用户名: 密码: 验证码:
区域供冷多级泵系统能效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了区域供冷变流量输配系统的能耗评价方法,并在其基础上分析了区域供冷多级泵系统的能效。针对具体的工程问题,研究了变流量输配系统中如何保持调速水泵高效运行的具体技术措施。主要内容分为六章,研究要点如下:
     第二章研究了区域供冷输配系统能耗的评价方法。在输配系统能耗分类的基础上,定义了评价输配管网能耗特性的指标-输配效率。对于拓扑结构和管径参数已经确定的输配管网,该指标对输配能耗的评价具有客观性,对降低输配能耗有具体的指导意义,可以为输配系统形式和运行方式优化提供独立判据。该指标可以量化输配系统的最大节能量,为控制系统设计提供目标。对区域供冷变流量输配系统中调速水泵的效率进行了研究,提出了在系统设计和运行过程中如何实时追踪调速水泵高效区的技术措施。
     第三章研究了输配系统动力学数学模型的建立方法。建立了输配系统设计工况和运行工况管网动力学数学模型。通过运行工况管网模型的求解,可以计算运行工况下管网各用户的阻抗值以及系统循环动力设备的运行状态,为第二章定义的输配能耗和输配效率提供理论计算方法。
     第四章研究了区域供冷输配管网阻抗值辨识方法。提出了基于现场辨识和系统辨识相结合的管网阻抗混合辨识法,建立了数学模型,并研究了数学模型的数值计算方法。对示例工程的数值实验表明,该辨识方法得到的管网阻抗值,在用于输配系统运行工况分析时具有满意的精度。通过本章的研究,为第三章所建立的管网模型在实际工程中的应用清除了障碍。
     第五章研究总结了区域供冷输配系统通用性设计方法,以量化各不同输配方案的使用功能,为各不同输配方案的比较提供统一的前提。
     第六章利用第三章所建立的管网动力学模型,对多级泵系统的工况模拟方法进行了研究,提出了旁通管用户多级泵系统工况模拟的简化方法。
     第七章是工程实例研究。综合运用本文提出的输配效率分析方法,结合工程实例,研究了多级泵系统能效评价方法,分析了多级泵系统的应用意义。
     本文的研究成果,可以直接为区域供冷多级泵系统形式和控制方式选择提供充分的理论和计算依据,可以节约大量的科研投入资金。本文的研究可以为包括区域供热输配系统在内的其他暖通空调输配系统的节能研究提供参考。
The evaluation method of the energy consumption of the variable flow transmission and distribution system is systematically studied in this dissertation, based on which the energy efficiency of the district cooling multistage pump system is analyzed. In connection with the engineering problem, technical measures for tracking the high efficiency zone of variable speed pumps in variable flow transmission and distribution systems are brought forward. The main content of this dissertation is divided into six chapters, and is as follows:
     The second chapter is to study the evaluation method of energy consumption of the transmission and distribution system of the district cooling system. Based on the classification of the energy consumption of the transmission and distribution system, the transmission and distribution efficiency is defined, which is to evaluate the energy consumption performance of the transmission and distribution pipe network. For the pipe network whose topology and parameters have been identified, the transmission and distribution efficiency can objectively evaluate its energy consumption, which can provide specific guidance for reducing energy consumption. The transmission and distribution efficiency can provide an independent criterion for the optimization of the system form and operation method of the transmission and distribution system. The transmission and distribution efficiency can quantify the maximum energy saving value, which provides an objective for the control system design. The efficiency of the variable speed pump in the variable flow transmission and distribution system is studied and technical measures for tracking the high efficiency zone of variable speed pumps are brought forward.
     In chapter three, the dynamic mathematical model of the transmission and distribution system is studied. The dynamic mathematical model is classified into the design condition and the operation condition. By solving the operation condition dynamic mathematical model, the impedance of all users and the operating condition of all pumps can be calculated, which can provide theoretical calculation methods for the energy consumption of transmission and distribution system and the transmission and distribution efficiency which are defined in chapter two.
     Chapter four focuses attention on the pipe network impedance identification method of the district cooling transmission and distribution system. Based on the combination of the site identification and the system identification, the complex identification method is brought forward. The mathematical model of the complex identification method is established and the numerical calculation method is studied. Numerical experiments on the sample project shows that the pipe network impedance which is obtained by the complex identification method has the satisfactory accuracy when it is used for operation condition analysis of the transmission and distribution system. The study of this chapter can clear the obstacle for the practical application of the dynamic mathematical model which is established in chapter three.
     Generic design methods of the variable flow district cooling transmission and distribution system are studied and summarized in chapter five, which is to quantify the functions of different transmission and distribution programs and provide a unified premise for different programs comparison.
     In chapter six, simulation methods of operation conditions of the district cooling multistage pump system are studied by using the dynamic mathematical model of the pipe network which is established in chapter three. The simplified method of the operation condition simulation of the bypass user multistage pump system is proposed.
     Chapter seven is about case study. With an engineering example the energy efficiency evaluation method of the district cooling multistage pump system is investigated by using the transmission and distribution efficiency evaluation method which is proposed in this dissertation. The significance of the application of the multistage pump is analyzed.
     The results of this dissertation can provide sufficient theoretical and computational basis for the selection of the system form and control method of the district cooling multistage pump system, which can save a lot of scientific research funds. The research of this dissertation can provide references to the energy saving researches of all the other HVAC transmission and distribution systems.
引文
[1]范存养.东京临海新都心建设与空调供能[J].暖通空调,2004,34(1):56-61.
    [2]华贲.中国城市建筑能源系统的集成创新[J].华南理工大学学报,2007,35(10):111-116.
    [3]宋孝春,李娟,夏树威,等.亚龙湾区域供冷系统设计[J].暖通空调,2010,40(6):57-61.
    [4]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调,2004,23(3):24-30.
    [5]夏令操.浅析日本区域供冷供热的负荷预测[J].暖通空调,2009,39(2):93-96.
    [6]康英姿,华贲.提高区域供冷系统能效与经济性的途径[J].煤气与热力,2010,30(2):3-7.
    [7]王宇剡,张建忠,黄虎.南京鼓楼软件园区域供冷供热系统优化[J].暖通空调,2009,39(7):95-98.
    [8]王志伟,李筱玫,近藤高志.区域供冷供热在东京汐留北地区的工程应用[J].建筑热能通风空调,2005,24(6):53-57.
    [9]徐旭,王婧,钱必华,等.冰蓄冷技术在区域供冷中的应用与运行策略[J].建筑科学,2010,26(12):50-54.
    [10]马宏权,龙惟定.区域供冷系统的应用现状与展望[J].暖通空调,2009,39(10):52-59.
    [11]惠荣娜,徐奇,李德英,等.我国区域供冷的现状及发展[J].建筑节能,2007,35(3):47-50.
    [12]冯小平.上海世博园区域供冷系统管网优化设计研究[D].上海:同济大学,2007.
    [13]龚俊华.住宅区域供热供冷系统优化设计及经济性分析[D].上海:同济大学,2005.
    [14] CAO Rong-guang, YOU Shi-jun, WIEN Joachim, et al. Test and analysis on three heating systems in north china[J]. J. Chongqing Univ. Eng. Ed., 2009, 8(S0): 13-17.
    [15] Par Dalin, Joakim Nilsson, Anders Rubenhag. The European cold market[J]. Euroheat & Power, 2006, 3(2):12-13.
    [16] Norela Constantinescu. Reducing Europe’s consumption of fossil fuels for heating and cooling[J]. Euroheat & Power,2006, 3(4):19-22.
    [17] Par Dalin, Anders Rubenhag. Possibilities with more district cooling in Europe[J]. Euroheat & Power, 2006, 3(6):26,39-43.
    [18] Eppelheimer D. M. Variable flow- the quest for system energy efficiency[J]. ASHRAE Transactions, 1996, 102(1):673-678.
    [19]罗伯特·珀蒂琼(ROBERT PETITJEAN).全面水力平衡(Total Hydronic Balancing)(杨国荣,胡仰耆,魏炜,方伟译)[M].北京:中国建筑工业出版社,2007.
    [20]薛志峰.公共建筑节能[M].北京:中国建筑工业出版社,2007.
    [21]梁春生,智勇.中央空调变流量控制节能技术[M].北京:电子工业出版社,2005.
    [22] J.B. Rishel, P.E. Control of Variable-Speed Pumps on Hot and Chilled Water Systems[J]. ASHRAE Transactions, 1991, 746-750.
    [23]吴延鹏.变频调速技术及其在空调系统中的应用[J].中国矿业大学学报,1999, 28(6):623-625.
    [24]马伟宪.集中空调冷水系统中的变频调速及自动控制[J].暖通空调,2004, 34(3):88-89.
    [25] Larry Tillack, James B.rishel, P.E. Proper control of HVAC variable speed pumps[J]. ASHRAE Journal, 1998, 40(11):41-47.
    [26] Waltz, James P. Variable flow chilled water or how I learned to love my VFD[J]. Energy Engineering: Journal of the Association of Energy Engineering, 2000, 97(6):5-32.
    [27]黄文厚,李娥飞,潘云钢.一次泵系统冷水机组变流量控制方案[J].暖通空调,2004, 34(4):65-69.
    [28]林心关.空调水系统二级泵变频技术及其工程应用[J].华南建设学院学报,2000, 8(4):72-76.
    [29]吴捷,卢鸣清.变频技术在暖通空调中的运用[J].通信电源技术,2003,(4):40-42.
    [30]余宝法,李百红,赵海恒.供热系统的自动控制策略[J].西南交通大学学报,2001, 36(4):448-451.
    [31] Pemberton, Mike. Strategies for optimizing pump efficiency and LCC performance[C]//TAPPI Fall Technical Conference. 2003 TAPPI Fall Technical Conference: Engineering, Pulping and PCE and I, Proceedings, 2003, 649-653.
    [32] R.A. Hegberg, P.E. Converting Constant-speed Hydronic Pumping Systems to Variable-speed Pumping[J]. ASHRAE Transaction, 1991, 739-745.
    [33]张燕宾.变频调速应用实践[M].北京:机械工业出版社,2002.
    [34]王寒栋.中央空调冷冻水泵变频调速运行特性研究(1) [J].制冷,2003,22(2):15-20.
    [35]罗新梅,周向阳,曾祖铭.水泵变流量运行性能分析[J].华东交通大学学报,2004, 21(4):19-21.
    [36]朱贞涛.离心泵几种变流量调节方法的能耗对比分析与试验[J].流体机械,2001, 29(7):15-17.
    [37]狄洪发,李吉生,戴斌文.开式系统中变速泵的节能分析[J].暖通空调,2002, 32(1):59-61.
    [38]李洪斌,张承慧,宋军.变频驱动并联水泵变压变流量运行优化调度[J].中国工程科学,2001, 3(9):52-55.
    [39] Spear, Mike. Drive up energy efficiency[J]. Chemical Processing, 2005, 68(6):30-33.
    [40] Michel A. Bernier, Bernard Bourret. Pumping Energy and Variable Frequency Drivers[J]. ASHRAE Journal, 1999, 41(12):37-40.
    [41]杜文学,徐玉党,郑洪涛.中央空调冷冻水变流量系统分析[J].制冷空调与电力机械,2004,25(3):57-59.
    [42] Taylor. S.T. Primary-only vs. primary-secondary variable flow system[J]. ASHRAE Journal, 2002,44(2):25-29.
    [43] Xing-shun Gao. Energy consumption of HVAC variable-speed pumping systems[D]. Alabama, USA: The University of Alabama, 2002.
    [44] Bernier, M. and B. Bourrt. Power requirements and energy consumption for pumps driven by variable frequency drivers[J]. ASHRAE Journal, 1998, 40(7):55-61.
    [45] Avery, G. Improving the efficiency of chilled water plants[J]. ASHRAE Journal, 2001, 43(5):14-18.
    [46]周国兵,张于峰,王艳.供暖变流量水系统的调速水泵能耗分析[J].流体机械,2003,31(9):22-25.
    [47]张建东,李震,肖勇全.变流量空调系统设计问题的探讨[J].制冷空调与电力机械,2004, (1):41-44.
    [48] Hartman, Thomas B. Design issues of variable chilled-water flow through chillers[J]. ASHRAE Transactions, 1996, 102(2):679-683.
    [49] Thomas Hartman, P.E. All-Variable Speed Centrifugal Chiller Plants[J]. ASHRAE Journal, 2005, 47(9):43-53.
    [50] Schwedler, Mick(Trane), Bradley, Brenda. Variable primary flow in chilled-water[J]. HPAC Heating , Piping, Air-Conditioning Engineering, 2003, 75(3):37-45.
    [51]董宝春,刘传聚,刘东,等.一次泵/二次泵变流量系统能耗分析[J].暖通空调,2005,35(7):82-85.
    [52]阎坤惠.动态变流量控制技术在空调节能设计中的应用[J].流体机械,2004, 32(3):51-53.
    [53] S.J. Potratz. Design considerations of a central variable-flow chilled-water plant[J]. ASHRAE Transactions, 1991, 759-762.
    [54]孙一坚.空调水系统变流量节能控制(续1):水流量变化对空调系统运行的影响[J].暖通空调,2004, 34(7):60-63.
    [55] Harris Bynum, Ed Merwin. Variable Flow-A control Engineer’s Perspective[J]. ASHRAE Journal, 1999, 41(1):26-30.
    [56] Powell, R. Variable flow hot water heating systems a wonderful technology[J]. Energy Engineering: Journal of the Association of Energy Engineering, 2002, 99(1):74-79.
    [57] Bahnfleth, William P, Peyer, Eric B. Varying views on variable-primary flow chilled-water systems[J]. HPAC Heating, Piping, Air-Conditioning Engineering, 2004, 76(3):S5-S9.
    [58]周兴禧,马卫,夏清,等.变频空调蒸发器变流量特性的理论研究[J].流体机械,1997, 25(2):48-51.
    [59] Redden, George H. Effect of variable flow on centrifugal chiller performance[J]. ASHRAE Transactions, 1996, 102(2):684-687.
    [60] Qin Xuzhong, Jiang Yi, Liu Gang. Evaluation of hydraulic stability and its application in hydronic systems[J]. ASHRAE Transactions, 2000, 106(6):253-259.
    [61]韩晓红,陈光明,邹平华.影响热网水力稳定性的若干因素分析[J].暖通空调, 2004, 34(9):14-16.
    [62] Truschel, Anders. Hydronic heating systems the effect of design on system sensitivity[D]. Goteborg,Sweden: Chalmers Tekniska Hogskolo, 2002.
    [63]吴雁,余跃进.同程式热水管网对角分支的稳定性分析[J].暖通空调,1999, 29(6):74-76.
    [64] Lau, K. Variable-volume-flow secondary water system: Best location for differential pressure sensing and control[J]. Building Services Engineering Research & Technology, 1994, 15(1):25-26.
    [65] Zheng B., Liu M. Impacts of balance valves on pump energy and control performance in variable water flow systems[C]//International Solar Energy Conference, Solar Engineering. 2004, 57-66.
    [66] Hegberg, Richard A. Application of control valves and balancing valves in a variable-flow hydronic system[J]. ASHRAE Transactions, 1998, 104(1):1615-1619.
    [67] Hegberg, Richard A. Selecting control and balancing valves in a variable flow system[J]. ASHRAE Journal, 1997, 39(6):53-54.
    [68] Anon. Control valves and damper actuators help meet high expectations for IAQ[J]. HPAC Heating, Piping, Air-Conditioning Engineering, 2003, 75(3):63-65.
    [69] Anon. Pressure-independent valves resolve balancing issues for medical center[J]. HPAC Heating, Piping, Air-Conditioning Engineering, 2004, 76(11):69-70.
    [70] Faye C. McQuiston, Jerald D. Parker and Jeffrey D. Spitler.供暖通风及空气调节-分析与设计(俞炳丰译) [M].北京:化学工业出版社,2005.
    [71]江亿.用变速泵和变速风机代替调节用风阀水阀[J].暖通空调,1997, 27(2):66-71.
    [72]刘晓敏.分布式变频调节系统泵的选择和应用[J].区域供热,2003, (6):43-46.
    [73]江亿.冷热联供热网的用户回水加压泵方案[J].区域供热,1996, (2):25-31.
    [74]刘晓敏.浅谈分布式变频调节系统[J].科技情报开发与经济,2003, 13(10):58-61.
    [75] Katipamula S., Claridge D. E. Use of simplified system models to measure retrofit energy savings[J]. Journal of Solar Energy Engineering, 1993, 115(2):57-68.
    [76] Zaheer-Uddin, M., Zheng G. R. VAV system model for simulation of energy management control functions: Off normal operation and duty cycling[J]. Energy Conversion and Management, 1994, 35(11):917-931.
    [77] Meir Teitel, Asher Levi, Yun Zhao, et al. Energy saving in agricultural buildings through fan motor control by variable frequency drives[J]. Energy and Buildings, 2008, 40(6): 953-960.
    [78]周所琴,张霞,程俊.关于供暖技术经济指标的探讨[J].暖通空调, 1994, 24(4):49-54.
    [79]中华人民共和国住房和城乡建设部. JGJ26-2010严寒和寒冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社,2010.
    [80]严熙世,赵洪宾.给水管网理论和计算[M].北京:中国建筑工业出版社,1986.
    [81] Ahmed O. DDC applications in variable-water-volume systems[J]. ASHRAE Transactions, 1991, 97(1):751-758.
    [82]秦绪忠.区域供热供冷输配系统动力学特性研究[D].北京:清华大学,2001.
    [83] Stig-Inge Gustafsson, Mikael Ronnqvist. Optimal heating of large block of flats[J]. Energy and Buildings, 2008, 40(9): 1699-1708.
    [84] CAO Rong-guang, YOU Shi-jun, DONG Shu-yun. Experimental investigation and energy consumption analysis for subway side-platform in north cities[J]. J. Cent. South Univ. Technol. 2009, 16(s1): 235-238.
    [85] Stefan Forsaeus Nilsson, Charlotte Reidhav, Kristina Lygnerud, et al. Sparse district-heating in Sweden[J]. Applied Energy, 2008, 85(7): 555-564.
    [86] Zhenjun Ma, Shengwei Wang. Energy efficient control of variable speed pumps in complex building central air-conditioning systems[J]. Energy and Buildings, 2009, 41(2): 197-205.
    [87] Durmus Kaya, E. Alptekin Yagmur, Suleyman Yigit, et al. Energy efficiency in pumps[J]. Energy Conversion and Management, 2008, 49(6): 1662-1673.
    [88] Anna Joelsson, Leif Gustavsson. District heating and energy efficiency in detached houses of differing size and construction[J]. Applied Energy, 2009, 86(2): 126-134.
    [89] B.C. Ahn, J.W. Mitchell. Optimal control development for chilled water plants using a quadratic representation[J]. Energy and Buildings, 2001, 33(4): 371-378.
    [90]伍小亭,芦岩.循环水泵变频调速运行实例研究[J].暖通空调,2006, 36(8):25-32.
    [91]田雨辰,涂光备.计量供热系统变流量运行节能分析[J].暖通空调,2005, 35(10):67-70.
    [92] J. Rekstad, M. Meir, A.R. Kristoffersen. Control and energy metering in low temperature heating systems[J]. Energy and Buildings, 2003, 35(3): 281-291.
    [93]姜校林.变频泵及其供水系统效率曲线的确定[J].暖通空调,2008, 38(1):85-87.
    [94]王岳人,宋涛,于晶.闭式循环水系统的变频水泵能耗测试[J].沈阳建筑大学学报,2009,25(4):757-761.
    [95] Viral P. Shah, David Col Debella, Robert J. Ries. Life cycle assessment of residential heating and cooling systems in four regions in the United States[J]. Energy and Buildings, 2008, 40(4): 503-513.
    [96]刘新民,穆彤,邓有智.暖通空调系统中影响水泵相似定律的因素[J].暖通空调,2008, 38(8):55-58.
    [97]付祥钊.流体输配管网[M].北京:中国建筑工业出版社,2005.
    [98]刘星果.解非线性病态方程组的一种修正Newton法及其应用[D].长沙:湖南大学,2003.
    [99]安恒斌.大型稀疏非线性方程的迭代算法[D].北京:中国科学院研究生院,2004.
    [100]周志刚.供热管网阻力特性的辨识研究[D].哈尔滨:哈尔滨工业大学,2006.
    [101]秦绪忠,江亿.区域热网管网阻力系数的在线辨识与故障诊断[J].清华大学学报(自然科学版),2000,40(2):81-85.
    [102]何昌礼.解病态线性方程组的奇异值分解法及应用[M].北京:中国地质大学出版社,1990.
    [103]陈玉荣.大型非线性方程组的算法及在电力系统中的应用[D].北京:清华大学,2002.
    [104]李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社,1987.
    [105]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,2006.
    [106]陈震,杨学祥,王喜臣.奇异值分解法解病态方程组的研究及在重力密度反演中的应用[J].长春地质学院学报,1989,19(2):235-240.
    [107]李平,王椿镛,许厚泽,等.地球物理反演中奇异值分解应用的若干问题探讨[J].自然科学进展,2001,11(8):891-896.
    [108]张俊,文鸿雁,刘立龙.大地测量中法方程病态性问题的初探[J].海洋测绘,2006,26(5):1-3.
    [109]叶松林,朱建军.矩阵奇异值分解与广义岭估计及其在测量中的应用[J].中国有色金属学报,1998,8(1):160-164.
    [110]王存良.工程实践中病态方程组的判定及其对工程实践的作用[J].飞行器测控学报,2003,22(4):49-52.
    [111]孙麟平.解超定病态线性方程组问题[J].高等学校计算数学学报,1981,(3):193-202.
    [112]陈怀琛,龚杰民.线性代数实践及MATLAB入门[M].北京:电子工业出版社,2005.
    [113]程云鹏,张凯院,徐仲.矩阵论[M].西安:西北工业大学出版社,2006.
    [114]天津市城乡建设和交通委员会. DB29-153-2010天津市公共建筑节能设计标准[S].天津:天津市城乡建设和交通委员会,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700