用户名: 密码: 验证码:
重型商用车转向系统建模及整车动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车转向系统是影响汽车动态性能的重要系统,动力转向系统的匹配分析与设计研究是汽车研发中的一项重要技术课题。本文将对重型商用车液压助力转向系统建模与仿真分析、基于CFD的转向系统动态特性、考虑侧偏角的双前桥转向系统优化设计、液压助力转向系统与整车动力学模型耦合特性等四个方面进行研究。主要研究内容如下:
     1)对液压助力转向系统进行了深入研究,建立了液压助力系统模型,在液压助力系统试验台架上进行了试验测试,并与仿真结果进行了对比,验证了模型的准确性。对耦合了液压助力系统的整个转向机构的系统特性进行了较为深入的研究,分析了液压助力系统参数如转阀切口、扭杆刚度、设计间隙等对转向系统响应的影响。
     2)采用三维CFD方法和液-固耦合方法对转阀的静、动态助力特性进行了研究。采用三维稳态CFD分析方法研究了转阀的压力、速度、汽蚀特性,在此基础上提取了转阀的助力特性曲线,并详细分析了流量、转角等参数对转阀内外特性的影响。通过建立转阀全三维液固耦合分析模型,求解了转阀实际工作时的液固耦合动态响应。分析结果表明:液-固耦合方法能够更好的反应真实的转阀动态特性。
     3)考虑到侧偏角的存在,对转向阿克曼条件进行了修正,提出了传统阿克曼条件的修正方法,研究了双前桥转向系统的杆系设计与优化问题,提出了双前桥转向系统的杆系关键铰接点位置的设计与优化方法;针对双前桥转向系统,建立了详细的多体动力学模型,模型中考虑了板簧的导向作用对转向系统的影响,利用该模型详细研究了双桥转向系统中各杆件的受力,对比了第二桥助力油缸的不同助力特性对杆系受力的影响;建立了十分详细的包含双前桥转向系统的整车多体动力学模型,针对双前桥转向系统进行了原地转向仿真分析,得到了各杆系合理的受力分配;对双前桥转向系统进行了试验研究,同时也对以上仿真分析的结论进行了必要的试验验证。
     4)对液压助力转向系统和整车动力学耦合问题进行了研究,重点研究了转向系统参数,包括转向系统的摩擦、阻尼、转动惯量、扭杆刚度以及液压系统参数对商用车动力学的影响。使用了统计学中的方差分析方法,进行了正交试验,分别对中间位置操纵稳定性,稳态回转和转向回跳中的指标进行了灵敏度分析,定量地确定了这些参数对整车性能的影响。
The steering system can affect the dynamic performance of the commercial vehicle. The design and optimization of the steering system is a key technology for the vehicle research and design. This dissertation presents the research on the modeling and simulation of heavy-duty truck steering system and vehicle dynamics analysis, such as the modeling and simulation of the hydraulic power steering system, the three-dimensional CFD (Computational Fluid Dynamics) and FSI (Fluid-Structure Interface) methods to simulation the static and dynamic characteristics of the rotary valve of a hydraulic power steering system, the optimization of the double-axle steering system and the simulation of the heavy truck. The main contents are listed as follows.
     1) The dissertation presents the modeling and simulation of the hydraulic power steering system. The experiments were carried out to verify the model. The simulation results fit the experiment data very well, and illustrated the correctness of the model. Some design parameter such as the width of the groove, the stiffness of the torsion bar and the gap, etc. are analysed to study the performance of the steering system.
     2) The three-dimensional CFD (Computational Fluid Dynamics) and FSI (Fluid-Structure Interface) methods are introduced to simulation the static and dynamic characteristics of the rotary valve of a hydraulic power steering system in this dissertation. The power steering curve is derived based on a steady CFD simulation which analyzes the pressure, velocity and cavitation features of the true rotary valve. A full 3D FSI model is constructed to analyze the dynamic response considering the transient fluid and solid interaction. The simulation results indicate that the FSI model will obtain a more accuracy dynamic characteristics of the rotary valve which is assembled in a hydraulic power steering system.
     3) With design and optimization of the double-axle steering mechanism, a modified steering Ackermann theory considering the wheel slip angle effect is presented to optimize the key point position of steering system. For the double-axle steering mechanism, a detailed multibody model which included the leafspring interfering effect to the steering system is presented. With the detailed multibody model of the steering system the loads in the links are studied, and loads in the links are comparied with different assisted oil cylinder performance. A detailed full vehicle multibody model which including the double-axle steering mechanism is presented, the steering returnability in low-speed cornering is simulated and the uniform loads are acquired on the links. The experiment with double-axle steering mechanism is persented to validate the simulation results.
     4) The dissertation presents the vehicle dynmics coupling with hydraulic power steering system. The influence of some key parameters such as friction force, damping, inertia, and hydraulic parameters, etc. were studied the analysis the relationship to the vehicle dynamic performance. Analysis of variance and design of experiment are adapted to study the analysis of sensitivity. The on-center, steady state and steering kickback maneuver are carried out the study the vehicle dynamics.
引文
[1]Chicurel E. A 180° steering interval mechanism. Mechanism and Machine Theory, 1999,34:421-436
    [2]Dooner D. Function generation utilizing an eight-link mechanism and optimized non-circular gear elements with application to automotove steering. Proceedings of the Institution of Mechanical Engineers, Part C:Mechanical Engineering Science, 2001,215:847-857
    [3]Fahey S., Huston D. A novel automotive steering linkage. Journal of Mechanical Design,1997,119(4):481-484
    [4]Pramanik S. Kinematic synthesis of a six-member mechanism for automotive steering. ASME Journal of Mechanical Design,2002,124:642-645
    [5]Simionescu P., Smith M. Initial estimates in the design of central-lever steering linkages. Journal of Mechanical Design,2002,124:646-651
    [6]Habibi H., Shirazi K., Shishesaz M. Roll steer minimization of mcPherson-strut suspension system using genetic algorithm method. Mechanism and Machine Theory, 2008,43:57-67
    [7]Simionescu P., Smith M., Tempea I. Synthesis and analysis of the two loop translational input steering mechanism. Mechanism and Machine Theory,2000,35: 927-943
    [8]Hanzaki A., Rao P., Saha S. Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages. Mechanism and Machine Theory,2009,44: 42-56
    [9]Simionescu P., Tempea I., Loch N. Kinematic analysis of a 2DOF steering control linkage used in rigid-axle vehicles. Journal of Automotive Engineering,2001,215: 803-812
    [10]Simionescu P., Talpasanu I. Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractor. Mechanism and Machine Theory,2007,42: 526-540
    [11]Mantaras D., Luque P., Vera C. Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms. Mechanism and Machine Theory,2004,39:603-619
    [12]Simionescu P., Beale D., Talpasanu I. Dynamic effect of the bump steer in a wheeled tractor. Mechanism and Machine Theory,2007(42):1352-1361
    [13]Jayakumar P., Alanoly J., Johnson R. Three-Link Leaf-Spring Model for Road Loads. SAE 2005-01-0625
    [14]Sugiyama H., Shabana A., Omar M., Loh W. Development of nonlinear elastic leaf spring model for multibody vehicle systems, Computer Methods Applied Mechanical Engineering.2006,195:6925-6941
    [15]Hoyle J. Modelling the static stiffness and dynamic frequency response characteristics of a leaf spring truck suspension. Journal of Automobile Engineering, 2004,218:259-278.
    [16]Hoyle J. Bump steer effects in a 10 ton truck with a leaf-spring suspension. Journal of Automobile Engineering,2007,221:1051-1069
    [17]Watanabe K., Yamakawa J., Tanaka M., Sasaki T. Turning characteristics of multi-axle vehicles. Journal of Terramechanics,2007,44:81-87
    [18]Hou Y., Hu Y., Hu D., Li C. Synthesis of multi-axle steering system of heavy duty vehicle based on probability of steering angle. SAE 2000-01-3434
    [19]Kim H., Kokkolaras M., Louca L., Delagrammatikas G, Michelena N., Filipi Z., Papalambros P., Assanis D. Target Cascading in Vehicle Redesign: a Class VI Truck Study. International Journal of Vehicle Design,2002,29(3):199-225
    [20]Sun Y, He P., Zhang Y, Chen L. Modeling and Co-simulation of Hydraulic Power Steering System.2011 Third International Conference on Measuring Technology and Mechatronics Automation,2011, Shanghai,595-600
    [21]Sun Y, Chen W., Zhang Y, Chen L. Multi-domain Modeling and Simulation of Hydraulic Power Steering System Based on Modelica. SAE 2010-01-0271
    [22]Mills V., Wagner, J. Behavioural modelling and analysis of hybrid vehicle steering systems. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2003,217(5),349-361
    [23]Ammona D., Bornera M., Rauh J. Simulation of the perceptible feed-forward and feed-back properties of hydraulic power-steering systems on the vehicle's handling behavior using simple physical models. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2006,44,158-170
    [24]http://cn.itisim.com/fileadmin/downloads/Applications/englisch/App_Automotive_Po werSteering.pdf
    [25]Tom W. Hydraulic Power Steering System Design and Optimization Simulation. SAE 2001-01-0479
    [26]Robert W. Self-Excited Vibration In Hydraulic Steering Racks. SAE 2003-01-0580
    [27]Wang M., Zhang N. Sensitivity of Key Parameters to Dynamics of Hydraulic Power Steering System. SAE 2005-01-2389
    [28]Wonho K., Chang-Seob S., Ji-Yeol K. Modeling of a Hydraulic Power Steering System and Its Application to Steering Damper Development. SAE 2005-01-1263
    [29]Ammom D., Borner M., Rauh J. Simulation of the Perceptible Feed-forward and Feed-back Properties of Hydraulic Power-steering System on the Vehicle's Handling Behaviour Using Simple Physical Models. Vehicle System Dynamics,2006,44: 158-170
    [30]Lee G., Kim T., Jeon S., Kim J. Numerical analysis of pressure drop and cavitation effects in vehicle steering system. SAE 2006-01-3560
    [31]Chandrasekhar R. Turbulent and compressible flow effects in a hydraulic power steering pump. SAE 2006-01-1184.
    [32]Liu Y, Ji X. Simulation of cavitation in rotary valve of hydraulic power steering gear. Sci China Ser E-Tech Sci,2009,52(11):3142-3148.
    [33]Ljubijankic M, Nytsch-Geusen C, Radler J., Loffler M. Numerical coupling of modelica and CFD for building energy supply systems.8th international Modelica conference, Dresden,2011.
    [34]Viel A. Strong Coupling of modelica system-Level models with detailed CFD Models for transient simulation of hydraulic components in their surrounding environment. 8th international Modelica conference, Dresden,2011.
    [35]Qatu M., Dougherty M., Smid G. Effects of tuner parameters on hydraulic noise and vibration. SAE 1999-01-1776
    [36]Boulahbal D., Pankau J., Gauterin F. Sensitivity of steering wheel nibble to suspension parameters. SAE 2005-01-2316
    [37]Kim K., Park J., Lee S. Tire Mass Imbalance, Rolling Phase Difference, Non-Uniformity Induced Force Difference and Inflation Pressure Change Effects on Steering Wheel Vibration. SAE 2005-01-2317
    [38]施国标,申荣卫,林逸.电动助力转向系统的建模与仿真技术.吉林大学学报(工学版),2007,37(1):31-36.
    [39]靳立强,宋传学,彭彦宏.基于回正性与轻便型的前轮定位参数优化设计.农业机械学报,2006,37(11):20-23.
    [40]黄李琴,季学武,陈奎元.汽车电动助力转向控制系统的初步研究.汽车技术,2003,6:3-6.
    [41]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究.[博士学位论文].长春:吉林大学汽车工程学院,2008:44-46
    [42]郭孔辉,吴海东,卢荡,李宁.轮胎原地转向离散仿真模型.汽车技术,2006,11:5-8
    [43]宗长富,麦莉,王德平.基于驾驶模拟器的驾驶员所偏好的转向盘力矩特性研究.中国机械工程,2007,18(8):1001-1004
    [44]Amman S., Meier R., Trost K., Gu P. Equal annoyance contours for steering wheel hand-arm vibration. SAE 2005-01-2473
    [45]Yu J. An analysis of fluid-mechanically-coupled non-linear roataional vibration sensitivity of automotive hydraulic power steering systems. IMECE 2004-60617
    [46]Schmitt P. Prediction of static steering torque during brakes-applied parking. SAE 2003-01-3430
    [47]Cho Y., Lee U. Simulation of steering kickback using component load method. SAE 2004-01-1097
    [48]Kim D., Tak T., Kuk M., Park J., Shin S., Song S. Evaluation and experimental validation of steering efforts considering tire static friction torque and suspension and steering systems characteristics. SAE 2007-01-3641
    [49]Sharp R., Granger R. On car steering torques at parking speeds. Mechanical Engineering,2003,217:87-96
    [50]Cho Y. Vehicle steering returnability with maximum steering wheel angle at low speeds. International Journal of Automotive Technology,2009,10(4):431-439
    [51]Fiala E. Seitenkrafte am rollenden Luftreifen. VDI-Zeitschrift 96,973,1964
    [52]Gim G., Nikravesh P. A three dimensional tire model for steady state simulations of vehicles. SAE,1993,102 (2)
    [53]Gipser M. FTIRE-A new fast tire model for ride comfort simulations,1999 ADAMS Users Conference, Berlin
    [54]Pacejka H., Besselink I. Magic formula tyre model with transient properties. Vehicle System Dynamics Supplement,1997,27
    [55]Guo K., Ren L. A unified semi-empirical tire model with higher accuracy and less prameters. SAE 1999-01-0785
    [56]Wang S., Zhang J., Li H. Steering prformance smulation of tree-axle vhicle with mlti-axle dnamic seering. IEEE Vehicle Power and Propulsion Conference, Harbin, China, September 3-5,2008
    [57]Pilbeam C., Sharp R. On the preview control of limited bandwidth vehicle suspensions. Proc. Instn Mech. Engrs, Part D:J. Automobile Engineering,1993, 207(D3):185-194
    [58]刘照.汽车电动助力转向系统动力学分析与控制方法研究.[博士学位论文].武汉:华中科技大学机械科学与工程学院,2004:65-67
    [59]Robert Bosch GmbH.汽车安全性与舒适性系统.北京:北京理工大学出版社,2007:123-125 [60]Yoshiyuki Y., Wataru T. Estimation of lateral grip margin based on self-aligning torque for vehicle dynamics enhancement. SAE 2004-01-1070
    [61]Furukaw Y., Yuhara N., Sano S. A review of four 2 wheel steering studies from the viewpoint of vehicle dynamics and cont roll. Vehicle System Dynamics,1989,18: 151-186
    [62]Furukaw Y. A dvanced chassis control system for vehicle handling and active safety. Vehicle System Dynamics,1997,28:59-86
    [63]Zbigniew L., Wieslaw P. Real time 7 DOF vehicle dynamics model and its experimental verification. SAE 2002-01-1184
    [64]Sharp R. Driver steering control and a new perspective on car handling qualities. Mechanical Engineering Science,2005,219:1041-1050
    [65]Kim H. The investigation of design parameters influencing on on-center handling using Autosim. SAE 1997-01-02
    [66]Cronje P., Els P. Improving off-road vehicle handling using an active anti-roll bar. Journal of Terramechanics,2010,47:179-189
    [67]Thoresson M. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds. Journal of Terramechanics, 2007,44:163-175
    [68]Chondros T., Belokas P., Vamvakeros K. Vehicle dynamics simulation and suspension system design. SAE 1997-01-05
    [69]Mokhtar M., Ibrahim I., El-Butch A. New suspension design for heavy duty trucks: dynamic considerations. SAE 2000-01-3447
    [70]Yong Y. Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling,2009,33:11-33
    [71]Georgiou G, Badarlis A., Natsiavas S. Modelling and ride dynamics of a flexible multi-body model of an urban bus. Multi-body Dynamics,2008,222:143-154
    [72]Sakakura T., Shimosaka H, Ehara N. A study on the braking stability of an articulated vehicle by controlling braking force. In AVEC,1998:637-642
    [73]Elwell M., Kimbrough S. An advanced braking and stability controller for two-vehicle and trailer combinations. SAE Technical Paper Series,1993-931878
    [74]Abe M. A theoretical analysis on vehicle cornering behaviors in acceleration and in braking. Proceedings of 9th IAVSD Symposium, Linkoping, Sweden,1985
    [75]Zschocke A., Albers A. Links between subjective and objective evaluations regarding the steering character of automobiles. International Journal of Automotive Technology,2008,9(4):473-481
    [76]Jang B., Karnopp D. Simulation of Vehicle and Power Steering Dynamics Using Tire Model Parameters Matched to Whole Vehicle Experimental Results. Vehicle System Dynamics,2000,33:121-133
    [77]Limebeer D., Sharp R., Evangelou S. The stability of motorcycles under acceleration and braking. Proc. IMechE Part C, J. Mech. Eng. Sci.2001,215:1095-1109
    [78]Limpert R. Brake design and safety. SAE,Warrendale,1999
    [79]Frimberger M., Wolf F., Scholpp G., Schmidt J. Influences of Parameters at Vehicle Rollover. SAE 2000-01-2669
    [80]Hac A. Rollover stability index including effects of suspension design. SAE 2002-01-0965
    [81]Hyun D., Langari R. Modeling to Predict Rollover Threat of Tractor-Semitrailers. Vehicle System Dynamics,39(6):401-414
    [82]Hussain K., Stein W, Day A. Modelling commercial vehicle handling and rolling stability. Multi-body Dynamics,2005,219:357-369
    [83]Eisele D., Peng H. Vehicle dynamics control with rollover prevention for articulated heavy trucks. Proceedings of AVEC 2000,5th Int'l Symposium on Advanced Vehicle Control, Michigan, August 22-24,2000
    [84]Letherwood M., Gunter D. Vehicle dynamics analysis of a heavy truck/trailer combination using simulation. SAE 1999-01-0119
    [85]Data S., Pesce M., Reccia L. Identification of steering system parameters by experimental measurements processing. Automobile Engineering,2004,218: 783-792
    [86]Amuliu B., Ali K. Identification of power steering system dynamic models. Mechatronics,1998,8,255-270
    [87]Cheng C., Roebuck R., Odhams A., Cebon D. High-speed optimal steering of a tractor-semitrailer. Vehicle System Dynamics,49:4,561-593
    [88]Moon K., Lee S., Chang S., Mok J., Park T. Method for control of steering angles for articulated vehicles using virtual rigid axles. International Journal of Automotive Technology,2009,10(4):441-449
    [89]Gindy M., Mrad N., Tong X. Sensitivity of rearward amplification control of a truck/Full trailer to tyre cornering stiffness variations, IMechE,2001,215
    [90]Johansson B. Modelling of Multi-Domain Systems. PhD thesis, Sweden:Linkoping University,2001
    [91]BMS. Co-simulation boosts vehicle design efficiency at ford. Computer Aided Engineering,1999,18(7):8-9
    [92]Klaps J., Day A. Steering drift and wheel movement during braking:parameter sensitivity studies. Automobile Engineering,2003,217:1107-1115
    [93]郭孔辉.汽车操纵动力学.长春:吉林科学出版社,1991
    [94]季学武,陈奎元.动力转向系统的发展与节能.世界汽车,1999,10:7-10
    [95]申荣卫,林逸,台晓虹,施国标.电动助力转向系统建模与控制策略研究.公路交通科技,2006,23(8):160-163
    [96]蒋励,余卓平,高晓杰.宝马主动转向技术概述.汽车技术,2006,4:1-4
    [97]施国标,赵万忠,王成玲.线控转向变传动比控制对车辆操纵稳定性的影响.北京理工大学学报,2008,28(3):207-210
    [98]M.米奇克.汽车动力学.北京:机械工业出版社,1980:23-31
    [99]廖抒华.动力转向系统特性及其对汽车操纵稳定性影响的试验与仿真研究.[博士学位论文].长春:吉林大学汽车工程学院,2000
    [100]Frederick K. Create computer simulation systems:an introduction to the high level architecture. Upper Saddle River:Prentice Hall PTR,2000
    [101]Elmqvist H., Mattsson S., Otter M. Object-oriented and hybrid modeling in Modelica. The Journal of European system automatics,2001,35(1):1-10
    [102]Mattsson S., Elmqvist H., Otter M. Physical system modeling with Modelica. Control Engineering Practice,1998,6(4):501-510
    [103]Kim K., Kim C. Analysis process of a steering system using a concept model for idle vibration. International Journal of Automotive Technology,2008,9:337-346
    [104]Gugino A., Janevic J., Fecske L. Brake moan simulation using flexible methods in multibody dynamics. SAE 2000-01-2769
    [105]Mirza N., Hussain K., Day A., Klaps J. Effect of component stiffness and deformation on vehicle lateral drift during braking. Multi-body Dynamics,2009,223: 9-21
    [106]Horow I. Survey of quantitative feedback theory. International Journal of control, 1991,53(2):255-291.
    [107]Mirza N., Hussain K., Day A., Klaps J. An assessment of steering drift during braking:a comparison between finite-element and rigid body analyses. Multi-body Dynamics,2010,224:307-317
    [108]Pfeffer P., Harrer M., Johnston D. Interaction of vehicle and steering system regarding on-centre handling. Vehicle System Dynamics,2008,46(5):413-428
    [109]王霄锋.汽车底盘设计.北京:清华大学出版社,2010
    [110]解后循,高翔.电控/电动液压助力转向控制技术研究现状与展望.农业机械学报,2007,38(11):178-181
    [111]郭晓林,季学武,陈奎元.流量控制式ECHPS系统转阀结构参数优化设计.农 业机械学报,2008,39(11):26-29
    [112]高峰,刘亚辉,季学武,郭晓林.电控液压助力转向系统的初步匹配计算.北京航空航天大学学报,2007,33(5):605-607
    [113]王绍铫,夏群生,李建秋.汽车电子学.北京:清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700