用户名: 密码: 验证码:
玄武岩纤维增强路面材料性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面因平整、舒适、噪音小等特点在高等级路面中得到了广泛的应用。但随着交通量和轴载的不断增大,沥青路面早期破坏现象日趋严重,对沥青混合料的路用性能提出了更高的要求。如何有效提高沥青路面的服务质量和使用寿命成为了广大道路工作者的研究重点。纤维作为一种新型的工程材料的添加剂和稳定剂,因其优良的路用性能以及施工简单、造价经济等特点在国内外引起了学者们的重视。玄武岩纤维作为继木质素纤维、聚合物纤维之后出现的又一种新型纤维,以其优良的技术性能受到人们的普遍关注。其不仅有效弥补了有机类纤维的强度与弹性模量低、耐高温性能差等缺点,同时也克服了石棉等矿物纤维存在污染环境的缺陷。
     本文在国内外已有研究成果的基础上,首先通过马歇尔试验与高温车辙试验确定最佳的沥青与纤维用量。然后通过高温稳定性、水稳定性试验、疲劳试验及低温抗裂试验研究了玄武岩纤维沥青混合料的路用性能,并与聚酯纤维混合料、木质素纤维混合料及无添加纤维混合料路用性能进行对比与分析。针对目前我国半刚性基层和底基层严重开裂现象,研究了玄武纤维的掺入对半刚性基层和底基层材料性能的改善情况。本文主要研究工作如下:
     (1)纤维沥青混合料马歇尔试验研究
     通过对不同纤维类型及纤维用量的沥青混合料马歇尔试验研究,分析了纤维对沥青混合料马歇尔试验结果影响的原因,分析了纤维沥青混合料马歇尔指标的变化规律,并确定了纤维沥青混合料的最佳油石比和纤维掺量。
     (2)纤维沥青混合料路用性能试验研究
     通过高温稳定性试验、水稳性试验、疲劳试验及低温抗裂性试验对不添加纤维、添加玄武岩纤维、添加聚酯纤维(polyester)以及添加木质纤维(nethyl cellulose)'隋况下的沥青混合料的路用性能进行了对比分析。研究表明,纤维沥青混合料在路用性能方面得到了明显的改良与优化;在保持最佳纤维掺量的情况下,玄武岩纤维对沥青混合料路用性能的增强效果更明显。
     (3)玄武纤维水泥稳定碎石(基层和底基层)材料性能试验
     采用不同配合比和纤维掺量,开展了玄武岩纤维水泥稳定碎石抗压强度、弯曲强度和韧性及疲劳特性、抗裂性能(干缩开裂和温度循环开裂)试验研究,结果表明玄武岩纤维在一定程度上能够改善水泥稳定碎石基层的路用性能。
     (4)玄武岩纤维增强半刚性沥青路面疲劳寿命预估研究
     为了验证玄武岩纤维增强半刚性沥青路面路用性能、提高其服务质量和延长其寿命的效果,在沥青面层掺入适量玄武岩纤维,进而对其疲劳寿命进行预估,并与普通半刚性沥青路面的疲劳寿命进行了对比验证。
The asphalt pavement has been widely used in express highway for its merits of smooth, comfortable travel, low-noise and so on. However, early damage of asphalt pavement becomes more and more serious with the continued increasing of axle load and traffic; therefore, the pavement performance of asphalt mixture should be reinforced in some way to meet the need of traffic development. But how to effectively improve the asphalt pavement performance and then to improve the service quality and life of the asphalt pavement has been become the research emphasis of a great deal of road researchers. Fiber as a kind of new asphalt mixture additive and stabilizer has caused the scholars'attention and research in domestic and foreign because of their excellent performance, simple construction and economic cost. The basalt fiber which appears after the lignin fiber and polymer fiber, as a kind of new asphalt mixture addition fiber, has received people's universal attention by its fine technical performance. Basalt fiber not only makes up for the drawback of low strength, elastic ratio and weak high temperature resistance of organic fibers, but also overcomes the drawback of environmental pollution of mineral fibers such as asbestos fiber.
     Based on available research findings of domestic and foreign, the optimum dosage of asphalt and fiber was firstly defined by Marshall test and rutting test in this paper. Then the pavement performance of basalt fiber asphalt mixture was studied by tests of high temperature stability test, water stability test and low temperature crack resistance test, moreover compared and evaluated with the pavement performance of polyester fiber, lignin fiber and control asphalt mixture. Aiming to severe cracking phenomenon of semi-rigid base and subbase in our country, the basalt fiber's reinforced effects for semi-rigid base and subbase material pavement performance was studied in this paper. The major works of this paper can be obtained as follows:
     (1) Research of fiber asphalt mixture Marshall test
     The different type, length, fineness and dosage of the fiber in asphalt mixture were studied by Marshall test, the influence factors of fiber to asphalt mixture Marshall test results were analyzed, then the variety laws of the fibrer asphalt mixture Marshall indexes was obtained, the best bitumen-aggregate ratio of asphalt and the best dosage of fiber were all decided..
     (2) Pavement performance test research of fiber-reinforced asphalt mixture
     Based on the Marshall test and rutting test, the best dosage of fiber and asphalt was identified. The pavement performances were analyzed and compared for control asphalt mixture, polyester fiber-reinforced asphalt, lignin fiber-reinforced asphalt mixture and basalt fiber-reinforced asphalt mixture by high temperature stability test, water stability test and low temperature crack resistance test. The results show that the pavement performance of fiber-reinforced asphalt mixture was improved significantly compared with that control asphalt mixture. Under the state of the optimal dosage of fiber, the reinforced effects of basalt fiber for asphalt mixture is better than that of polyester fiber and lignin fiber.
     (3) The pavement performance test of basalt fiber reinforced-cement stable crushed stone (base and subbase) material
     In order to study the pavement performance of basalt fiber-reinforced cement stable crushed stone, the compressive strength test, flexural strength and toughness test,fatigue characteristic test and cracking resistance (including shrinkage cracking and temperature cycling cracking) were done for different fiber dosage and various graded cement stable crushed stone material.
     (4) The life prediction of basalt fiber-reinforced semi-rigid AC pavement
     To verify the reinforced effect of the basalt fiber to semi-rigid asphalt concrete pavement using life, the fatigue life prediction for semi-rigid AC pavement which surface incorporated with baslt fiber was done, what's more, the predition results was compared to the ordinary semi-rigid asphalt pavement.
引文
[1]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社,1999.
    [2]张登良.沥青路面工程手册[M].北京:人民交通出版社,2002.
    [3]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社.2001.
    [4]胡龙泉,蒋应军,陈忠达等.骨架密实型水泥稳定碎石路用性能[J].交通运输工程学报,2001,1(4):37-40.
    [5]吴传海.高等级公路二灰碎石基层材料路用性能综合评定及合理配合比研究[D].西安:长安大学,2001.
    [6]梁乃兴,萧赓.水泥粉煤灰碎石基层力学性能对沥青路面结构的影响分析[J].中国公路学报.2003,16(3):18-22.
    [7]张登良,王哲人.沥青路面[M].北京:人民交通出版社,2001.
    [8]沙庆林.高速公路沥青路面的早期破坏现象及预防[M].北京:人民交通出版社2001.
    [9]谭忆秋.沥青与沥青混合料[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [10]蒋应军,戴经梁,陈忠达.半刚性基层裂缝产生机理分析及防治措施[J].重庆交通学院学报,2002,21(2):54-57.
    [11]杨涛.半刚性基层沥青路面反射裂缝的产生机理及防治措施[D].武汉:武汉理工大学,2005.
    [12]刘中林,田文,史建方等.高等级公路沥青玄武岩水泥稳定碎石路面新技术[M].北京:人民交通出版社,2002
    [13]沙庆林.多碎石沥青玄武岩水泥稳定碎石SAC系列的设计与施工[M].北京:人民交通出版社,2005.
    [14]Reed B. Freeman polyester fiber in asphalt paving mixtures [J]. AAPT,1996, (65):78-92.
    [15]YE Qunshan, WU Shaopeng, LI Ning. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures [J]. International Journal of Fatigue,31 (2009) 1598-1602.
    [16]孟岩,梅迎军,李志勇等.纤维沥青混合料试验性能研究[J].重庆交通大学学报(自然科学版),2007,,26(6):110-114.
    [17]Wu SP et al. Effects of fiber additive on the high temperature property of asphalt binder. [J]Wuhan UniveTechnol 2006; 21(1):28-31.
    [18]Huaxin Chen, Qinwu Xu. Experimental study of fibers in stabilizing and reinforcing asphalt binder [J]. 2010, Fuel,89(7):1616-1622
    [19]Qinwu Xu, Huaxin Chen, Jorge A. Prozzi.Performance of fiber reinforced asphalt concrete under environmental temperature and water effects[J]. Construction and Building Materials,2010,24(10): 2003-2010
    [20]汤寄予,高丹盈,韩菊红.玄武岩纤维对沥青混合料水稳定性影响的研究[J].公路,2008,(1):188-194
    [21]郭振华,尚德库,邬翠莲等.海泡石玄武岩纤维复合沥青混合料性能研究[J].河北工业大学学报,2005,34(1):5-10.
    [22]YANG Jinyong,XUN Jinyu,LI Weimin et al. Comparative study of impact compressive ductility between basalt and carbon fiber reinforced concretes [J].New Building Materials,2008,Vol. 13(6):110-113.
    [23]马士杰,王林,陈江.多孔玄武岩沥青混合料的设计与分析[J].石油沥青,2006,20(1):37-41.
    [24]彭广银.钱振东,傅栋梁.短切玄武岩纤维沥青混合料路用性能研究[J].石油沥青,2009.3(1):8-11.
    [25]肖桂彰,郑传超.道路复合材料[M].北京:人民交通出版社,1999.
    [26]Serfass.J.P.J. Samanos Fiber-Modified Asphalt Concrete Characteristics, Applications andBehavior [J]. Asphalt Paving Technologies,1996,65:193-230.
    [27]Cleven, M.A. Investigation of the Properties of Carbon Fiber Modified Asphalt Mixtures [D]:.Michigan:Michigan Technological University,2000.
    [28]Fitgzerald, R.L. Novel Applications of Carbon Fiber for Hot Mix Asphalt Reinforcement and Carbon-Carbon Per-forms [D].Michigan:Michigan Technological University,2000.
    [29]Cooley L.A.Jr., E.R. Borwn, D.E.Watson. Evaluation of open-gradedr fiction course mixtures containing cellulose fibers [J].Transportation Research Record,2000 (1723):1-25.
    [30]Dipl.-Ing.Ludwig, B.,B.Steve. The Influence To The Mechanical Properties of Biutminous Mastics And, Thus to Open Grain Asphalt Using Synthetic Fibers[C].AAAP 12th Interactional Flexible Pavements Conefrence.2003:1-9.
    [31]Bueno.B.D.,W.R.da Silva.D.C.de Lima,etal. Engineering Properties of fiber reinforced cold asphalt mixes [J]. Joumal of Environmental Engineering,2003,129 (10):952-955.
    [32]Sayyed Mahdi Abtahi, Mohammad Sheikhzadeh, Sayyed Mahdi Hejazi. Fiber-reinforced asphalt-concrete-A review[J]. Construction and Building Materials,2010,24(6):871-877
    [33]Bradley J. Putman, Serji N. Amirkhanian. Utilization of waste fibers in stone matrix asphalt mixtures [J]. Resources, Conservation and Recycling,2004,42(3):265-274.
    [34]Serkan Tapkin. The effect of polypropylene fibers on asphalt performance [J].Building and Environment,2008,43(6):1065-1071.
    [35]S. Tapkin, The effect of polypropylene fibers on asphalt performance [J], Build Environ,2008, 43:1065-1071.
    [36]李炜光,张争奇,张登良等.纤维加强沥青路面的研究[J].西安公路交通大学学报,1998,18(3(B)):235-238.
    [37]张洁,任予峡.美国高新技术软纤维—路面加强筋的推广与发展[J].山西交通科技,200106:35-42.
    [38]史建方.软纤维加筋沥青玄武岩水泥稳定碎石性能研究[D].天津:河北工业大学,2001.
    [39]孙立兵.纤维沥青玄武岩水泥稳定碎石路用性能研究[D].西安:长安大学,2002.
    [40]陈华鑫.纤维沥青玄武岩水泥稳定碎石路面研究[D].西安:长安大学.2002.
    [41]郭乃胜,赵颖华,李刚.聚酯纤维沥青玄武岩水泥稳定碎石的低温抗裂性能分析[J].沈阳建筑工程学院学报(自然科学版).2004(01:)1-3.
    [42]登基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学,2006.
    [43]凌晨,游玉石.玄武岩矿物纤维对沥青混合料性能影响分析[R].玄武岩纤维应用干公路工程技术创新讲座,2009,郑州:48-45.
    [44]陈斌,陈兴芳.玄武岩纤维在沥青路面的应用研究[J].交通建设与管理,2009,(9):82-85.
    [45]George K P. Shrinkage creaking of soil-cement base, theoretical and model studies. Highway Research Record,1971(35):115-133.
    [46]George K P. Mechanism of shrinkage creaking of soil-cement bases. Highway Research Record,1973 (442):1-10.
    [47]K.P.George. Pavement Thickness Design Using Low Strength Base and Subbase Materials.TTR1043,1985:213-216
    [48]张登良,郑南翔.半刚性基层材料收缩抗裂性能研究[J].中国公路学报,1991,4(1):16-22.
    [49]杨锡武,梁富权.养生条件对半刚性路面基层收缩特性的影响研究[J].重庆交通学院学报,1995,4(3):53-56.
    [50]蒋应军.水泥稳定碎石收缩裂缝防治研究[D].西安:长安大学,2001.
    [51]张嘎吱.考虑抗裂性能的水泥稳定类材料配合比设计方法研究[D].西安:长安大学,2001.
    [52]杨红辉.水泥稳定碎石抗裂机理及评价方法[D].西安:长安大学,2002.
    [53]梅传江,牛朋.水泥稳定碎石基层路用性能研究[J].公路交通科技,2002,19(2):23-26.
    [54]蔡飞.水泥综合稳定砂砾基层材料抗裂性能研究[D].西安:长安大学,2003.
    [55]申爱琴,李祝龙,王江帅等.稳定砂土类半刚性材料温缩性能研究[J].公路,2000(3):68-73.
    [56]谭鹰.正交法在二灰碎石基层干缩试验研究中的应用[J].中外公路,2002,22(2):68-70.
    [57]李彬.二灰碎石基层材料温缩性能试验研究[J].中外公路,2002,22(2):70-72.
    [58]姜蓉,尹敬泽,顾安全.半刚性基层材料强度与收缩性能的试验研究[J].公路.2002,(12):107-110.
    [59]朱云升,郭忠印,陈崇驹等.半刚性基层材料干缩和温缩特性试验研究[J].公路,2002,(6):145-148.
    [60]张春红.半刚性基层沥青路面综合抗裂技术研究[D].西安:长安大学,,2008.
    [61]D. J. Frew, M. J. Forrestal, W. Chen. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar[J] Experimental Mechanics,2002,42(1):1589-1601.
    [62]王广健,尚德库,胡琳娜等.玄武岩纤维的表面修饰及生态环境复合过滤材料的制备与性能研究[J].复合材料学报,2004,21(1):35-38.
    [63]霍冀川,雷永林,王海滨等.玄武岩纤维的制备及其复合材料的研究进展[J].材料导报,2006,20(Ⅵ):382-385,
    [64]王广健.玄武岩纤维复合过滤材料的研究[D]天津:河北工业大学,2003
    [65]Dias D.P,Thaumaturgo C.Fraecture toughness of geopolymeric concretes reinforce with basalt fibers [J].Cement and Concrete ComPosites,2005,27:49-54.
    [66]Zielinski, Krzysztof, Olszewski et al.The impact of basalt fiber on selected physical and mechanical properties of cement mort [J].Concrete Precasting Plant and Technology,2005:28-33.
    [67]Jongsung Sim, Cheolwoo Park, Do Young Moon. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites:Part B,2005,36:504-512.
    [68]吴钊贤,袁海庆,卢哲安.玄武岩纤维混凝土力学性能试验研究[J].混凝土,.2009,(9):67-69.
    [69]吴钊贤.玄武岩纤维混凝土基本力学性能与应用研究[D].武汉:武汉理工大学,2009.
    [70]胡显奇,罗益锋,申屠年.玄武岩连续纤维及其复合材料[J].高科技纤维与应用,2002,4(2):1-5.
    [71]邓宗才,新型纤维增强混凝土粱的抗弯冲击特性[J]公路,2004,(12):25-28.
    [72]李为民.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报,2008,36(4):476-481.
    [73]李为民,许金余,沈刘军等.玄武岩纤维混凝土的动态力学性能[J].复合材料学报.2008.25(2):135-142.
    [74]沈刘军.玄武岩纤维增强混凝土静、动力性能试验研究[J].混凝土,2008,(4):66-69.
    [75]江朝华,赵辉,陈达等.玄武岩纤维及聚丙烯纤维对水泥砂浆性能影响的对比分析[J].硅酸盐通报,2007,26(6):1084-1085.
    [76]江朝华,赵晖,张玮等.玄武岩纤维对水泥砂浆性能及水泥石微观结构的影响[J].材料科学与工程学报,2008,26(5):765-769.
    [77]李志强,麻建锁,李艳芳.玄武岩纤维布加固钢筋混凝土梁抗剪承载力试验研究[J].2010,43(3):248-250.
    [78]麻建锁,白润山,蔡焕琴.玄武岩纤维加固修复木结构的研究与应用[J].建筑技术,2007,38(6):426-427.
    [79]吴栋,宗晟,顾冬生.玄武岩纤维与碳纤维片材加固混凝土结构比较研究[J].江苏科技,2007.(2):48-51.
    [80]吴刚.胡显奇,蒋剑彪等.连续玄武岩纤维在墩柱杭震加固中的应用研究[C].全国FRP会议论文集,2005.
    [81]吴刚,顾冬生,蒋剑彪.玄武岩纤维与碳纤维加固混凝土圆形柱抗震性能比较研究[J].工业建筑2007,37(6):19-23.
    [82]吕松涛,田小革,郑健龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用[J].长沙交通学院学报,2005.21(1):37-42
    [83]徐世法,朱照宏.按粘弹性理论预估沥青路面车辙[J].同济大学学报,1990,18(3):289-305.
    [84]Zhao.Y. Permanent deformation characterization of asphalt concrete using a viscoelasto plastic model [D]. North Carolina State University,2002.
    [85]Tashman,L. Micorstructural visco plastic continuum model for asphalt concrete[D].Texas A&M University,2003.
    [86]杨庆生.复合材料细观结构力学与设计[M].中国铁道出版社,2000.
    [87]蔡四维.短纤维复合材料理论与应用[M].人民交通出版社,1994.
    [88]J.P Serafssand J.Samanos. Fiber-modified asphalt concrete characteristics, Applications and Behavior, AAPT,1996(65):95-100.
    [89]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [90]张锦,张乃恭.新型复合材料力学机理及其应用[M].北京:北京航空航天大学,1993.
    [91]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建筑工业出版社,2004.
    [92]邹祖讳.复合材料的结构与性能[M].北京:科学出版社,1999.
    [93]Watstein.D. Distribution of bond stress in concrete Pull-out specimens [J].Journal of American concrete Instiutte.1947,43(9):1041-1052.
    [94]Hughes.B.P.N.I.Fattuhi. Fiber Bond Strength in Cement and Concrete [J].Magazine of concrete Research,1975,27(92):161-166.
    [95]杜善义,王彪.复合材料细观力学[M].北京:科学技术出版社,1998.
    [96]林小松,杨果林.钢纤维高强与超高强玄武岩水泥稳定碎石[M].北京:科学技术出版社,2002.
    [97]冼杏娟.纤维增强复合材料界面的力学行为[J].力学进展.1992,22(4):464-478.
    [98]董振英.纤维玄武岩水泥稳定碎石细观机理及应用研究[D].北京:清华大学.2003.
    [99]易志坚,杨庆国,李祖伟等.基于断裂力学原理的纤维硅阻裂机理分析[J].重庆交通学院学报,2004.23(6):43-45.
    [100]蔡四维,蔡敏,王慧,等.短纤维对基体微裂纹扩展的阻滞效应分析[J].复合材料学报.1995,12(3):101-107.
    [101]JTJ 052-2000,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000.
    [102]JTJ F40-2004.公路沥青路面施工技术规范[S].北京:人民交通出版社,2004.
    [103]陈华鑫,张争奇.胡长顺.纤维沥青混合料马歇尔试验[J].长安大学学报(自然科学版.)2003,23(2):7-10.
    [104]廖卫东,吴少鹏,薛永杰等.聚酯纤维对SMA性能影响的研究[J].公路.2004,(4):124-126.
    [105]吴少鹏,薛永杰.聚合物纤维改性沥青混凝研究[J].武汉理大学学报,2003,25(12):47-49.
    [106]Asi Ibrahim, Shalabi Faisal, Naji Jamil. Use of basalt in asphalt concrete mixes [J]. Construction and Building Materials,2009, (23):498-506.
    [107]Epps A L.A comparison of measured and predicted low temperature cracking conditions. Journal of the Association of Asphalt Paving Teehnologists,1996(65):277-310.
    [108]Bahia H U,Zeng M,Nam K. Consideration of strain at failure and strength in prediction of pavement thermal cracking[J] Journal of the Association of Asphalt Paving Technologists,2000,69(4):497-539.
    [109]蒋应军,陈忠达,彭波等.密实骨架结构水泥稳定碎石路面配合比设计方法及抗裂性能[J].长安大学学报(自然科学版),2002.22(4):9-12
    [110]胡力群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学.2004.
    [111]杨红辉.掺膨胀剂及纤维水泥稳定碎石抗裂性能研究[D].西安:长安大学,2003.
    [112]张鹏.高等级公路半刚性基层材料的抗裂性能研究[D].大连:大连理工大学.2007.
    [113]蒋应军.水泥稳定碎石基层收缩裂缝防治研究[D]西安:长安大学.2001.
    [114]GONZALO M B, ENRIQUE V S, SUSANA H L, et al.Mechanical improvement of concrete by irradiated polypropy-lene fibers [J]. Polymer Engineering and Science,2005,45 (10):1426-1431.
    [115]张宏君.基于路用要求的半刚性基层抗裂评价与改善措施研究[D]西安:长安大学,2009
    [116]张鹏.高等级公路半刚性基层材料的抗裂性能研究[D].大连:大连理工大学,2007.
    [117]孙兆辉,王铁斌,许志鸿等.水泥稳定碎石强度影响因素的试验研究[J].建筑材料学报,2006,9(3):285-290.
    [118]吴玉浩,张家兵.水泥稳定粒料基层结构强度与龄期、温度关系的探讨[J].中南公路工程,2003,28(3):47-50.
    [119]蒋应军,王富玉,刘斌.水泥稳定碎石强度特性的试验研究[J].武汉理工大学学报,2009,31(15):52-57.
    [120]重庆建筑工程学院,南京工学院.玄武岩水泥稳定碎石学[M].北京:中国建筑工业出版社.1981.
    [121]周卫峰,赵可,王德群等.水泥稳定碎石混合料配合比的优化[J].长安大学学报:自然科学版,2006,26(1):24-28.
    [122]LA Y M G. Handbook of Road Technology, Volume 1 Planning and Pavements [M]. New York: Gordon and Breach Science Publishers,1996.
    [123]MINDESS S, YOUNG J F, DARWIN D. Concrete [M].2nd ed. Beijing:Chemical Industry Press, 2005.
    [124]陈晔,张起森.纤维加固土路面基层的研究与应用[M].北京:人民交通出版社,1995.
    [125]马银华,易志坚,杨庆国.柔性纤维对水泥稳定粒料基层的阻裂增韧机理分析[J].重庆交通大学学报(自然科学版),26(5):84-88.
    [126]马银华,赵满喜,傅燕峰.低掺量聚丙烯纤维水泥稳定粒料基层抗冲击性能研究[J].中外公路,28(2):68-171.
    [127]徐至钧.纤维玄武岩水泥稳定碎石技术及应用[M].北京:中国建筑工业出版社,2003.
    [128]李士恩.纤维玄武岩水泥稳定碎石在国际上的发展及其在中国工程上的应用[C].国际纤维玄武岩水泥稳定碎石学术会议论文集,1997
    [129]Romualdi J P,Batson GB. The behavior of reinforced concrete beams with closely p laced reinforcement [J]. ACI Journal,1963,60:775-789.
    [130]吴人洁.复合材料[M].天津.天津大学出版社,2000
    [131]张锦,张乃恭.新型复合材料力学机理及其应用[M].北京:北京航空航天大学出版社,1993.
    [132]梅传江,牛朋.水泥稳定碎石基层路用性能研究[J].公路交通科技,2002,19(3):35-37.
    [133]Bazant Z P, Pfeiffer P A. Determination of fracture energy from size effect and brittleness number [J]. ACI Mater.J.,1987,84:463-480.
    [134]贾艳东.不同粗骨料及强度等级混凝土的断裂性能及其试验方法研究[D].大连:大连理工大学.2004.
    [135]Hu X Z, Wittmann F H. Fracture energy and fracture process zone [J]. Material Structure,1992,25: 319-326.
    [136]杨松森,徐菁,赵铁军.混凝土断裂能测试方法研究[J].试验力学.2009,24(4):327-333.
    [137]RIL EM draft recommendation. Determination of the fracture energy of mortar and concrete by means of Three-Point Bend Test on notched beams [J]. Materials and Structures,1985,18:285-296.
    [138]Hillerborg A. The theoretical basis of a method to determine the fracture energy of concrete [J]. Material and Structure,1996,18(6):291-298.
    [139]Hillerborg A. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research,1976,6:773-782.
    [140]Wittmann F H. Autoclaved aerated concretes [J].Properties, Design and Testing,1992,2:115-119.
    [141]Krenchel, H. Fiber Reinforcement [M]. Akademisk Forlag, Copenhagen,1988.
    [142]G. De Schutter, L.Taerwe. Fracture energy of concrete at early ages[J]. Materials and Structures, 1997,30(3):67-71.
    [143]费飞,孔永健,魏建军.基于FWD预估lumian剩余寿命的探讨[J].黑龙江工程学院学报(自然科学版),2005,(03):34-36.
    [144]武建民.半刚性基层沥青路面使用性能衰变规律研究[D].西安:长安大学,2005.
    [145]陈子金.高等级沥青路面使用寿命预测方法研究[D].上沙:湖南大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700