用户名: 密码: 验证码:
汽车主动悬架智能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车技术的不断进步,悬架系统经历了被动悬架、半主动悬架到主动悬架的变迁,设计越来越复杂,对其性能的要求也越来越高。主动悬架系统由于具有优越的综合性能,虽然暂时还未普及,但随着成本的降低以及控制技术、汽车电子技术和新能源技术的发展,相信不久的将来终会成为主流产品。
     要充分发挥主动悬架硬件的作用,必须有一个好的控制策略软件与其相配合,传统的控制方法(天棚控制、PID控制、滑模控制等)策略成熟,实现简单,对硬件要求低,但在稳定性和鲁棒性以及控制效果等方面仍有很大提高空间。
     随着智能算法理论的不断完善,智能控制方法已成为现代控制领域研究的热点和主流方向。为了进一步完善汽车主动悬架的控制方法,提高悬架系统的综合性能,本文对汽车主动悬架的智能控制策略进行研究,将在以下几个方面具体开展工作。
     (1)对汽车悬架系统的简化与建模进行探讨,建立半车四自由度模型和四分之一车二自由度模型,每种模型给出相应的运动微分方程表达式和状态空间表达式。对于路面激励,区分振动和冲击两种不同工况,分别加以研究,并给出两种工况下路面时域激励的具体表达形式。
     (2)根据所建立的半车四自由度模型,从乘坐舒适性的角度出发,采用模糊控制方法与传统PID控制方法相结合,以使得车身垂直加速度和旋转角加速度最小为控制目标,提出一种新的智能控制策略。用车身的垂直加速度作为PID控制输入变量,车身旋转角速度和角加速度作为模糊控制输入变量,同时以车身和悬架之间允许的相对位移为约束,期望在提高乘坐舒适性的同时,不降低车辆的操控性。
     (3)同样以半车四自由度模型为研究对象,在考虑悬架弹簧非线性特性的基础上,建立其运动微分方程和状态空间表达式。针对其控制,提出一种模糊PID策略,以车身垂直加速度和速度作为模糊控制器的输入变量,模糊控制器的输出变量是PID控制器的比例、积分和微分增益,最终由PID控制器输出主动控制力。通过仿真方法验证该智能控制算法对降低车身垂直加速度和车身旋转角加速度的控制效果,同时观察车辆操控性能的变化,探讨悬架弹簧的非线性对主动悬架的性能以及控制算法的影响。
     (4)以四分之一车二自由度模型为研究对象,针对传统PID控制的不足,提出采用分数阶PID控制器对主动悬架进行控制。由于分数阶PID控制比传统PID控制多了微分阶次和积分阶次这两个自由度,因此使得被控系统动态性能的调节更加灵活,但同时也增加了参数整定的难度。参数整定是该控制方法的关键点之一,采用智能算法进行参数整定具有一定的优势,本文将采用遗传优化算法。整个分数阶PID控制器分为两个部分:分数阶PI控制器以车身垂直加速度作为输入,分数阶PD控制器以悬架动挠度作为输入,总的控制力为两控制器输出之和。由于目前计算机软件和硬件控制器都无法直接处理包含分数阶微积分的传递函数,因此在进行仿真计算和实验时,将采用Crone近似法将分数阶传函用一个动态特性足够接近而更易处理的整数阶传函来代替。
     (5)为验证智能控制策略在主动悬架系统中应用的可靠性及其实际应用效果,将建立主动悬架快速原型实验系统并给出实验方案:基于四分之一车模型,采用半实物仿真搭建主动悬架硬件在回路实验平台,其中控制器使用实物,被控对象用dSPACE模拟。为验证该实验系统及方案是否可行,并验证所提出的智能控制策略的实施效果,将对分数阶PID控制主动悬架和传统PID控制悬架以及被动悬架进行对比实验,对实验结果进行分析。
As the automotive technology advances, the suspension system experienced passive suspension, semi-active suspension to active suspension changes. The design of the suspension system is more and more complex, and the performance is required higher and higher. Although active suspension has not been popular for now, it will become mainstream in the future along with the cost reduction and the development of control technology, automobile electronic technology and new energy technology, because of its superior comprehensive performance.
     A good control strategy has critical influence to full optimal properties of active suspension. The traditional control methods (skyhook control, PID control, sliding mode control, etc.) have many advantages of maturity, easy realization, low hardware requirements, etc., but they remain to be further improved in the stability, robustness and control effect.
     Intelligent control method has become an intensive research topic and a mainstream of modern control, with the improvement of the intelligent algorithm theory. In order to refine the intelligent control methods for active suspension and increase comprehensive properties of suspension system, this thesis conducts a research on intelligent control strategy for automotive active-suspension and mainly includes following several aspects.
     (1) Firstly, the simplification and modeling of automotive suspension system are discussed. Mathematics models of the half car 4-degree-of-freedom and the quarter car 2-degree-of-freedom are established, respectively. The differential equations of motion and state-space expressions of each model are given. Road excitation is divided into two different conditions:vibration and impact, which be studied respectively. The specific expressions of time domain road input in different conditions are present.
     (2) An active suspension model based on PID-FUZZY control is built. The half car model has four degrees of freedom, subject to irregular excitation from a road surface. The control is the sum of PID and fuzzy-logic control. PID control uses the vertical acceleration of vehicle as the input source, fuzzy-logic control uses the rotary acceleration and velocity as the input source. The simulation results show that the active suspension is effective in vibration isolation of vehicle body.
     (3) An active suspension system for vehicles using fuzzy-pid control is proposed. The half-car model treated here is described by a nonlinear system with four degrees of freedom, subject to excitation from a road surface. The active control is fuzzy-pid control, and the control is determined from the view-point of ride comfort, minimizing the vertical and rotary acceleration of vehicle body. In the derivation of fuzzy control rules, vertical velocity and acceleration of the vehicle body are denoted as the input variables. The simulation results indicate that the proposed active suspension performs effectively when compared with other forms of control.
     (4) An active suspension for the quarter car 2-degree-of-freedom model using a fractional PIλDμcontroller is present. The active control is expressed as the summation of PIλand PDμthat choose vertical acceleration of the body and suspension deflection as input variable, respectively. The parameters of the controller are optimized using the genetic algorithm (GA). The simulation results indicate that the fractional PIλDμcontroller for suspension system is effective in the vibration isolation of the vehicle body and has better performance than classical PID controller.
     (5) In order to verify the control effect of the control strategy proposed in this paper, the hardware in the loop simulation test platform based on the dSPACE real time system is built. The road input and states of the suspension system will be simulated in high precision by using the HIL test platform, which has advantages of simple structure, short time for ready and low test cost. The effects of the intelligent control strategy and fractional PIλDμcontrol algorithm are verified by the hardware in the loop test platform, the performances of suspension system are improved evidently. The HIL test also provided important reference for the further research of active suspension control system.
引文
[1]S Yildirim. Vibration control of suspension systems using a proposed neural network. Journal of Sound and Vibration,2004,277:1059-1069
    [2]Daniel Fischer, Rolf Isermann. Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice,2004,12:1353-1367
    [3]胡宁,范钦满.汽车文化[M].北京:北京理工大学出版社,2007
    [4]P Causemann. Kraftfahrzeugsto damper[M]. Germany:MI-Verlag,1999
    [5]S B Choi, H K Lee, E G Chang. Field test results of a semi-active ER suspension system with skyhook controller. Mechatronics,2001,11:345-353
    [6]Karnopp D C, M J Crosby, R A Harwood. Vibration Control Using SemiActive Force Generators. ASME Journal of Engineering for Industry,1974,96(2):619-626
    [7]Li H, Roger M, Goodall. Linear and non-linear skyhook damping control laws for active railway suspensions. Control Engineering Practice,1999,7(7):843-850
    [8]Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system. Mechatronics,2002(12):963-973
    [9]Simon D E, Ahmadian M. An alternative semi-active control method for sport utility vehicles. Proceedings of the Institution of Mechanical Engineers--Part D--Journal of Automobile Engineering,2002,216(2):125-139
    [10]Hong S R, Choi S B, Choi Y T, et al. Non-dimensional analysis for effective design of semi-active electrorheological damping control systems. Proceedings of the Institution of Mechanical Engineers--Part D--Journal of Automobile Engineering, 2003,17(12):1095-1106
    [11]Ieluzzi M, Turco P, Montiglio M. Development of a heavy truck semi-active suspension control. Control Engineering Practice,2006,14(3):1-10
    [12]严天一,刘大维,师忠秀等.基于地棚控制的半主动悬架车辆道路友好性仿真[J].农业机械学报,2007,38(1):12-16
    [13]Fernando D, Goncalves, Mehdi Ahmadian. A Hybrid Control policy for Semi-active Vehicle Suspensions. Shock and Vibration,2003,10(1):59-69
    [14]刑继祥,张春蕊,徐洪泽.最优控制应用基础[M].北京:科学出版社,2003
    [15]刘少军,李艳.基于1/2车辆模型的主动悬架预见控制方法研究[J].信息与控制,2000,29(2):6-13
    [16]刘少军,郭淑娟.高速ON/OFF电磁阀在汽车主动控制悬架系统中的应用[J].中南工业大学学报,1996,27(3):331-334
    [17]Masayoshi T, Fung D H. Design of digital feedforward/preview controllers for processes with predetermined feedback controllers. Trans of the ASME, Journal of Dynamic Systems, Measurement and Control,1980,102:218-225
    [18]Hac A, Youn I. Optimal semi-active suspension with preview based on a quarter car model. Trans of the ASME, Journal of Vibration Acoust,1992,114:84-92
    [19]Kim C, Kim H. Effect of the Suspension Structure on Equivalent Suspension Parameters. Proceedings of the Institution of Mechanical Engineers--Part D-Journal of Automobile Engineering,1999,213(5):457-470
    [20]Marzbanrad J, Ahmadi G, Zohoor H. Stochastic optimal preview control of a vehicle suspension[J]. Journal of Sound and Vibration,2004,275(3-5):973-990
    [21]张宝琳.汽车主动悬架系统的最优跟踪控制[J].系统仿真学报,2009,21(2):551-553
    [22]韩曾晋.自适应控制[M].北京:清华大学出版社,1995
    [23]Junichi E. Development of the semi-active suspension system based on the sky-hook damper theory[J]. SAE paper 940863,1994:1110-1119
    [24]Sohn H C, Hong K T, Hong K S, et al. An Adaptive LQG Control for Semi-active Suspension Systems[J]. International Journal of Vehicle Design,2004,34(4): 309-325
    [25]孙建民,柳贡民,王芝秋.汽车主动悬架系统LMS自适应控制技术研究[J].哈尔滨工程大学学报,2003,24(5):530-533
    [26]丁科,侯朝桢.车辆主动悬架的自适应控制研究[J].北京理工大学学报,2001,21(6):706-709
    [27]喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制[J].汽车工程,1998,20(4):193-196
    [28]郑玲,邓兆祥,李以农.汽车半主动悬架的模型参考自适应控制[J].中国公路学报,2005,18(2):99-102
    [29]管继富,顾亮,侯朝桢.履带式车辆半主动悬挂的自适应控制[J].兵工学,2004,25(4):389-393
    [30]姚嘉伶,蔡伟义,陈宁.汽车半主动悬架系统发展状况[J].汽车工程,2006,28(3):276-280
    [31]喻凡,郭孔辉.自适应悬架对车辆性能改进的潜力[J].中国机械工程,1998,20(6):193-196
    [32]陈龙,袁传义,江浩斌等.汽车主动悬架与电动助力转向系统的模糊自适应集成控制[J].汽车工程,2007,29(1):8-12
    [33]方敏,王峻,陈无畏.汽车主动悬架的自适应LQG控制[J].汽车工程,1997,19(4):200-205
    [34]孙建民,杨清梅.汽车主动悬架LMS自适应模糊控制[J].农业机械学报,2004,35(9):20-24
    [35]杨波涛,王庆丰,夏什凯.液压半主动悬架的自适应神经网络控制.中国公路学报,2003,16(1):104-107
    [36]陈无畏,王志君,范迪彬.汽车半主动悬架的神经网络自适应控制,汽车工程,1998,20(1):31-36
    [37]陈无畏,王其东,王志君等.汽车半主动悬架的非线性神经网络自适应控制研究.机械工程学报2000,36(1):75-78
    [38]王辉,朱思洪.半主动空气悬架神经网络的自适应控制.农业机械学报,2006,16(1):28-31
    [39]Yoshimura T. Active Suspension of Vehicle Systems using Fuzzy Logic[J]. International Journal of Systems Science,1996,27(2):215-219
    [40]Yoshimura T, Nakaminami K, Kurimoto M, et al. Active suspension of passenger cars using linear and fuzzy-logic controls[J]. Control Engineering practice,1999, 7(1):41-47
    [41]孙建民,杨清梅.规则自调整模糊控制及其在主动悬架系统中的应用[J].公路交通科技,2004,21(4):97-100
    [42]贝绍轶,赵景波,张兰春等.车辆半主动悬架系统模糊神经网络控制研究[J].系统仿真学报,2010,22(12):2952-3007
    [43]陈翔,胡玉霞,白月飞.一种用于1/2汽车半主动悬架的模糊PID控制器[J].机械研究与应用,2007,20(3):85-88
    [44]陈燕虹,刘宏伟,雷海蓉.半主动空气悬架的参数自调整模糊D控制仿真[J].吉林大学学报(工学版),2003,33(3):5-8
    [45]袁传义,贝绍轶,刘成晔.汽车主动悬架模糊自适应控制研究[J].噪声与振动控制,2010,22(5):98-101
    [46]陈龙,杨谋存,薛念文等.基于T-S模糊模型的半主动悬架控制研究[J].江苏大学学报(自然科学版),2004,25(5):385-388
    [47]Rao M V C, Prahlad V. A tunable fuzzy logic controller for vehicle-active suspension systems[J]. Fuzzy Sets and Systems,1997,85(1):11-21
    [48]屈文忠.常新龙自适应模糊控制方法在主动悬挂系统中的应用研究[J].机械科学与技术,2001,20(3):390-394
    [49]乐巍,张孝祖,陈士安等.汽车四自由度半主动悬架阻尼模糊控制的方法[J].江苏大学学报(自然科学版),2003,24(1):55-59
    [50]宋晓琳,方其让,查振邦等.采用模糊理论的七自由度汽车主动悬架控制系统[J].湖南大学学报,2003,30(6):56-59
    [51]张孝祖,乐巍,陈龙.阻尼模糊控制在车辆半主动悬架中的应用[J].农业机械学报,2004,35(2):5-8
    [52]宋晓琳,赵丕云,于德介.基于混沌免疫进化算法的汽车主动悬架控制策略研究[J].湖南大学学报(自然科学版),2008,35(5):31-35
    [53]Moran A, Nagai. Optimal Preview Control of rear Suspension Using Nonlinear Neural Networks[J]. Vehicle System dynamics,1993,22(4):321-334
    [54]Zapateiro M, Luo N, Karimi H R, et al. Vibration Control of a Class of Semiactive Suspension Systems Using Neural Network and Backstepping Techniques[J]. Mechanical Systems and Signal Processing,2009,23:1946-1953
    [55]Guo D L, Hu H Y, Yi J Q, et al. Neural Network Control for a Semi-active Vehicle Suspension with a Magnetorheological Damper[J]. Journal Vibration and Control, 2004,10:461-471
    [56]Miao Y, Xiao-min L, Changrong L, et al. Adaptive fuzzy neural network control for magneto-rheological suspension[J]. International Journal of Computer Science and Network Security,2006,6:66-71
    [57]王辉,朱思洪.半主动空气悬架神经网络的自适应控制[J].农业机械学报,2006,37(1):28-31
    [58]王其东,陈无畏,张炳力.基于多体模型的汽车半主动悬架控制方法研究[J].机械工程学报,2004,40(1):104-108
    [59]付振,楼少敏,许沧粟.基于径向基函数神经网络的半主动悬架滑模控制[J].汽车工程,2009,31(9):854-859
    [60]杨启耀,周孔亢,李敬东等.基于神经网络的空气悬架系统匹配优化[J].农业机械学报,2009,40(4):18-23
    [61]李静,李跃伟,张家财等.基于神经网络的车辆稳定性悬架阻尼控制仿真[J].系统仿真学报,2007,19(16):3813-3817
    [62]郑泉.基于遗传算法-神经网络的半主动悬架控制仿真[J].合肥工业大学学报(自然科学版),2002,25(2):230-235
    [63]唐传茵,李华,周炜等.基于遗传算法和神经网络的车辆主动悬架控制技术[J].农业机械学报,2009,40(2):6-11
    [64]孙夏娜,余群明,周兵,王国春.主动悬架的单神经元模糊PID控制策略与仿真[J].系统仿真学报,2009,21(8):2165-2168
    [65]何天明,梁许丽,邹伯宏.空气悬架的神经网络模糊控制及仿真分析[J].武汉大学学报(信息与管理工程版),2005,27(4):123-127
    [66]楼少敏,付振,许沧粟.基于滑模理论的半主动悬架控制[J].汽车工程,2010,32(5):434-439
    [67]赵成,胡增荣,陈大跃.半主动悬架的滑模变结构控制[J].中国公路学报,2007,20(3):109-114
    [68]韩卫沙,张京军.基于滑模控制的半主动悬架系统仿真分析[J].西华大学学报 (自然科学版),2011,30(2):43-47
    [69]张国胜,方宗德,李爱民等.基于遗传算法的主动悬架最优控制方法研究[J].中国机械工程,2007,18(12):1491-1495
    [70]赵亮,钟志华,文桂林等.基于遗传算法的主动悬架多目标H2/H∞鲁棒控制[J].中国机械工程,2008,19(18):2264-2267
    [71]董小闵,余淼,廖昌荣.基于混合田口遗传算法的磁流变半主动悬架模糊控制[J].振动与冲击,2010,29(6):149-156
    [72]谢俊,刘军,郭晨海等.汽车半主动悬架的多目标遗传优化[J].农业机械学报,2003,34(5):28-31
    [73]陈无畏,王启瑞,朱婉玲.基于遗传算法和H_∞控制的悬架系统集成设计[J].振动工程学报,2003,16(2):143-148
    [74]宋晓琳,殷智宏,郭孔辉.基于免疫算法的汽车主动悬架控制研究[J].汽车工程,2006,28(5):465-468
    [75]宋晓琳,于德介,殷智宏.基于矢量矩的汽车主动悬架免疫控制策略研究[J].湖南大学学报,2006,33(4):46-50
    [76][英]Dave crolla,喻凡.汽车动力学及其控制[M].北京:人民交通出版社,2004
    [77]余志生.汽车理论(第三版)[M].北京:清华大学出版社,2002
    [78]ISO 2631, Guide for the evaluation of human exposure to whole-body vibrations. International Standards Organization,1985
    [79]GB7031-86,车辆振动输入-路面不平度的表示方法[S].长春汽车研究所,赵济海起草
    [80]GB/T4970-1996,汽车平顺性随机输入行驶试验方法[S].长春汽车研究所,赵济海起草
    [81]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998,11(3):96-102
    [82]赵珩,卢士富.路面对四轮汽车输入的时域模型[J].汽车工程,1999,21(2):112-117
    [83]Yo shimura A. Semi- active suspensi on of passenger cars using fussy reasoning and the field testing[J]. Int. J. of Vehicle Designs,1998,19(2):150-166
    [84]刘成,王仲范.两自由度非线性汽车模型平顺性评价[J].武汉汽车工业大学学报,1996,18(2):1-5
    [85]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,35(2):9-12
    [86]Astrom K J, Hagglund T. PID Controllers:Theroy, Design and Tuning. Instrument Society of America,1995
    [87]汪洋.工业工程控制器的智能化参数整定研究:[博士学位论文].浙江大学,1998
    [88]刘金坤.智能控制[M].北京:电子工业出版社,2005
    [89]何平,王鸿绪.模糊控制器的设计及应用[M].北京:科学出版社,1997
    [90]李友善,李军.模糊控制理论在过程控制中的应用[M].北京:国防工业出版社,1992
    [91]Ro P I, Kim C, Kim H. Active suspension using fuzzy logic control. In Proceedings of American Control Conference,1993:2252-2253
    [92]Huang S J, Lin W C. Adaptive fuzzy controller with sliding surface for vehicle suspension control, IEEE Trans. Fuzzy Syst.,2003,11(4):550-559
    [93]Ji Jie, Zheng Ling, Li Yi-nong. A comparative study on the control strategies in vehicle active suspension, Proc. of SPIE,2005,6042(60421Ⅰ):1-7
    [94]赵和平,黄宏成,习纲等.非线性弹簧汽车悬架动态特性研究[J].机械强度,2001,23(2):165-167
    [95]黄涛,樊建平,何建平等.非线性弹簧汽车悬架系统的非线性振动机理研究和运动稳定性分析[J].中国机械工程,2007,18(15):1882-1885
    [96]I Podlubny. Fractional Differential Equations. Academic Press. San Diego, ISBN0125588402.1999
    [97]Hotzel, Richard Filess Michel. On linear systems with a fractional derivation: introductory theory and examples [J]. Mathematics and Computers in Simulation, 1998(3-4):385-395
    [98]于显利.车辆主动悬架集成控制策略研究:[博士学位论文].长春:吉林大学, 2010
    [99]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2004
    [100]薛定宇.控制系统计算机辅助设计—MATLAB语言及应用(第2版)[M].北京:清华大学出版社,2006
    [101]杨涤等著.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2002
    [102]Meah Kala, Hietpas Stevenl, Ula S. Rapid control prototyping of a permanent magnet DC motor drive system using dSPACE and mathworks simulink[C]. Conf Proc IEEE Appl Power Electron Conf Expo APEC,2007
    [103]Subudhi B, Kumar Anishl, Jena D. dSPACE implementation of fuzzy logic based vector control of induction motor[J]. IEEE Region 10 Annual International Conference, Proceedings/TENCON,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700