用户名: 密码: 验证码:
液压混合动力车辆能量管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压混合动力节能汽车技术是一种新型的传动技术,该技术通过改变液压泵/马达的斜盘倾角,从而改变排量来适应负载的变化。利用液压泵/马达的四象限工作特性,能够有效地实现制动动能和重力势能的回收与再利用。当混合动力汽车各部件的结构及性能特性确定后,整车的燃油经济性和排放水平取决于能量管理策略。当混合动力汽车各部件的结构及性能特性确定后,整车的燃油经济性和排放水平取决于能量管理策略。目前混合动力汽车在如何通过能量管理策略的优化,最大程度地降低整车运行油耗,并对蓄能器SOC进行合理管理等方面还有待深入研究,因此开展能量管理策略研究对于降低混合动力汽车油耗和排放具有重要的理论意义和应用价值。
     本文的研究工作是以吉林省科技厅基金项目“液压二次调节技术在汽车节能中的应用研究”以及校企合作项目“基于液压节能技术的混凝土式搅拌运输车研制”为背景,主要针对液压节能汽车的整车能量管理策略,最大程度地降低整车运行油耗,并对蓄能器SOC进行合理管理等方面进行深入研究,合作设计改装了一辆液压混合动力混凝土运输车样车。
     本文针对液压混合动力车辆的主要研究工作包括以下几个方面:
     1.介绍了国内外正处于研究阶段或已经完成的液压混合动力车辆,分析了国内外液压混合动力能量控制策略的研究现状。说明了进行液压混合动力能量控制策略研究的目的及意义。
     2.提出了等效发动机和等效油箱理论,这是一种对并联液压混合动力车辆的燃油经济性的优化方法。这种方法在满足车辆所需达到性能的前提下,提高了混合动力系统的整体效率。并在等效理论的基础上,进行了等效模型最优解及仿真研究
     3.在并联型液压混合动力汽车等效模型基础上,建立了液压混合动力车辆动力系统各关键部件数学模型、驾驶员车速模糊控制模型;建立了驾驶员需求驱动功率计算模型;建立了液压辅助动力传动系统的动力学方程。
     4.完成了液压混合动力车辆在驱动工况下的瞬时能量管理策略优化研究。在本文提出的液压混合动力车辆等效模型的基础上,建立了液压辅助动力系统的充能/放能综合效率模型。在以再生制动能量回收影响系数对车辆燃油发动机和二次元件转矩分配的影响的基础上,研究了以液压蓄能器SOC的大小来确定再生制动能量回收影响系数的方法。
     5.完成了液压混合动力车辆在循环工况下的能量管理控制策略及车辆燃油经济性仿真实验分析。以驱动工况和制动工况的瞬时能量管理优化策略为基础,结合液压蓄能器SOC的管理策略(包括SOC最佳使用范围的确定,以及最佳的充/放能策略),提出并研究了一种以减少车辆运行工况的油耗为目标的能量管理策略。利用该能量管理策略,对液压混合动力汽车在UDDS循环工况下的空载和满载的情况下的燃油经济性进行了实验分析。
     6.利用液压混合动力试验台完成了车辆启动实验、液压辅助动力系统放能工况下的助力实验、制动能量回收控制实验、循环工况控制实验。通过台架实验验证了本文建立的液压混合动力车辆数学模型和整车能量管理控制策略的理论正确性和试验可行性。为将来的液压混合动力车辆的实车实验提供了理论基础和技术支持,验证了本文所提出的能量管理控制策略可以合理的管理液压蓄能器SOC以提高车辆的能量回收率,从而提高液压混合动力车辆的动力性和整车的燃油经济性。
     本文的主要创新性工作包括以下几个方面:
     1.提出了并联型液压混合动力车辆的等效模型,并在此基础上建立了并联型液压辅助动力系统的充/放能综合效率模型。
     2.以瞬时能量管理优化策略为基础,并结合液压蓄能器SOC管理策略,提出了有效减少车辆在循环工况下的油耗的能量管理控制策略。针对车辆在循环工况下的液压蓄能器初始SOC值的不同,要求车辆在运用该液压蓄能器SOC管理策略的时候能满足在循环行驶工况结束时蓄能器SOC值保持在不同且合理的范围内,并确定了何时为液压辅助动力系统充能的转入条件。
     3.利用GPS、GIS和ITS所提供的实时道路交通信息,以车辆最低燃油消耗量作为优化控制目标,建立了液压混合动力节能车辆运行状态数学模型和液压节能系统动态规划方程,并利用动态规划逆序算法得到液压混合动力车辆的能量预测控制策略。
Hydraulic hybrid energy-saving auto technology is a kind of new typed transmission technology, this technology by changing the pump/motor inclined dish, which changes displacement Angle to adapt to load changes. Using hydraulic pump/motor quadrant operating characteristics, can effectively achieve the braking energy and recycle and reuse of gravity potential energy. When hybrid cars of all parts of the structure and properties of the characteristic, after the confirmation of the whole vehicle fuel economy and emission levels depends on energy management strategy.
     When hybrid cars of all parts of the structure and properties of the characteristic, after the confirmation of the whole vehicle fuel economy and emission levels depends on energy management strategy. At present hybrid cars in how to use energy management strategy of optimization, the greatest degree to reduce fuel consumption of the vehicle operation, and the accumulator SOC reasonable management, etc., and therefore still remain to be further research conduct energy management strategy for research to reduce fuel consumption and emissions hybrid car has important theoretical significance and application value.
     This research work in jilin province by the fund project "hydraulic secondary adjusting technology in auto saving application research" and the school-enterprise cooperation project "of energy-saving technology based on hydraulic concrete type mixing transporter development" as the background, mainly in hydraulic energy-saving auto vehicle energy management strategy, the greatest degree to reduce fuel consumption of the vehicle operation, and the accumulator SOC reasonable management thorough research, cooperation design modification a hybridto hydraulic hybrid vehicle concrete truck.
     Aiming at the hydraulic energy-saving auto main research work includes the following aspects:
     1. Introduces is in a stage of study or have completed the hydraulic hybrid vehicles at home and abroad, analyzes the energy of hydraulic hybrid control strategy research status. Explain the hydraulic hybrid control strategy for the purpose of the research energy and significance.
     2. Put forward equivalent engine and equivalent tank theory, this is a kind of parallel hydraulic hybrid vehicle fuel economy of optimization algorithm. This method satisfies the vehicle under the premise of the desired performance and improve the overall efficiency of the hybrid systems. And on equivalent theory on the basis of the equivalent model optimal solution and simulation
     3. In parallel type hydraulic hybrid cars equivalent model based on that, established hydraulic hybrid vehicle dynamic system each key components, driver speed mathematical model of fuzzy control model, and considering the vehicles in starting or shift process of speed control system of the clutch abate effect; Established can be used for simulation and real-time control of drivers demand drive power calculation model. Established hybrid transmission system dynamics equation. In the above model was developed based on simulation algorithm based on prior to the parallel type hydraulic hybrid vehicle performance simulation program.
     4. Completed the hydraulic hybrid cars driving condition of transient energy management strategy optimization study. Based on the proposed hydraulic hybrid cars equivalent model is established, the hybrid system is energized/put can comprehensive efficiency model. To reflect the regenerative braking energy recovery of energy management strategy of influence and the reduction of car fuel consumption, putting in the comprehensive efficiency can be introduced in the calculation model of regenerative braking energy recovery influence coefficients, analyzes the regenerative braking energy recovery influence coefficient of engine and the second component torque, and puts forward the influence of the distribution according to the size of the accumulator SOC determine the regenerative braking energy recovery influence coefficients. In order to reduce vehicle in the whole running condition of total consumption, but also according to the statistical law of the car running mode, through car in driving cycles of fuel economy simulation analysis to determine reasonable regenerative braking energy recovery influence coefficients.
     5. Completed based on driving cycles of energy management strategy and automobile fuel economy simulation analysis. To drive condition and braking condition of transient energy management based optimization strategy, combining the accumulator SOC management strategy (including SOC best use range defining, and the best filling/put can strategy), is proposed to reduce automobile operating conditions of fuel as target of energy management strategy. Use this energy management strategy, of hydraulic hybrid cars in the UDDS driving mode compared no-load and full load of fuel economy is forecasted and analysis. The results show that compared with traditional basic models, accumulator SOC remain at 50% ~ 70% range, which helps reduce UDDS driving cycles of fuel consumption.
     6. Complete hydraulic hybrid transmission systems and control experimental research. Completed hybrid transmission system from the start, continuous shift accelerated, uniform to deceleration control modes of the experiment, the experimental results verify the established hybrid cars simulation model and the effectiveness of energy control strategy.
     This paper mainly innovative work includes the following aspects:
     1. The forward parallel type hydraulic hybrid cars equivalent model, and based on the parallel type hydraulic hybrid systems of filling/put can comprehensive efficiency model. Put forward by the accumulator put can maximum overall efficiency optimization target release control strategy can working optimization model, and gives the regenerative braking energy recovery method to determine the influence coefficients.
     2. With transient energy management optimization strategy as the foundation, and combining the accumulator SOC management strategy, and puts forward can effectively reduce automobile in driving cycles oil consumption of energy management strategy. For vehicles driving cycles of initial value of SOC accumulator is different, the accumulator SOC management strategy requires circular running condition of SOC keep end in different accumulator rational range, and to reduce automobile driving cycles fuel as a goal, and put forward a method of determining the accumulator energized condition into conditions method.
     3. Using GPS/GIS and ITS offer real-time traffic information to vehicle minimum fuel consumption as optimization control object, this paper establishes the energy-saving hydraulic hybrid vehicle running mathematical model and hydraulic energy saving system dynamic programming equation of the dynamic programming, reverse algorithm are predictive control strategy.
     4. Established can be used for simulation and real-time control of drivers demand drive power calculation model. The pilot speed fuzzy control model, considering the automobile starting or shift process of speed control system of the clutch abate effect, make the simulation algorithm of the vehicles, prior to target speed can get good tracking.
引文
[1]胡名一,胡伟.国内外电动汽车[J].汽车工业研究,2003(12):35-39.
    [2]王庆云.交通的可持续发展观[J].综合运输.2003,(9).
    [3]中国设备网.我国重点发展的汽车发动机节能技术分析[EB/OL] . ( 2009 -7-8).http://www.creader.com/news/20011219/200112190019.html.
    [4]沈胜强,李素芬,徐钢.可持续发展战略与节能技术节能[J].1998,(12):4-7.
    [5]严光明,秦安民.增强节能意识,推进节油技术进步[J] .云南交通科技,1994,10(1):48~49.
    [6]范海雁.城市公交车辆的发展方向分析[J] .能源研究与信息,2007,23(3):154-157.
    [7]Institute for the Analysis of Global Security.EPA Displays the First Advanced Hydraulic Hybrid Vehicle[2006-06-24].http://www.iags.org/n 033104t3.htm..
    [8]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M] .北京:北京理工大学出版社.2002.
    [9]A.Szumanowski.混合电动车辆基础.北京理工大学出版社.2001:3060.
    [10]管志宏.公交汽车节能环保驱动技术的研究[D] .西南交通大学,2003.
    [11]古丽萍.发展完善中的燃料电池汽车[J] .北京汽车,2003(5):7-9.
    [12]陈家昌,王菊,伦景光.国际燃料电池汽车技术研发动态和发展趋势[J] .汽车工程,2008(5):381-383.
    [13]V.Wouk.Hybrids:Then and Now.Spectrum,IEEE,1995,32(7):16-21.
    [14]Dietrich P., Ender M. . Hybrid Powertrain Update[J].Electric and Hybrid Vehicle Technology 1996.
    [15]Moore T.Ultra-light HEV Principle and Design[J].EV21,Monaco.2005.
    [16]曾小华,王庆年,王伟华.混合动力汽车混合度设计方法研究[J] .农业机械学报,2006(12):8-10.
    [17]US Environmental Protection Agency. Hydraulic Hybrid Technologya Proven Approach [2006-06-24]. http://www.epa.gov/otaq/technology/420f04024.pdf.
    [18]张金柱.混合动力汽车结构、原理与维修[M] .北京:化学工业出版社,2008.
    [19]L.O.Hewko and T.R.Weber.Hydraulic Energy Storage Based Hybrid Propulsion System for a Terrestrial Vehicle.Proceedings of the Intersociety Energy Conversion Engineering Conference, Reno,NV,USA.1990:99-105.
    [20]姚怀新.工程车辆液压动力学与控制原理[M] .北京:人民交通出版社,2006.
    [21]A.Lynn,E.Smid,M.Eshraghi,Caldwell N.Modeling Hydraulic Regenerative Hybrid Vehicles Using AMESim and Matlab/Simulink.Proceedings of SPIE-The International Society for Optical Engineering.2005:24-40.
    [22]Eaton powering business worldwide.Series hybrid hydraulic[2009-10-16].87http://eaton.com/EatonCom/ProductsServices/Hybrid/SystemsOverview/Series Hydraulic/index.htm.
    [23]赵春涛.车辆串联混合系统中二次调节静液驱动技术的研究[D] .哈尔滨工业大学博士论文.2001:18-30.
    [24]E.D.Mark.The Evaluation and Analysis of a Power Split Hydraulic Hybrid Drivetrain.Thesis on吉林大学博士学位论文Master of University of Missouri-Columbia.2003:30-50.
    [25]Szumanowski A.Generalised method of comparative energetic analysis of HEV Drive[J].EVS 12 Osaka 1996.
    [26]Hajduga A.Energy mamagement in hybrid vehicle drive[J].Proceeding of advanced propulsion systems GPC detroit 1998.
    [27]Trummel M C, Mazor S D, Freema R J.DOE Hybrid test vehicle—results of fuel economy emission and engineering characterization testing[C]//Passenger Car Meeting, Dearborn,Mi, October 1984:313-325.
    [28]Burke A F.On-off engine operation for hybrid/electric vehicles[J].Volume SP-969,SAE 930042,1993:17-34.
    [30]An F,Barth M,Scora G.Impacts of diverse driving cycles on electric and hybrid electric vehicle performance[J].SAE paper,1997,972646:29-41.
    [31]Cikanek S R,Baily K E,Baraszu R C,et al.Control system and dynamic model validation for a parallel hybrid electric vehicle[C]//Proceedings of the American Control Conference, SanDiefo,California,June 1999:1222-1224.
    [32]Bulter K L,Stavens K M.A versatile computer simulation tool for design and analysis of electric and hybrid drive trains[J].SAE paper,1997,970199:22-24.
    [33]Johnson V H,Wipke K B,Rausen D J.HEV control strategy for real-time optimization of fuel economy and emissions[J].SAE paper,2000-01-1543.
    [34]Jalil N,Kheir N A.A rule-based energy management strategy for a series hybrid vehicle[C]// Proceedings of the American Control Conference,Albuquerque,New Mexico,June 1997:689-693.
    [35]Baumann B,Rizzoni G,Washington G.Intelligent control of hybrid vehicles using neural networks and fuzzy logic[J].SAE paper,981061:125-133.
    [36]Lee H D,Sul S K.Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle[J].IEEE Transactions on Industrial Electronics,1998,45(4):625-631.
    [37]Salman M,Schouten N J,Kheir N A.Control strategies for parallel hybrid vehicles[C]//Proceedings of the American Control Conference,Chicago,lllinois,June 2000:524-528.
    [38]Baumann B,Rizzoni G,Washington G.Intelligent control of hybrid vehicles using neural networks and fuzzy logic[J].SAE paper,1998,981061:125-133.
    [39]heir N A,Salman M A,Schouten N J.Emissions and fuel economy trade-off for hybrid vehicles usingfuzzy logic[J].Mathematics and Computers in Simulation,2004,66:155-172.
    [40]Rimaux S, Delhom M, Combes E. Hybrid vehicle powertrain: modeling and control[C/CD] // Electric Vehicle Symposium, EVS16, Beijing, October 1999.
    [41]Delprat S, Paganelli G, Guerra T M, et al. Algorithmic optimization tool for evaluation of HEV control strategies[C/CD] // Electric Vehicle Symposium, EVS16, Beijing,October 1999.
    [42]Delprat S, Guerra T M, Rimaux J. Control strategy for hybrid vehicles: optimal control[C] // Vehicular Technology Conference, Proceedings. VTC2002-Fall, 2002 IEEE 56th, 2002:1681-1685.
    [43]Delprat S, Guerra T, Paganelli G, et al. Control strategy optimization for a hybrid parallel powertrain[C] // Proceedings of the American Control Conference,Arlington, VA, 2001:1315-1320.
    [45]Delprat S,Guerra T M,Rimaux J.Optimal control of a parallel powertrain:from global optimization to real time control strategy[C]//Vehicular Technology Conference,VTC Spring 2002.IEEE 55th,4:2082-2088.
    [46]Delprat S, Lauber J, Guerra T M, et al.Control of a parallel hybrid powertrain:optimal control[J].IEEE Transactions on Vehicular Technology, 2004,53(3):872-881.
    [47]Zoelch U, Schreder D. Optimization method for rating the components of hybrid vehicle[C] // Electric Vehicle Symposium, EVS14, Orlando, USA, 1997.
    [48]Kleimaier A, Schreder D.Optimization strategy for design and control of a hybrid vehicle[C] // Advanced Motion Control, Proceedings.6th International Workshop on, 2002:459-464.
    [49]Kleimaier A, Schreder D.Hybrid cars,optimization and control[C]//2004 IEEE International Conference on Industrial Technology(ICIT),2004:1084-1089.
    [50]Vollmer T, Hohn B R.Operational strategy and control of the Autark hybrid of the TH München[C/CD] // Electric Vehicle Symposium, EVS15, Bruxelles, France, 1998.
    [51]Hemmingsson M.Minimization of energy losses in hybrid electric vehicles, theory and practice[C/CD] // Electric Vehicle Symposium, EVS16, Beijing, October 1999.
    [52]Gao W, Porandla S K. Design optimization of a parallel hybrid electric poertrain[C/CD] // Vehicle Power and Propulsion, 2005 IEEE Conference, 2005:530-535.
    [53]Oh K, Kim J, Kim D, et al. Optimal power distribution for parallel hybrid electric vehicles[C/CD] // Vehicular Electronics and Safty, 2005.IEEE International Conference on, 2005:79-85.
    [54]Lin C C, Peng H.A stochastic control strategy for hybrid electric vehicle[C/CD] // Proceedingof 2004 American Control Conference, Boston, 2004:4710-4715.
    [55]Paganelli G,Santin J J,Guerra T M,et al.Conception and control of parallel hybrid car powertrain[C/CD]//Electric Vehicle Symposium,EVS15,Bruxelles,France,1998.
    [56]Paganelli G,Delprat S,Guerra T M,et al.Equivalent consumption minimization strategy for parallel hybrid powertrains[C]//Proc.Fall VTC-01 Conference,Atlantic City,NJ,2001:2076-2078.
    [57]Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles[J],Special Issue of JSAE Review, 2001,22(4):511-518.
    [58]Paganelli G, Tateno M, Brahma A, et al.Control development for a hybrid-electric sport-utility vehicle: strategy, implementation and field test results[C]//Proceedings of American Control Conference, Arlington,VA June 25-27,2001:5064-5069.
    [59]Kim C, Goong E N, Lee S. Fuel economy optimization for parallel hybrid vehicle with CVT [J].SAE paper, 1999-01-1148:337~342.
    [60]Seiler J, Schrder D.Hybrid vehicle operating strategies[C/CD]//Electric Vehicle Symposium, EVS15, Bruxelles, France,1998.
    [61]Kleimaier A,Schr?der D.An approach for online optimized control of a hybrid powertrain[C]//Advanced Motion Control,7th International Workshop on,Maribor,Slovenia, 2002:215-220.
    [62]Soltis A, Chen X.A new control strategy for hybrid electric vehicles[C]//Proceedings of American Control Conference, Arlington, VA June 25-27, 2001:1398-1403.
    [63]Won J S, Langari R, Ehsani M.An energy management and charge sustaining strategy for a parallel hybrid electric vehicle with CVT[J].IEEE Transactions on Control Systems Technology,2005,3(2):313-319.
    [64]Sciarretta A, Back B, Guzzella L.Optimal control of parallel hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3):352-362.
    [65]Delprat S,Guerra T M,Rimaux J.Optimal control of a parallel powertrain:from global optimization to real time control strategy[C/CD]//Electric Vehicle Symposium,EVS18, Berlin,Germany,2001.
    [66]S.Delprat, T.M.Guerra, J.Rimaux, Control strategies for hybrid vehicles: Synthesis &evaluation[C]//Vehicular Technology Conference, VTC2003-Fall.2003 IEEE 58th, 2003, 5:3246-3250.
    [67]Advisor,free hybrid vehicle simulation tool for Matlab/Simulink[EB/OL][2008-8-10]. http://www.ctts.nrel.gov/analysis.
    [68]Lin C C,Peng H,Grizzle J W.Power management strategy for a parallel hybrid electric truck [J].IEEE Transactions on Control Systems Technology,2003,11(6):839-849.
    [69]Sassaki Y,Otoma A,Kawahata F,et al.Toyota braking system for hybrid vehicle with regenerative system[C/CD]//Electric Vehicle Symposium,EVS14,Orlando,USA, 1997:2253-2259.
    [70]Takaoka T,Harada O.Highly efficient and super low emission hybrid vehicle[J].Toyota Technical Review,2000,50(2):34-39.
    [71]Ogura M,Aoki Y,Mathison S.The Honda EV plus regenerative braking system[C/CD]//Electric Vehicle Symposium,EVS14,Orlando,USA,1997.
    [72]Fukuo K,Fujimura A.Development of the ultra-low-fuel consumption hybrid car-INSIGHT [J].JSAE Review,2001,JSAE20014016:95~103.
    [73]Gao Y M,Chen L,Ehsani M.Investigation of the effectiveness of regenerative braking for EV and HEV[J].SAE paper,1999-01-2910.
    [74]Gao Y M,Ehsani M,Electronic braking system of EV and HEV-integration of regenerative braking,automatic braking force control and ABS[J].SAE paper,2001-01-2478.
    [75]Zhang C W,Bai Z F,Cao B G,et al.Study on regenerative braking of electric vehicle[J]. Department of Mechatronics Engineering,2004,14(16):836-839.
    [76]罗禹贡,李蓬,金达锋等.基于最优控制理论的制动能量回收策略研究[J] .汽车工程,2006,28(4):356-360.
    [77]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J] .武汉理工大学学报, 2007(1):116-120.
    [78]詹迅,秦大同,杨阳等.轻度混合动力汽车再生制动控制策略与仿真研究[J] .中国机械工程,2006,17(3):321-324.
    [79]李蓬,金达锋,罗禹贡等.轻度混合动力汽车制动能量回收控制策略研究[J] .汽车工程,2005,27(5):570-574.
    [80]Cikanek S R,Bailey K E.Regenerative braking system for hybrid electric vehicle[C]// Proceedings of American Control Conference.Anchorage.Ak May8-10,2002:3129-3133.
    [81]Gao H W,Y M,Ehsani M.A neural network based SRM drive control strategy for regenerative braking in EV and HEV[C]//Electric Machines and Drives Conference,June 17-20,2001,Cambridge,MA,2001:571-575.
    [82]Yeo H,Kim H.Development of regenerative braking control algorithm and electric-hydraulic module for a hybrid electric vehicle[C/CD]//Electric Vehicle Symposium,EVS20,California, USA,2003.
    [83]Yeo H,Kim D,Hwang S,et al.Regenerative braking algorithm for a HEV with CVT ratio control during deceleration[C/OL]//International Continuously Variable and Hybrid Transmission Congress, California, USA, September23-25, 2004. http://www. lib. ucdavis. edu/ dept/ pse/ resources/ cvt04/ papers/ 04CVT-41. pdf
    [84]Mukhitdinov A A,RuzimovS K,Eshikabilov S L.Optimal control strategies for CVT of the HEV during a regenerative process[C]//2006 IEEE Conference on Electric and Hybrid Vehicles,December 18-20,Pune,India,2006:1-12.
    [85]Wang F,Zhong H,Mao X J,et al.Regenerative braking algorithm for a parallel hybrid electric vehicle with continuously variable transmission[C]//2007 IEEE International Conference on Vehicular Electronics and Safety,December 13-15,ICVES,Beijing,China, 2007:1-4.
    [86]Rajagopalan A,Washington G,Rizzoni G,et al.Development of fuzzy logic and neural network controland advanced emissions modeling for parallel hybrid vehicles[R/OL]. NREL/the Ohio State University,2003.
    [87]Rajagopalan A,Washington G.Intelligent control of hybrid electric vehicles using GPS information[C]//SAE Future Car Congress 2002,Arlington VA,June 2002.
    [88]Hajimiri M H,Salmas F R.A fuzzy energy management strategy for series hybrid electric vehicle with predictive control and durability extension of battery[C]//2006 IEEE Conference on Electric and Hybrid Vehicles,2006:1-5.
    [89]Deguchi Y,Kuroda K,Shouji M,et al.HEV charge/discharge control system based on navigation information[J].SAE paper,2004-21-0028,2004.
    [90]Back M, Simons M, Kirschaum F, et al.Predictive control of drivetrains[C]//2002IFAC,15th Triennial World Congress,Barcelona,Spain,2002.
    [91]Salman M,Chang M F,Chen J S.Predictive energy management strategies for hybrid vehicles[C]//2005 IEEE Vehicle Power and Propulsion Conference,VPPC,2005:21-25.
    [92]Johannesson L,Asbogard M,Egard B.Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming[C]//Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems,Vienna,Austria, 2005:366–371.
    [93]Johannesson L.On energy management strategies for hybrid electric vehicles[D],Licentiate thesis,Chalmers University of Technology,Sweden,2006.
    [94]Beck R, Bollig A, Abel D.Comparison of two real-time predictive strategies for the optimal energy management of a hybrid electric vehicle[C]//E-COSM-Rencontres Scientifiques de l’IFP,Proceedings,2006.
    [95]US Environmental Protection Agency. Hydraulic hybrid technology. [2004-03-24] http://www.epa.gov/otaq/technology/recentdevelopments.htm
    [96]Koot M,Kessels J T B A,Jager B D,et al.Energy management strategies for vehicular electric power systems[J].IEEE Transactions on Vehicular Technology,2005,54(3):771-781.
    [97]John J.Kargul.Hydraulic hybrid cost-effective clean urban vehicles. [2006-03-22] www.epa.gov/otaq/technology
    [98]US Environmental Protection Agency.World’s first full hydraulic hybrid SUV presented at 2004 SAE World Congress.[2004-05-08] http://yosemite.epa.gov/opa/admpress.nsf/d0cf6618525a9efb85257359003fb
    [99]H.Robert and J.K.John.Hydraulic Hybrid Promises Big Savings for UPS. http://www.hydraulicspneumatics.com/200/Issue/Article/False/38545/Issue.
    [100]W. H. Close. Report on Noise Testing: Permo-drive Regenerative Drive Shaft, 2002. http://www.permo-drive.com
    [101]”Refuse collection vehicle with hydraulic hybrid drive from Rexroth”http : // www.boschrexroth.com
    [102]S. Hiroki, I. Shigeru, K. Eitaro. Study on Hybrid Vehicle Using Constant Pressure Hydraulic System with Flywheel for Energy Storage. SAE Paper No. 2004-01-3064
    [103]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨工业大学博士论文.1998:1-30.
    [104]战兴群.静液驱动二次调节技术控制特性的研究[D].哈尔滨工业大学博士论文.1999:49-61.
    [105]姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用[J].机床与液压. 1999, (4):42-43.
    [106]肖华.上海交大神舟液压混合动力系统—城市公交的新选择[D].城市车辆,2007(5):23-25.
    [107]杜玖玉,苑士华,胡纪滨,荊崇波.新型车用功率分流液压混合动力传动研究[J].液压与气动,2008(8):34-37.
    [108]张庆永,常思勤.液压混合动力车辆液压系统建模及仿真[J].南京理工大学学报,2008(6):12-15.
    [109]北京创世奇公司.汽车无级变速混合驱动装置.2009-04-23. http://www.miraclesoft.com.cn/docs/csq_product/20071025/115D5EAF02B.shtml
    [110]雷洪钧,郝贤涛.液压混合动力系统在WG6120NHAE扬子江客车上的应用[D].城市车辆,2009(6):38-40.
    [111]J. M. Miller and M. Everett. An Assessment of Ultra-capacitors as the Power Cache in Toyota THS-II, GM-Allision AHS-2 and Ford FHS Hybrid Propulsion Systems[C]. The 20th IEEE Applied Power Electronics Conference and Exposition. 2005, (1):481-490
    [112]J. V. Mierlo, G. Maggetto, P. Lataire. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles[J]. Energy Conversion and Management. 2006, 47(17):2748-2760
    [113]Hybrid Comparisons. http://www.permo-drive.com/compare/index.htm
    [114]C. Anderson and E. Pettit,“The effects of APU Characteristicson the Design of Hybrid Control Strategies for Hybrid Electric Vehicles”, SAE Paper 950493.
    [115]U. Zeolch and D. Schroder,“Optimization Method for Rating the components of a Hybrid Vehicle”, EVS 14.
    [116]L. Olga, P. Giovanni and R. Claudio,“Performance Evaluation of Hybrid Propulsion System with CVT”, Pacific conference on Automotive Engineering 9th, 1997.
    [117]T. Kim, H. Lee and H. Kim,“SIMULINK Modeling of Parallel Hybrid CVT Vehicle and Performance Analysis”, GPC, Detroit, 1998.
    [118]何仁.汽车动力性燃油经济性模拟计算方法及应用[M].北京:机械工业出版社,1996.
    [119]余志生.汽车理论[M].第三版.北京:机械工业出版社,2000.
    [120] CRUISE,Theory.CRUISE[M].Version 2.2.AVL List GmbH,2003.
    [121]张洪欣.汽车设计[M].第二版.北京:机械工业出版社,1989.
    [122]CRUISE,Theory.CRUISE[M].Version 2.2.AVL List GmbH,2003.
    [123]舒红.并联型混合动力汽车能量管理策略研究[D] .重庆:重庆大学,2008.
    [124]王益群,孔祥东.利用管道效应改善电液控制系统响应能力的研究[J].中国学术期刊文摘,1995年增刊:21-26.
    [125]林建杰,徐兵,杨华勇.蓄能器作为压力油源的液压电梯节能系统研究[J].中国机械工程,2003,12,14(24):2082一2054.
    [126]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程,14[3],2003: 192-195.
    [127]HongSu, Vibration and shockisolation Perofmrnaeeofa Pressure limited hydraulic dam Per, MechnaiealSystemsnadSignalproeessing, 1989, 3(l):71-86.
    [128]权凌霄,基于管路效应的皮囊式蓄能器数学模型与实验研究[D].燕山大学,2005.
    [129]赵金祥.液压节能汽车制动能量回收及动态调节控制策略的研究[D].长春:吉林大学,2009.
    [130]刘文杰,舒红,袁景敏等.基于ADVISOR的混联型混合动力汽车研究[J].重庆科技学院学报:自然科学版,2007(2):37-40.
    [131]Shu H, Qin D T, Hu M H, et al. The optimization of regenerative braking for a mild HEV [C] // Proceedings of the International Conference on Mechanical Transmission, Chongqing, China , 2006: 612-616.
    [132]Kim C, Goong E M, Lee S. Fuel economy optimization for parallel hybrid vehicles with CVT[C]. SAE Paper 1999-01-1148, 1999.
    [133]飞思科技产品研发中心.MTLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [134]李晓英,于秀敏,李君,吴志新.串联混合动力汽车控制策略[J] .吉林大学学报(工学版) .2005,35(2):122-126.
    [135]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J] .农业机械学报.2006,37(10):31~34.
    [136]葛安林.车辆自动变速理论与设计[M],北京:机械工业出版社,1993.5.
    [137]SCIARRETTA A, GUZZELLA L. Cont rol of hybrid elect ric vehicles [J]. IEEE Transactions on Control Systems Technology, 2007, 27 (2):60-70.
    [138]JOHANNESSON L, SBOG RD M, EGARDT B. Assessing the potential of predictive cont rol for hybrid vehicle powert rains using stochastic dynamic programming[C] // Proceedings of the 8th International IEEE Conference on Intelligent Transportation System, Sept. 13-16, 2005,Vienna,Austria. [S.l.]: IEEE, 2005: 366-371.
    [139]KOOT M, KESSELS J T B A, DE JAGER B, et al. Energy management st rategies for vehicular electric power systems [J]. IEEE Transactions on Vehicular Technology, 2005, 54 (3): 771-782.
    [140]BECK R, BOLL IG A, ABEL D. Comparison of two real-time predictive strategies for the optimal energy management of a hybrid elect ric vehicle [J]. Oil and Gas Science and Technology, 2007, 62 (4): 635-643.
    [141]BACK M, SIMONS M, KIRSCHAUM F, et al.Predictive cont rol of drivet rains [C]∥15th Triennial World Congress of the International Federation of Automatic Control, July 21-26, 2002, Barcelona, Spain. London: Elsevier IFAC, c2003: 241-246.
    [142]RAJA GOPALAN A, WASHINGTON G. Intelligent cont rol of hybrid electric vehicles using GPS information[C/OL] // SAE Future Car Congress 2002, June 3-5, 2002, Arlington, Virginia, USA. SAE publications, c2003. aspx // http : www.Sae.org/technical/papers/2002-01-1936.
    [143]舒红,高银平,杨为等.中度混合动力汽车燃油经济性预测控制研究[J].公路交通科技, 2009, 26 (1): 149-153.
    [144]FINDEISEN R, ALL GOWER F. An int roduction to nonlinear model predictive control [C] // 21st Benelux Meeting on Systems and Control, March 19-21, 2002, Veldhoven, Netherland. Eindhoven: Eindhoven University of Tecnology, 2002: 119-141.
    [145]张润琦.动态规划[M ].北京:北京理工大学出版社,1989.
    [146]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [147]FIN KELDEI E, BACK M. Implementing an mpcalgorithm in a vehicle with a hybrid powert rain using telematics as a sensor for powertarin control [C]∥Proceedings of the IFAC Symposium on Advances in Automotive Cont rol, April 19-23, 2004, Salerno, Italy. London: Elsevier Science & Technology, c2005:433-438.
    [148]KIM C, NAM E, LEE S1Fuel Economy Optimization for Parallel Hybrid Vehicles with CVT [J] 1SAE Paper, 1999-01-1148: 337-3421.
    [149]SHU Hong , QIN Datong , HU Minghui , et al1The Optimization of Regenerative Braking for A Mild HEV[C] PPProceedings of the International Conference on Mechanical Transmission1Chongqing, China: 2006, 1:612-6161.
    [150]RAJAGOPALAN A, WASHINGTON G Intelligent Control of Hybrid Electric Vehicles Using GPS information [J]. SAE Future Car Congress 2002, Arlington VA, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700