用户名: 密码: 验证码:
高填方涵洞受力特性及新型格栅减载方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高填方涵洞广泛应用于山区和黄土地区高速公路建设中,高填方涵洞上覆填土荷载较大,且其受力影响因素众多,其受力特性不仅与自身的埋设方式(上埋式或者沟埋式)有关,还与上覆填土高度、地形条件、地质条件、路堤填料的性质、结构物的几何尺寸等因素有关。由于对高填方涵洞土压力及其影响因素认识不清,工程中经常出现涵顶开裂等病害。新型三向土工格栅具有独特的物理力学性能,将其用作加筋材料对高填方涵洞进行加筋减载,可获得良好的经济效益和社会效益。本文在对高填方涵洞土压力及其影响因素分析的基础上,对新型三向格栅加筋减载进行了系统的研究,主要内容如下:
     (1)通过现场试验对涵顶竖向土压力进行了测试,研究了涵顶竖向土压力的变化规律。通过数值模拟对影响涵洞受力特性的若干因素进行了分析,研究了沟谷宽度、边坡角度、地基刚度、路堤填料性质、拱圈弧度、涵洞结构型式和尺寸对涵洞受力状态和位移的影响。结果表明涵顶土压力随填土高度非线性增长;沟谷设涵非对称性,会引起其两侧土压力差异;沟谷对涵洞有效影响范围约为3倍涵洞宽度;涵顶土压力在边坡为15°和75°左右时较小;地基模量越大,涵顶土压力集中现象越严重;与模量相比,填土内摩擦角和黏聚力对涵顶土压力和涵体位移的影响要小得多;基础型式对涵体位移和压力有显著影响,应根据填土高度合理选择;采用“宽矮涵”比“窄高涵”涵顶土压力小;拱圈弧度对涵体沉降和涵顶土压力影响较小。
     (2)考虑涵—土相互作用,分析了涵洞减载机理。采用数值模拟的方法研究了减载后涵顶竖向土压力与位移的分布规律,分析了涵洞采用中松侧实法、柔性填料法、先填后挖法等方法时的减载效果,并分析了地基处理后的刚度和处理宽度对降低涵顶压力的作用。结果表明在路堤一定高度范围内适当采用中松侧实或柔性填料的方法可减弱涵顶的土压力集中;采用先填后挖的施工措施时开挖面宜竖直,开挖的宽度最好与涵洞宽度相当,可有效降低涵顶土压力的集中程度;涵洞地基处理后,地基刚度不宜太高,并且应延伸至基底以外一定的范围,以降低涵顶土压力集中。
     (3)通过现场试验对高填方涵洞采用新型三向格栅加筋减载后的涵顶土压力进行了测试,研究了涵顶土压力的分布规律及变化规律。通过对涵洞位移的监测,研究了减载后涵体位移随填土高度的变化规律。结果表明涵顶加筋减载将涵顶荷载转移至其两侧土体,涵顶压力减小,格栅的“提兜效应”提高了荷载转移效率;涵顶减载孔高度越高,减载效果越好。
     (4)通过理论分析建立了加筋减载涵洞的力学计算模型,考虑格栅下部松散填料的支承作用,推导了格栅上覆填土的土压力及涵顶压力的解析表达式。并对格栅锚固端进行了分析,计算了格栅的锚固长度。通过参数分析,对填土高度、松散填料模量及格栅刚度等影响涵顶减载效果的因素进行了研究。并利用数值模拟分析了减载孔高度、格栅层数、减载孔宽度、减载孔边坡角度和松散填料模量、内摩擦角及黏聚力对涵顶压力的影响。结果表明本文方法能够准确计算减载后的涵顶土压力;松散填料模量对涵顶土压力有较大影响,宜将其控制在一定的范围之内;格栅刚度较大时,才能进一步有效减小涵顶土压力;格栅刚度较大时,多层格栅与单层相比对减载效率提高作用不大;减载孔填料的黏聚力对涵顶压力影响不大,而内摩擦角影响较大。
     本文的研究成果对高填方涵洞的设计和施工,及其采用加筋减载法进行高填方涵洞的设计与施工具有重要的参考价值。
High embankment culverts are widely used in constructions of expressway in mountainous and loessial regions. Large loads are usually exerted in the crown of the high embankment culverts, and the mechanism of the fill-culvert interaction is complex, it has a lot of influencing factors, including not only installation conditions of the structure(embankment installation or trench installtion), but also heights of embankment fill, terrain conditions, geological conditions, properties of filling material, sizes of structure and many others. Because the influencing factors of the earth pressure are not clearly understood, there are frequent occurrences of cracking on the crown of the high embankment culverts. TriAx geogrid has unique physical and mechanical properties, when it is used as reinforcement material for imperfect trench method, it can reduce the earth pressure on the crown of high embankment culvert and obtain good economic and social benefits. In this dissertation, the load reduction process of imperfect trench covered with TriAx geogrid is studied systematicly on the basis of the investigation of the earth pressure and its influencing factors on high embankment culvert, which mainly contains:
     (1) The variation of vertical earth pressures on the crown of the high embankment culvert is studied by field tests. Numerical simulations are also carried out to investigate the influencing factors on the vertical earth pressure and displacement of culvert. The results show that the vertical earth pressure increases nonlinearly with the height of embankment. Asymmetric installation of the culvert causes different earth pressures on both sides. The width of the trench which effectively impacts the culvert is approximately three times of the width of culvert, and the slopes angles of 15°or 75°result in less vertical earth pressures. Larger moduli of the subgrade result in more severe stress concentration. Compared with the moduli, the internal friction angles and cohesions of the filling material have much less influences on the earth pressures and the displacements of the culvert. The types of culvert foundations have significant effects on the displacements and earth pressures, thus the appropriate choice of the foundation type should be made in accordance with the requairements of the earth pressure and the displacment. The earth pressures on wide-and-short culverts are less than those on narrow-and-tall culverts. The settlements and earth pressures are less affected by the curvatures of the arch of the culvert.
     (2) Considering the interaction between culvert-soil, the mechanism of load reduction for high embankment culvert is analyzed. Numerical simulations are carried out to investigate the effect of different load reduction methods by studying the vertical earth pressures and displacements of the culverts. The results show that the compressible materials can be filled within a certain area above the crown of the culvert, or the embankment fill above the culvert can be compacted loosely in the center to alleviate the concentration of the vertical earth pressure on the crown of the culvert. Excavation after filling method can be also used to reduce the vertical earth pressure, the width of the excavation should be eaqual to that of the culvert and the slopes should be vertical in order to achieve a better load reduction effect. In ground improvement, a relatively flexible composite foundation is preferred and the improvement width should extend a certain range wider than the culvert foundation, thus it can alleviate the pressure concentration on the crown of the culvert effectively.
     (3) Field tests are carried out to study the distribution and the variation of earth pressures with the increase of the embankment height. The variation laws of the displacement of the culvert with load reduction treatment are also investigated by field monitoring. The results show that the earth pressure on the crown of the culvert underneath an imperfect trench covered by a geogrid layer is transferred to the lateral soil prisms, so that the purpose of load reduction is achieved, and the load transfer efficiency is increased by the "tensioned membrane effect". The load reduction efficiency is related to the height of the load reduction ditch, a higher ditch results in lower vertical earth pressures.
     (4) The calculation model of the culvert underneath an imperfect trench covered by a geogrid layer is established by theoretical analysis, considering the support of the compressible fill below the geogrid, the analytical expressions of the earth pressures on the upper surface of geogrid layer and the crown of the culvert are derived. The anchorage forces at each end of the geogrid layer are obtained as well. Parametric analyses are performed to investigate the influencing factors of the vertical earth pressure. The results show that the vertical earth pressure on a culvert underneath an imperfect trench covered by a geogrid layer can be accurately calculated by the proposed method. The modulus of the compressible material in the trench has greater impact on the vertical pressure, the modulus is suggested within a appropriate range. The geogrid has significant effect on further reducing the vertical earth pressure, only if the geogrid with sufficient stiffness. Compared with the single layer of geogrid, the increase of efficiency of load reduction with multilayer geogrids is neglectable. The cohesion of the material in the trench has little effect on the vertical earth pressure, while the internal friction angle has a greater impact.
     The achievements of this research can provide valuable references for the design and construction of high embankment culverts.
引文
[1]郑俊杰,陈保国,张世飙等.沟埋式涵洞非线性土压力试验研究与数值模拟.岩土工程学报,2008,30(12):1771-1777
    [2]陈保国.山区高速公路涵一土作用机制及路基处理研究[博士学位论文].武汉:华中科技大学,2008
    [3]马强,郑俊杰,张军.山区涵洞受力影响因素的数值模拟分析.合肥工业大学学报(自然科学版),2009,32(10):1514-1517,21
    [4]杨锡武.高填方涵洞土压力变化规律与影响因素的数值模拟研究.重庆交通学院学报,2005,24(5):42-46,52
    [5]杨锡武,张永兴.山区公路高填方涵洞减载方法及试验研究.土木工程学报,2005,37(7):116-121
    [6]Robert M K. Emerging and future developments of selected geosynthetic applications. Journal of Geotechnical and Geoenvironrnental Engineering, The Thirty-second Terzaghi Lecture,2000,126(4):293-306
    [7]黄晓明,朱湘.公路土工合成材料应用原理.北京:人民交通出版社,2001
    [8]周志刚,郑健龙.公路土工合成材料设计原理及工程应用.北京:人民交通出版社,2001
    [9]车宏亚.涵洞和水管结构设计.北京:水利电力出版社,1958
    [10]顾克明,苏清洪,赵嘉行.公路桥涵设计手册一涵洞.北京:人民交通出版社,1997
    [11]Marston A, Anderson A O. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipes. Bulletin No.31. Ames:Iowa Engineering Experiment Station,1913:44-76
    [12]Spangler M G Underground conduits:An appraisal of modern research. Transportations of ASCE,1948,74(5):316-345
    [13]Spangler M G Stresses in pressure piplines and protective pipe supporting earth loads and live loads. In:Proceedings of the ASTM, New York,1957:1259-1272
    [14]Spangler M G. A theory on loads on negative projecting conduits. Highway Research Board,1950,30:153-161
    [15]Voelmy A. Embedded pipes. Kasten H L. Zurich:Gebs. Leeman &Co,1937
    [16]K.KлeиH.地下管计算.北京:中国建筑工业出版社,1957
    [17]曾国熙.土坝下涵管竖向土压力的计算.浙江大学学报,1960,2(1):79-97
    [18]Pruska M L.刚性涵洞上的土压力计算.北京:水利水电出版社,1951
    [19]顾安全.上埋式管道垂直土压力的研究[硕士学位论文].陕西工业大学,1963
    [20]Hoeg K. Stresses against underground structural cylinders. Journal of Soil Mechanics and Foundation,1968,94(4):833-858
    [21]Dasgupta A, Sengupta B. Large-scale model test on square box culvert backfiled with sand. Journal of Geotechnical Engineering,1991,117(1):156-161
    [22]Bennett R M, Wood S M, Drumm E C, et al. Vertical loads on concrete box culverts under high embankments. Journal of Bridge Engineering,2005,10(6):643-649
    [23]Abhijit D, Bratish Sengupta. Large-scale model test on square box culvert bakfiulle with sand. Journal of Geotechnical Engineering.1991,117(1):156-161
    [24]Penman A D M, Charles J A, Nash J K, et al. Performance of culvert under Winscar dam. Geotechnique,1975,25(4):713-730
    [25]折学森,顾安全.沟谷地形中埋设管道的土压力研究.西安公路学院学报,1989,7(4):33-39
    [26]杨锡武,张永兴.公路高填方涵洞土压力变化规律及计算方法研究.土木工程学报,2005,38(9):119-124
    [27]杨锡武,张永兴.山区公路高填方涵洞的成拱效应及土压力计算理论研究.岩石力学与工程学报,2005,24(21):3887-3893
    [28]程海涛,柳学花.涵一土性状离心模型试验研究.路基工程,2008,(2):42-44
    [29]翁效林,谢永利.高填方碎散体填土成拱效应离心模型.长安大学学报(自然科学版),2008,28(2):31-35
    [30]李永刚,李珠,张善元.矩形沟埋涵洞顶部垂直土压力.工程力学,2008,25(1):155-160
    [31]李永刚,张善元.矩形沟埋涵洞顶部垂直土压力试验和理论研究.岩土力学,2008,29(4):1081-1086
    [32]李永刚,孙建生.土坝下软基涵洞施工力学分析.岩土力学,2001,22(4):436-439
    [33]邓国华,邵生俊.填埋式涵洞上覆土压力的有限元分析.岩石力学与工程学报,2004,23(增1):4356-4360
    [34]Kim K, Chai H Y. Design loading on deeply buried box culverts. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):20-27
    [35]Marston A. The theory of external loads on closed conduits in the light of the latest experirrents. Highway Research Board Proceedings. Highway Research Board, Washington, D.C.,1930,138-170.
    [36]Larsen N G, Hendrickson J G. A practical method for construction rigid conduits under high fills. Highway Research Board Proceedings. Highway Research Board, Washington, D.C.,1962,273-280
    [37]Taylor R K, Spangler M J. Induced-trench method of culvert installation. Highway Research Board Proceedings. Highway Research Board. Washington, D.C.,1973, 15-31
    [38]顾安全.上埋式管道及洞室垂直土压力的研究.岩土工程学报,1981,3(1):3-15
    [39]Spangler M J, Handy R L. Soil engineering (4th edition). New York:Harper&Row Publishers,1982
    [40]Sladen J A, Oswell J M. The induced trench method-a critical review and case history. Canadian Geotechnical Journal,25:541-549
    [41]Stone K T L, Hensley P J, Taylor R N. A centrifuge study of rectangular box culverts, In:Proceedings of the International Conference Centrifugue 1991, Boulder, Colorado: Balkema,1991:107-112
    [42]Okabayashi K, Ohtani W, Akiyama K, et al. Centrifugal model test for reducing the earth pressure on the culvert by using the flexible material. In:Proceedings of the 4th International Offshore and Polar Engineering Conference. Osaka, Japan:International Society of Offshore and Polar Engineerns (ISOPE), Golden,1994:620-624
    [43]Hansen P, Miller L L, Valsangkar A J, et al. Performance of induced trench culverts in New Brunswick. In:Proceedings of the Annual Conference of the Transportation Association of Canada, Saskatchewan, Sask,2007:14-17
    [44]McAffee, Rodney P, Valsangkar A J. Field performance, centrifuge testing and numerical modelling of an induced trench installation. Canadian Geotechnical Journal, 2008,45(1):85-101
    [45]Lee H J, Roh H S. The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Construction and Building Materials,2007,21(5): 1016-1026
    [46]Vaslestad J. Load reduction on buried rigid pipes. In:Proceedings of the International Conference on Soil Mechanics and Foundation Engineering(V2), Deformation of Soil and Displacements of Structures, Norwegian,1991:771-774
    [47]Vaslestad J, Johansen T H, Holm W. Load reduction on rigid culverts beneath high fills: long-term behavior. Transportation Research Record:Journal of the Transportation Research Board,1993:58-68
    [48]王晓谋.关于上埋式管道垂直土压力的减荷措施研究[硕士学位论文].西安:西安公路学院,1986
    [49]王晓谋,顾安全.上埋式管道垂直土压力的减荷措施.岩土工程学报,1990,12(3):83-89
    [50]顾安全,杨福林.高填土涵洞土压力与变形及其减荷措施的试验研究.西安:长安大学,2003
    [51]顾安全,郭婷婷,王兴平.高填土涵洞(管)采用EPS板减荷的试验研究.岩土工程学报,2005,27(5):500-504
    [52]顾安全,吕镇锋,姜峰林等.高填土盖板涵EPS板减荷试验及设计方法.岩土工程学报,2009,31(10):1481-1486
    [53]刘静.高填路堤涵洞土压力理论及减荷技术研究[博士学位论文].西安:长安大学,2004
    [54]王俊奇.聚苯乙烯塑料泡沫减小埋涵土压力的研究[博士学位论文].武汉:武汉大学,2003
    [55]康佐,谢永利,冯忠居等.应用离心模型试验分析涵洞病害机理.岩土工程学报,2006,28(6):784-788
    [56]康佐,谢永利,杨晓华等.减荷拱涵周围土体位移变化的离心模型试验.岩土工程学报,2006,19(6):13-18
    [57]罗继前,陈忠平,杨航宇.高填土路堤下的箱涵设计施工新技术.中南公路工程,2004,29(3):101-104
    [58]张卫兵,刘保健,谢永利.上埋式刚性结构物土压力调整方法.岩石力学与工程学报,2005,24(增2):5756-5761
    [59]Sun L, Hopkins T, beckham T. Long-Term Monitoring of Culvert Load Reduction Using an Imperfect Ditch Backfilled with Geofoam. Transportation Research Record: Journal of the Transportation Research Board,2011:56-64
    [60]杨锡武,张永兴.山区公路高填方涵洞加筋桥减载方法及其设计理论研究.岩石力学与工程学报,2005,24(9):1561-1571
    [61]杨锡武.山区公路高填方涵洞土压力计算方法与结构设计.北京:人民交通出版社,2006
    [62]Dancygier A N, Yankelevsky D Z. A soft layer to control soil arching above a buried structure. Engineering structures,1996,18(5):378-386
    [63]郝宪武,白青霞.填埋式管道土压力的弹粘塑性有限元分析.西北建筑工程学院学报,1994,(3):6-11,34
    [64]白冰.聚苯乙烯泡沫塑料的测试及其在土工中的应用.岩土工程学报,1993,15(2):104-108
    [65]白冰.高填土下刚性结构物竖向土压力减荷方法.岩土力学,1997,18(1):35-39
    [66]Sun L, Hopkins T, beckham T. Stress reduction by ultra-lightweight geofoam for high fill culvert:numerical analysis. In:Hani H Titi. Geotechnical Applications for Transportation Infrastructure Featuring the Marquette Interchange Project in Milwaukee, Wisconsin. Milwaukee, Wisconsin:ASCE,2005:146-154
    [67]Kang J, Parker F, Yoo C. Soil-structure interaction and imperfect trench installations for deeply buried concrete pipes. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(3):277-285
    [68]Alagiyawanua A M N, Sugimoto M, Sato S, et al. Influence of longitudinal and transverse members on geogrid pullout behavior during deformation. Geotextiles and Geomembranes,2001,19(8):483-507
    [69]Bakeer R M, Abdel-Rahman A H, Napolitano P J. Geotextile friction mobilization during field pullout text. Geotextiles end Geomembranes,1998,16(2):73-85
    [70]Lopes M L, Ladeira M. Influence of the confinement, soil density and displacement rate on soil-geogrid interaction. Geotextiles and Geomembranes,1996,14(10): 543-554
    [71]Ingold T S. A laboratory simulation of reinforced clay wall. Geotechnique,1981,31(3): 399-412
    [72]Richardson G N, Bove J A. Testing and monitoring of high strength geosynthetics. Geotextiles and Geomembranes,1987,6(1-3):157-172
    [73]Kokkalisa A, Papacharisis N. A simple laboratory method to estimate the in-soil behaviour of geotextiles. Geotextiles and Geomembranes,1989,8(2):147-157
    [74]Palmeira E M, Milligan G W. Scale and other factors affecting the results of pull-out tests of grids bued in sand. Geotechnique,1989,39(3):511-524
    [75]肖为民,吴炎曦,赵滇生.土工织物摩擦力系数和模量估计.浙江工业大学学报,1992,20(4):91-96
    [76]Farrag K, Acar Y B, Juran I. Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes,1993,12(2):133-159
    [77]徐林荣.筋土界面相互作用参数和加筋垫层处理软基的性状研究[博士学位论文].长沙:中南大学,2001
    [78]Gray D H, Ohashi H. Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, ASCE,1983,109(3):335-353
    [79]Gray D H, Talal A. Behavior of fabric versus fiber reinforced Sand. Journal of Geotechnical Engineering, ASCE,1986,112(8):804-820
    [80]Ingold T S. Reinforced clay subjected to undrained triaxial loading. Journal of Geotechnical Engineering,1983,109(5):738-743
    [81]Chandrasekaran B, Broms B B, Wong K S. Strength of fabric reinforced sand under axisymmetric loading. Geotextiles and Geomembranes,1989,8(4):293-310
    [82]马时冬,王吉力.加筋砂的三轴试验和小型载荷试验.地基处理,1992,3(2):17-20
    [83]俞仲泉,李少青.土工织物加固地基的离心模型试验.岩土工程学报,1989,11(1):67-72
    [84]吴景海,王德群,陈环.土工合成材料加筋砂土三轴试验研究.岩土工程学报,2000,22(2):199-204
    [85]魏红卫,喻泽红,尹华伟.土工合成材料加筋黏性土的三轴试验研究.工程力学,2007,24(5):107-113
    [86]Temel Y, Jonathan T H, Ahmet S. Bearing capacity of rectangular footings on geogrid-reinforced sand. Journal of Geotechnical Engineering,1994,120(12): 2083-2099
    [87]包承纲.土工合成材料界面特性的研究和试验验证.岩石力学与工程学报,2006,25(9):1736-1744
    [88]Zhang M X, Zhou H, Javadi A A, et al. Experimental and theoretical investigation of strength of soil reinforced with multi-layer horizontal-vertical orthogonal elements. Geotextiles and Geomembranes,2008,26(1):1-13
    [89]Guido V A, Chang D K, Michael S A. Comparison of geogrid and geotextile reinforced earth slabs. Canadian Geotechnical Journal,1986,23(4):435-440
    [90]林开球,包承纲.织物加筋软基的实用计算方法及试验验证.长江科学院学报,1992,9(1):47-56
    [91]Hufenus R, Rueegger R, Banjac R, et al. Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and Geomembranes,2006, 24(1):21-37
    [92]胡启军,谢强,卿三惠.加筋碎石垫层中双层土工格栅拉力特性试验研究.岩土力学,2007,28(4):799-802
    [93]朱湘,黄晓明.有限元方法分析影响加筋路堤效果的几个因素.土木工程学报,2002,35(6):86-93
    [94]顾长存,杨庆刚,张铮.土工格栅加筋软土路堤的数值分析.河海大学学报(自然科学版),2005,33(6):677-681
    [95]毛林峰,陈洪江,么卫良.土工格栅加筋路堤对软基位移场的影响.华中科技大学学报(城市科学版),2006,23(增1):61-63
    [96]张志清.土工格栅加筋高填方黄土路堤稳定性分析.公路,2007, (8):115-118
    [97]李永刚,李力.钢筋混凝土涵洞顶部垂直土压力影响因素研究.长江科学院院报,2006,23(6):72-74,79
    [98]许建军,张峻峰.关岭至兴仁公路涵洞布置与选型.中国港湾建设,2002,(1):47-48
    [99]张发祥.拱形涵洞的受力分析和选型.河海大学学报,1995,23(3):54-63
    [100]陈素君.高填土涵洞的基础设计.公路,1998,(4):37-39
    [101]刘保健,谢永利,程海涛等.上埋式公路涵洞地基及基础的设计.长安大学学报(自然科学版),2006,26(3):17-20
    [102]Adel H, Mohanmed A E. Ultimate bearing capacity of triangular shell strip footings on sand. Journal of Geotechnical Engineering,1990,116(12):1851-1863
    [103]Brinkgreve R B J, Vermeer P A. Finite Element Code for Soil and Rock Analysis. Rotllendan:A. A. Balkema,1998
    [104]JTG D60-2004,公路桥涵设计通用规范.北京:人民交通出版社,2004
    [105]TB 10002.1-2005,铁路桥涵设计基本规范.北京:中国铁道出版社,2005
    [106]American Association of State Highway and Transportation Officials (AASHTO). AASHTO LRFD bridge design specifications,2nd Ed., AASHTO, Washington, D.C. 1998
    [107]Chen Y M, Cao W P, Chen R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes, 2008,26(2):164-174
    [108]Abusharar W S, Zheng J J, Chen B G. A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotextiles and Geomembranes,2008, 26(5):39-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700