杨冬生等.川西山地主要人工林种群根系生物量与生产力[J].生态学报2006,26(2):542-551
    [60]卢义山,梁珍海,吴仲祥等.苏北海堤防护林主要造林树种林分生物量与生产力的研究[J].江苏林业科技,2000,27(2):12-15
    [61]鲁少波,刘秀萍,鲁绍伟等.林木根系形态分布及其影响因素[J].林业调查规划2006,31(3):105-108
    [62]罗天祥,李文华,冷允法等.青藏高原自然植被总生物量的估算与净初级生产力的潜在分布[J].地理研究,1998,17(4):337-344.
    [63]罗天祥,温远光.广西杉木人工林生产力水热优化模型[J].自然资源学报,1996,11(1):56-65.
    [64]吕游,杨克俭.树木冠层与根系统一建模研究[J].计算机与数字工程2007,35(10):44-45.
    [65]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5-6):96-100
    [66]莫江明,彭少麟,Sandra Brown,等.鼎湖山马尾松林群落生物量生产对人为干扰的响应[J].生态学报,2004,24(2):193-200
    [67]庞勇,李增元,陈尔学.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):12-136.
    [68]庞勇,于信芳,李增元等.星载激光雷达波形长度提取与林业应用潜力分析[J].林业科学,2006,42(7):137-140.
    [69]彭少麟,郭志华,王伯荪.RS和GIS在植被生态学中的应用及其前景[J].生态学杂志,1999,18(5):52-64
    [70]齐家国,王翠珍.微波/光学植被散射模型及其在热带森林中的应用[J].电波科学学报,2004,19(4):409-417.
    [71]亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005(4):1-6
    [72]钱乐祥.遥感数字影像处理与地理特征提取[M].科学出版社,2004:105,106,109
    [73]曲建升,孙成权,张志强,高峰.全球变化科学中的碳循环研究进展与趋向[J].地球科学进 展,2003,18(6):980-987.
    [74]山本晋.日本/亚洲CO2通量观测网络-生态系统吸收能力的揭示(日文)[J].燃料与燃烧,1999,66(3):3-9.
    [75]宋巍巍,管东生.五种TM影像大气校正模型在植被遥感中的应用[J].应用生态学报,2008,19(4):769-777.
    [76]田英杰.支持向量回归机及其应用研究[D];中国农业大学,2005.
    [77]仝慧杰,冯仲科,罗旭,张彦林.森林生物量与遥感信息的相关性[J].北京林业大学学报2007.29(2):156-159.
    [78]仝慧杰.森林生物量遥感反演建模基础与方法研究[D].北京林业大学,2009.
    [79]童庆禧,张兵,郑兰芬等编著.高光谱遥感—原理、技术与应用[M].北京:高等教育出版社,2006.
    [80]童庆禧,张良培,郑兰芬.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2)111-114.
    [81]王臣立,郭治兴,等.热带人工林生物物理参数及生物量对RADARSAT SAR 信号响应研究[J].生态环境2006,15(1):115-11.
    [82]王任华,霍宏涛,游先祥.人工神经网络在遥感图像森林植被分类中的应用[J].北京林业大学学报2003,25(4):15.
    [83]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境2007,1(16):108-111.
    [84]王淑君.广州市森林生物量时空演变及其异质性分析[D].中山大学,2007.
    [85]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [86]王艳艳,杨明川,潘耀忠.中国陆地植被生态系统生产有机物质价值遥感估算[J].生态环境,2005,14(4):455-459.
    [87]王玉光.不同杉木混交幼林生物量与生产力研究成果[J].福建林学院学报,1996,16(2):156-159.
    [88]王玉辉,周广胜,蒋延玲等.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4):420-425.
    [89]王宗明,梁银丽.植被净第一性生产力模型研究进展[J].西北林学院学报,2002,17(2):22-25.
    [90]魏安世,林寿民,李志洪.基于TM数据的森林植物碳储量估测方法研究[J].中南林业调查 规划,2006,34(3):42-45.
    [91]闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [92]吴兆录,党承林,和兆荣.滇西北黄背栋林生物量和净第一性生产力的初步研究[J].云南大学学报(自然科学版),1994,16(3):245-249.
    [93]吴仲民,曾庆波,李意德等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].生态学报,1997,21(5):416-423.
    [94]武国正.支持向量机在湖泊富营养化评价及水质预测中的应用研究[D];内蒙古农业大学,2008.
    [95]徐新良,曹明奎.森林生物量遥感估算与应用分析[J].地理信息科学,2006,8(4):122-128.
    [96]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究[D].东北林业大学,2005.
    [97]闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009,35(14):218-220.
    [98]杨存建,刘纪远,黄河,许辉熙,党承林.热带森林植被生物量与遥感地学数据之间的相关性分析[J].地理研究,2005,24(3):473-479.
    [99]杨海军,邵全琴.森林碳蓄积量估算方法及其应用分析[J].地球信息科学2007,9(4):5-12.
    [100]杨丽霞,潘剑君,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤通报2006,37(2)241-243.
    [101]杨淑莹,胡军,曹作良.基于图像纹理分析的日标物体识别方法[J].天津理工学院学报,2001,17(4):31-33.
    [102]杨旭静,应金花.收获与迹地清理对二代杉木幼林生长影响初报[J].福建林学院学报,1999,19(2):174-177
    [103]杨正宇,周广胜,杨奠安.4个常用的气候-植被分类模型对中国植被分布模拟的比较研究[J].植物生态学学报,2003,27(5):587-593.
    [104]杨忠,张建平,王道杰,等.元谋干热河谷桉树人工林生物量初步研究[J].山地学报,2001,19(2):503-510.
    [105]蚁伟民,张祝平,丁明懋,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报,2000,20(2):397-403.
    [106]于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003
    [107]张德丰,等.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [108]张德全,桑卫国,曰峰等山东省森林有机碳储量及其动态的研究[J].植物生态学,2002,6(S1):93-97.
    [109]张国斌.岷江上游森林碳储量特征及动态分析[D].北京,中国林业科学研究院,2008.
    [110]张慧芳.北京地区森林植被生物量遥感反演及时空动态格局分析[D],北京林业大学,2008
    [111]张锦水,潘耀忠,韩立建,等.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J].遥感学报,2007,11(4):500-510.
    [112]张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2)111-116.
    [113]张娜,于贵瑞,赵士洞.长白山自然保护区生态系统碳平衡研究[J].环境科学,2003,24(1):24-32.
    [114]张萍.北京森林碳储量研究[D],北京林业大学,2009.
    [115]张世利.基于RS,GIS的闽江流域杉木林生物量及碳贮量估测研究[D],福建农林大学,2008.
    [116]张文娟,王绍强,常华,于瑞贵.遥感在土壤碳储量估算中的应用[J].地理科学进展,2005,24(3):118-126.
    [117]张新时.研究全球变化的植被—气候分类系统[J].第四纪研究,1993(2):157-169.
    [118]张元元.大兴安岭地区森林生物量遥感模型的研究[D],东北林业大学,2008
    [119]赵士洞,罗天祥.区域尺度陆地生态系统生物生产力研究方法[J].资源科学,1998,20(1):23-34.
    [120]赵宪文.林业遥感定量估测[M].北京:中国林业出版社,1997.
    [121]郑光,田庆久,陈镜明等.结合树龄信息的遥感森林生态系统生物量制图[J].遥感学报,2006,10(6):932-940.
    [122]郑蓉,吴新才,翁金珊,等.黄甜竹林生长量和鲜笋营养成分的研究[J].福建林学院学报,1999,19(1):65-68.
    [123]郑伟,曾志远.遥感图像大气校正的黑暗像元法[J].国土资源遥感,2005(1):8-11.
    [124]郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004(4):66-70.
    [125]周国模.毛竹林生态系统中碳储量、固定以其分配与分布的研究[D].浙江大学,2006.
    [126]周涛,史培军,罗巾英等.基于遥感与碳循环过程模型估算土壤有机碳储量[J].遥感学报2007,11(1):127-136.
    [127]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [128]朱海珍,岳德鹏,李增元等.ENVISAT ASAR数据森林分类研究综述[J].农业网络信 息,2006.12(4):45-49.
    [129]Andrew Wilson. Using remote sensing to measure forest conversion and land use changes in Xiaozhongdian Township, Northwest Yunnan province, China, April 2005.Center for Biodiversity and Indigenous Knowledge Community Livelihoods Program Working,2005:16-21.
    [130]Brown S,Lugo AE. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J].Biotropica,1982,(14):161-187.
    [131]Brown S,Lugo AE.Aboveground biomass estimates for tropicalmoist forests of Brazilian Amazon [J].Interciencia,1992,17:8-18.
    [132]Brown S,Lugo AE.Biomass of tropical forests:A new estimatebased on forest volumes [J]. Science, 1984,223:1290-1293.
    [133]Brown, S., A. J. R. Gillespie, et al. Biomass estimation methods for tropical forests with applications to forest inventory data[J]. Forest science.1989,35(4):881-902.
    [134]Chavez P S Jr. Image-Based Atmospheric Correction—Revisited and Improved[J]. Photogrammetric Engineering & Remote Sensing,1996,62(9):1025-1036.
    [135]Chih-Jen Lin. Formulations of support vector machines:a note from an optimization point of view[J]. Neural Computation,2001,13(2):307-317,2001.
    [136]Cherkassky, V. and Y. Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
    [137]David Riano, Emilio Chuvieco, Javier Salas etc. Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types [J]. IEEE
    [138]Dengsheng Lu, Mateus Batistella, and Emilio Moran. Satellite Estimation of Aboveground Biomass and Impacts of Forest Stand Structure[J]. Photogrammetric Engineering & Remote Sensing,2005, Vol.71(8):967-974.
    [139]Dengsheng LU, Mateus BATISTELLA. Exploring TM Image Texture and its Relationships with Biomass Estimation in Rondonia, Brazilian Amazon [J].ACTA AMAZONICA,2005, VOL.35(2): 249-257.
    [140]Dengsheng LU.The potential and challenge of remote sensing-based biomass estimation [J]. International Journal of Remote Sensing,2006,Vol.27(7):1297-1328.
    [141]Dixon RK, Brown S, Houguton RA, et al. Carbon pool is flux of global forest Ecosystem [J].Science,1994,262:185-190.
    [142]Dobson M C, Pierce L E, Ulaby F T. Knowledge based Landcover Classification using ERS-1 /JERS-1 SAR Composites[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34: 83-99.
    [143]Dobson,M.C., Ulaby, F. T. Dependence of Radar Backscatter on Coniferous Forest Biomass[J]. IEEE Trans. Geosci. Remote Sensing,1992, Vol.30 (2):412-415.
    [144]Durbha, S. S., R. L. King, et al. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer[J]. Remote Sensing of Environment,2007,107(1-2): 348-361.
    [145]Erkki Tomppo, Mats Nilsson, Mats Rosengren. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing of Environment,2002,8(1):156-171
    [146]Fassnacht K S,Gower S T,MacKenzie M D,et al.Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper [J]. Remote Sensing of Environment,1997, 61(2):229-245.
    [147]Foody G M, Palubinskas G. Identifying Terrestrial CarbonSinks:Classification of Successional Stages in RegeneratingTropical Forest from Landsat TM Data[J]. Remote Sensing ofEnvironment, 1996,55:205-216.
    [148]Foody, G.M., Cutler,M E, McMorrow,J., et al. Mapping the Biomass of Bomean Tropical Rain Forest from Remotely Sensed Data[J]. Global Ecology & Biogeography,2001,10 (4):379-386.
    [149]Gilabert, M., F. Garcia-Haro, et al.. A mixture modeling approach to estimate vegetation parameters for heterogeneous canopies in remote sensing. Remote Sensing of Environment,2000,72(3):328-345.
    [150]Hame T, SalliA, Andersson K, et al. A new methodology for the estimation of biomass of conifer dominated boreal forest usingNoAAAVHRR data[J]. PE & RS,1997,18 (15):11-32
    [151]Hame T,Salli A, Andersson K, Lohi A. A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data [J].International Journal of Remote Sensing,1997,18(15):3211-3243.
    [152]Haralick R M, Shanmugan K, Dinsrein I. Textural Features for Image classification [J]. IEEE Trans Syst Man Cybern,1973,6:610-621.
    [153]Harrell P A, Bourgeau-Chavez L L, Kasischke E S, et al.Sensitivity ofERS-1 and JERS-1 radar data to biomass andstand structure in Alaskan Boreal Forest[J].Remote SensingofEnvironment,1995,(54):247-260.
    [154]Houghton, R., K. Lawrence, et al. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates[J]. Global Change Biology,2001,7(7):731-746.
    [155]Imhoff M L. Radar backscatter and biomass saturation:ramifications for global biomass inventory [J].IEEE Transactions on Geoscience and Remote Sensing[J],1995,33(1),511-518.
    [156]Imhoff, M.L,Steven C. and Parick J. A low-frequency radar experiment for measuring vegetation biomass[J]. IEEE Trans. Geosci. Remote Sensing,1998,Vol.36 (6):1988-1991.
    [157]Imhoff, M.L., Radar backscatter and biomass saturation:ramifications for global biomass inventory[J]. IEEE Trans. Geosci. Remote Sensing,1995,Vol.33 (2):511-518.
    [158]J M Chen,J Cihlar.Retrieving leaf area index of boreal conifer forests using Landsat TM images [J]. Remote Sensing of Environment,1996,55(1):153-162
    [159]J. NICHOL, LAW KIN HANG, WONG MAN SING.Empirical correction of low Sun angle images in steeply sloping terrain:a slope-matching technique[J]. International Journal of Remote Sensing,2006,Vol.27(3),629-635.
    [160]Kasischke E. S, Melack J.M, DobsonM C. The Use of Imaging Radar for Ecological Applications: A Review [J]. Remote Sens. Environ.1997,59:141-156.
    [161]Lefsky, M. A., D. J. Harding, et al. Estimates of forest canopy height and aboveground biomass using ICESa[J]t. Geophysical Research Letters.2005,32(22):L22S02.
    [162]Li, M., Y. Tan, et al. Modeling forest aboveground biomass by combining spectrum, textures and topographic features[J]. Frontiers of Forestry in China,2008,3(1):10-15.
    [163]Lieth, H. Modeling the primary productivity of the world. Primary productivity of the biosphere[J].1975,14:237-263.
    [164]Lu D, Mausel P, Brondizio E, et al. Assessment of Atmospheric Correction Methods for Landsat TM Data Applicable to Amazon Basin LBA Research[J]. International Journal of Remote Sensing, 2002,23(13):2651-2671.
    [165]Lu, D. and M. Batistella. Exploring TM image texture and its relationships with biomass estimation in Rond nia[J], Brazilian Amazon. Acta Amazonica,2005,35(2):249-257.
    [166]Lu, D., E. Moran, et al.. Linear mixture model applied to Amazonian vegetation classification.Remote Sensing of Environment[J].2003,87(4):456-469.
    [167]Manso, A. F., C. Q. Pastor, et al. spectral mixture modeling to estimate wood volume in north of spain from optical satellite data. AMBIeNCIA 1,2009(2):213-222.
    [168]Mishra, V., J. Sharma, et al. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain[J]. Journal of Earth System Science,2009. Vol.118(1):11-26.
    [169]Moran M S, Jackson R D, Slater P N, et al. Evaluation of Simplified Procedures for Retrieval of Land Surface Reflectance Factors from Satellite Sensor Output[J]. Remote Sensing of Environment,1992,41:169-184.
    [170]Mutanga, O. and A. K. Skidmore. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International journal of remote sensing,2004,25(19): 3999-4014.
    [171]Peddle, D. R., F. G. Hall, et al.. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure. Remote Sensing of Environment.1999,67(3): 288-297.
    [172]Phua, M. H. and H. Saito. Estimation of biomass of a mountainous tropical forest using Landsat TM data[J]. Canadian journal of remote sensing.2003,29(4):429-440.
    [173]Potter, C., P. Gross, et al. Storage of carbon in US forests predicted from satellite data, ecosystem modeling, and inventory summaries[J]. Climatic change,2008,90(3):269-282.
    [174]Pu, R., B. Xu, et al. Oakwood crown closure estimation by unmixing Landsat TM data. International_Journal of Remote Sensing[J].2003,24(22):4422-4445.
    [175]Ranson, K. J., G. Sun, Weishampel, J.F., and Knox, R.G. Forest biomass from combined ecosystem and radar backscatter modeling[J]. Remote Sens.Envion.1997,Vol.59:118-133.
    [176]Ranson, K.J. Guoqing Sun, Montgomery, B., Lang, R.H. Mapping of boreal forest biomass using SAR, Geoscience and Remote Sensing Symposium,1996. IGARSS '96. Remote Sensing for a Sustainable Future.' Vol.1:577-579.
    [177]Ranson, K.J. Guoqing Sun. Mapping biomass of a northern forest using multifrequency SAR data, IEEE Trans[J]. Geosci. Remote Sensing,1994,Vol.32 (2):388-396.
    [178]Sader S. Forest biomass, canopy structure, and species composition relationships with Multipolarization L-band SAR Data[J]. Photogramtric Engineering & Remote Sensing,1987, 53:193-202.
    [179]Samimi, C. and T. Kraus. Biomass estimation using Landsat-TM and-ETM+. Towards a regional model for Southern Africa? [J]. GeoJournal,2004,59(3):177-187.
    [180]Smola, A.. Regression estimation with support vector learning machines[D]. Master's thesis, Technische Universit at M unchen,1996.
    [181]Song C, Woodcock C E, Seto K C, et al. Classification and Change Detection Using Landsat TM Data:When and How to Correct Atmospheric Effects?[J]. Remoste Sensing of Environment,2001,75 (2):230-244.
    [182]Sun, G., Ranson,K.J., Kharuk,V.I. Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia[J]. Remote Sensing of Environment, 2002, Vol.79:279-287.
    [183]Toan, L.T., Beaudoin A., Riom J., et al. Relating Forest Biomass to SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30 (2):403-411.
    [184]Tomppo, E., M. Nilsson, et al. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing of Environment,2006,82(1):156-171.
    [185]Vitousek, Peter M., John D. Aber, Robert W. Howarth, et al. human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications 1997,(7):737-750..
    [186]Yong Wang, Frank W. Davis, and John M. Melack. Simulated and Observed Backscatter at P-, L-,and C-Bands from Ponderosa Pine Stands[J]. IEEE Trans. Geosci. Remote Sensing, 1993,Vol.31 (4):871-879.
    [187]Yong Wang, John L. Day. Modeling L-band radar backscatter of Alaskan boreal forest[J]. IEEE Trans. Geosci. Remote Sensing,1993,Vol.31 (6):1146-1155.
    [188]Wang,Y.,Dong,D. Retrieving forest stand parameters from SAR backscatter data using aneural network trained by a canopy backscatter model[J]. Int. J. Remote Sensing,1997, vol.18 (4):981-989.
    [189]Wolfgang W., Adrian L., Jan V.,et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data[J]. Remote Sensing of Environment,2003,Vol.85: 125-144.
    [190]Wulder, M. A., J. C. White, et al. Spatially explicit large area biomass estimation:three approaches using forest inventory and remotely sensed imagery in a GIS[J]. Sensors,2008,8(1): 529-560.
    [191]Zheng, D., L. S. Heath, et al. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England[J], USA. Journal of Applied Remote Sensing,2008, (2):312-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700