用户名: 密码: 验证码:
蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工农业高速发展,人口迅速增长,而污水排放管理与处理技术仍然不完善,导致水体(尤其是湖泊水库)的富营养化问题日益严重,并引发了大规模的蓝藻水华。蓝藻水华给饮用水处理带来一系列的挑战,如:混凝沉淀对藻细胞和藻类有机物(AOM)的去除效率有限;不能被混凝沉淀去除的藻细胞会堵塞滤池,影响过滤效果;蓝藻产生的藻毒素和嗅味物质会导致水质恶化,并增加毒性;藻细胞和AOM经常规氯/氯胺消毒会产生消毒副产物(DBP);AOM会增加管网微生物风险等。其中,由藻细胞和AOM引起的消毒副产物问题并未引起广泛关注。本研究主要通过对藻细胞和AOM进行表征,并研究其在氯/氯胺消毒过程中产生的含氮消毒副产物(N-DBP)和含碳消毒副产物(C-DBP)的影响因素和生成途径,建立了AOM特性与氯化过程中副产物生成规律间的关系,最后考察了臭氧预氧化对其产生的消毒副产物的控制效果并提出了控制措施。
     选取蓝藻中最有代表性的铜绿微囊藻为研究对象,采用三维荧光光谱、紫外光谱、有机氮与有机碳分析、分子量分布、极性分布等检测手段对藻细胞和藻类有机物(AOM)的特性进行表征。荧光光谱分析表明藻细胞的主要成分为含芳香结构的蛋白质、类色氨酸型蛋白质和叶绿素,对应荧光光谱中以激发波长/发射波长对为230/334、280/334、620/642 nm/nm为中心的三个荧光团。研究结果表明,荧光强度FL_(230/334)随着NO_3~-、NO_2~-、Fe~(3+)浓度的升高以指数函数减小;FL_(280/334)随着Fe~(3+)浓度的升高以指数函数减小;FL_(230/334)、FL_(280/334)和FL_(620/642)随着NOM浓度的增大,均直线下降。藻细胞荧光特性以及水质条件对其荧光光谱的影响,对天然水体中采用荧光光谱对藻细胞浓度的测定具有一定的指导作用。
     藻类有机物(AOM)比天然有机物(NOM)含有更丰富的有机氮和较少的芳香结构,其有机氮的分子量和极性分布范围较宽,分子量约为13.5 kDa和70-1000 Da;而有机碳的分子量和极性分布范围较窄,大约为几百Da。胞外有机物(EOM)和胞内有机物(IOM)的特性有些不同:IOM比EOM中含有较多的弱极性的大分子有机物和较少的强极性小分子有机物;EOM中脂肪胺的含量高于IOM,而有机氮含量与氨基酸的含量低于IOM。
     藻细胞消毒过程中C-DBPs和N-DBPs的生成量取决于氯化条件。较稳定的C-DBPs如:三卤甲烷(THM),卤乙酸(HAA)和卤代醛(CH),以及三氯硝基甲烷(TCNM)的生成量随反应时间的延长、氯投量的增加和温度的升高,而增加;而二氯乙腈(DCAN)的浓度则随着反应时间延长和氯投量的增加呈现出先增加后减少的趋势。随着pH值的增大,THM的生成量增大,卤代酮(HKs)减小,其它消毒副产物的生成量则随pH值的增大先增加后减小。氨的存在会使大部分消毒副产物的生成量减小,但TCNM变化不大,1,1-DCP则增加。溴离子浓度的增加会促进氯代DBPs向溴代DBPs的转化,但不一定会增加某类消毒副产物的生成量(以物质的量浓度计)。大部分C-DBPs随着藻细胞生长期的延长增加;而N-DBPs(如DCAN,TCNM),随着藻细胞的对数期到稳定期,其生成量先增加,而后基本不变。
     藻细胞/AOM中有机氮含量高,相比于天然有机物(NOM),其在氯化过程中C-DBPs的形成速度较慢;而N-DBPs的生成速度与NOM氯化接近,并且,藻细胞/AOM比NOM能产生更多的N-DBPs与CH,更少的C-DBPs。在AOM/藻细胞的氯化过程初期会产生有机氯胺,同时生成少量的无机氯胺;随着反应的进行,有机氯胺逐渐减少,而无机氯胺逐渐增加。在AOM/藻细胞与氯胺反应过程中,3天产生的有机氯胺量大于相应氯化过程。在氯化反应中藻细胞/AOM比SNOM产生更少的C-DBPs(除CH和DCA外)和更多的N-DBPs和卤代醛(HAs)。在氯胺反应中,AOM产生的N-DBPs和C-DBPs均小于NOM。EOM在氯/氯胺化过程中所产生的消毒副产物均小于藻细胞和IOM,这是由EOM和IOM的不同特性所决定的。
     AOM的含氮量与荧光区域Ⅰ、Ⅱ、Ⅳ的荧光体积总和成正相关,与SUVA值成负相关。氯化使有机氮区域的荧光光谱体积(Φ_(Ⅰ+Ⅱ+Ⅳ,n))快速减小,而有机碳区域的荧光光谱体积(Φ_(Ⅲ+Ⅴ,n))减小较慢。AOM氯化过程中所产生的消毒副产物之间具有一些相关性,如DCAN、CH、TCAN之间,DCAA、TCAA、DCAN之间都具有很好的相关性。各种消毒副产物间良好的相关性说明其可能来源于类似的前体物。有机氮含量(DON)与HAAs、CH、HANs的生成量呈正相关,而与TOX短时间的生成量呈负相关,与TCM、TCNM和HKs生成量没有相关性;SUVA值与消毒副产物的生成量没有相关性,但氯化前后UVA_(254)与UVA_(272)差值与消毒副产物的生成正相关。有机氮在AOM氯化过程中起着非常重要的作用,是N-DBPs与C-DBPs的共同前体物;同时,在氯胺存在的情况下,有机碳也可能是N-DBPs的前体物。
     臭氧和高锰酸钾预氧化可以起到很好的强化混凝去除藻细胞的效果。臭氧预氧化会破坏藻细胞,引起胞内有机物的释放,这部分物质很难通过后续的混凝过程去除,会导致沉后水中消毒副产物生成量大量增加,其中水合氯醛(CH)和三氯硝基甲烷(TCNM)增加最多,是单纯混凝的19倍和44倍,其他的消毒副产物生成量如THMs、HAAs和HKs是单纯混凝的3~7倍。高锰酸钾预氧化可以改变藻细胞的表面形态,但对藻细胞整体的破坏程度较小,水的溶解性有机物基本不升高,相比于单纯混凝,高锰酸钾预氧化可以控制藻细胞产生的消毒副产物:大部分消毒副产物如THMs、HAAs和HANs的生成量减少10~30%,CH不变,只有HKs和TCNM分别升高10~70%和50%。因此,相比于臭氧预氧化处理含藻水,高锰酸钾预氧化是一种更为有效而安全的控制水中藻细胞和藻细胞产生消毒副产物的方法。
The incidence of algal blooms in source waters has increased significantly in both the number and magnitude over the past few years as a result of unbalanced rapid economical development but poor nutrient control in both wastewater effluent discharge and excessive agricultural fertilization in China. Fresh, vivid algal blooms by blue-green algae in 2007 hit the nation’s several major water systems including Taihu Lake, Caohu Lake, Dianchi Lake. Algal blooms cause lots of challenges in drinking water treatment. One aspect is from algae cells, which can cause poor settling, clogging filters and breakthrough of small-size algae from sand filters. And the other aspect is from algal organic matter (AOM), which was not readily removed by coagulation or pre-oxidation enhanced coagulation processes. Algal blooms also cause water quality problems in water supplies including obnoxious taste and odors and release of algal toxins. In addition, algae cells can serve as precursors to form disinfection by-products (DBPs) during chlorination/chloramination. The aim of this study is to characterize algae cells and AOM, to assess the role of AOM in the formation of nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs) upon adding chlorine or monochloramine, and to get the relationships between AOM and their DBP formation.
     The EEM fluorescence spectra of algae cells centered at the Ex/Em of 230/334, 280/334, and 620/642 nm/nm, which represent the aromatic proteins, the tryptophan-like proteins and the chlorophyll. The presence of NO_3~-, NO_2~-, Fe~(3+) and NOM affected the EEM spectra of algae cells greatly. FL_(230/334) decreased with the negative exponential functions of the concentrations of NO_3~- and NO_2~-. Both FL_(230/334) and FL_(280/334) decreased with the negative exponential functions of the concentrations of Fe~(3+) increased. FL_(230/334), FL_(280/334) and FL_(620/642) decreased with the negative linear functions of the concentrations of NOM increased. The fluorescence property of algae cells can be applied to detect the concentration of algae cells both in axenic algae solutions and in natural water.
     AOM was characterized by UV absorbance spectra, EEM fluorescence spectra, organic nitrogen and organic carbon analysis, molecular weight distribution, polarity distribution and free amino acids/aliphatic amines analysis. AOM was enriched in organic nitrogen (org-N). Org-N in AOM contains both high (13500 Da) and low molecular weight (MW) (70-1000 Da) organic matter, while the organic carbon (org-C) contains relatively lower MW organic matter with MW from several dozens to several hundreds Da. Specific free amino acids and aliphatic amines only occupied 2.5% and 11.3% of the total org-N in EOM and IOM, respectively. IOM posed different characteristics from EOM, such as IOM had higher concentrations of total org-N, free amino acids, but lower concentrations of aliphatic amines than EOM; the org-N in IOM contained more proportion of higher MW and more hydrophobic contents than EOM.
     Formation of carbonaceous disinfection by-products (C-DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), chloral hydrate (CH), and nitrogenous disinfection by-products (N-DBPs), including haloacetonitriles (HANs) and trichloronitromethane (TCNM) from chlorination of microcystis aeruginous, a blue-green algae, under different conditions was investigated. Factors evaluated include contact time, chlorine dosages, pH, temperature, ammonia concentrations, bromide ion concentrations and algae growth stages. Increased reaction time, chlorine dosage and temperature enhanced the formation of the relatively stable C-DBPs (e.g., THM, HAA, and CH) and TCNM. Formation of dichloroacetonitrile (DCAN) followed an increasing and then decreasing pattern with prolonged reaction time and increased chlorine dosages. The pH affected DBP formation differently, with THM increasing, HKs decreasing, and other DBPs having maximum concentrations at certain pH. The addition of ammonia significantly reduced the formation of most DBPs, but TCNM formation was not affected and 1,1-dichloropropanone (1,1-DCP) formation was higher with the addition of ammonia. Increasing bromide concentrations increased the incorporation of bromine into DBPs, but did not necessarily increase the total molar concentrations of DBPs. Most DBPs increased as the growth period of algae cells increased. Chlorination of algae cells of higher organic nitrogen content generated higher concentrations of N-DBPs (e.g., HANs and TCNM) and CH, comparable DCAA concentration but much lower concentrations of other C-DBPs (e.g., THM, TCAA and HKs) than did natural organic matter (NOM).
     Organic chloramine concentrations in AOM chlorination/chloramination were much higher than those from SNOM. During chlorination of AOM, organic chloramine formed in the beginning 2 hours, and inorganic chloramines showed a max concentration on 1d of chlorination. The inorganic chloramines formed in AOM chlorination included monochloramine, dichloramine and trichlormine. The remaining organic chloramine concentrations were about 1.0 mg/L (as Cl_2) after 3-day chloramination of AOM with performened monochloramine. During the chlorination of AOM, organic chloramines were not detected after 1 day and more nitrogenous DBPs (N-DBPs) and haloaldehydes and less carbonaceous DBPs (C-DBPs) were formed than the chlorination of SNOM. Organic chloramines were found after 3-day chloramination of AOM and the formation of most N-DBPs and C-DBPs were much less than that of SNOM. EOM formed less DBPs (except for TCNM) than IOM and algae cells in chlorination and chloramination.
     The content of organic nitrogen (DON) of AOM showed linear relationships with the cumulative normalized EEM volumes at regionsⅠ、ⅡandⅣΦ_(Ⅰ+Ⅱ+Ⅳ,n), and negative linear relationship with SUVA.Φ_(Ⅰ+Ⅱ+Ⅳ,n), which represents the organic nitrogen contents, decreased rapidly in chlorination, while theΦ_(Ⅲ+Ⅴ,n) decreased much slower thanΦ_(Ⅰ+Ⅱ+Ⅳ,n). The concentrations of specific DBPs had some correlations, such as the concentrations of DCAN, CH and TCAN, DCAA, TCAA and DCAN had good positive correlations, which implicated that these DBPs came from the similar precursors. DON showed positive relationships with HAAs, CH and HANs yields, and it showed negative relationships with TOX yields in 3h, but it had no relationships with the yields of TCM, TCNM and HKs. SUVA had no relationships with DBPs, but the variation of UVA_(254) and UVA_(272) before and after chlorination had positive linear relationships with DBPs. Organic nitrogen in AOM is the precursors of N-DBPs and C-DBPs, and organic carbon can also be the precursor of N-DBP in the presence of monochloramine.
     Preoxidation by ozone and potassium permanganate enhanced the algal removal in the coagulation/sedimentation process. Preozonation destructed the algal cells and caused the release of IOM dramaticly. The released IOM was not readily removed by the following coagulation process, and played as the precusors of DBPs. The formation of various DBPs increased dramaticly in the water treated by preozonation-coagulation-sedimentation compared to that treated by coagulation-sedimentation, such as the formation of CH and TCNM increased by 18 and 43 times, respectively, and other DBPs such THMs, HAAs and HKs increased 2~6 times. Preoxidation by potassium permanganate changed the surface of the algal cells, but did not detruct the algal cells serverely. The dissolved organic matter decreased slightly in the water treated by permanganate preoxidation-coagulation-sedimentation compared to that treated by coagulation-sedimentation. The formation of various DBPs decreased about 10~30% in the water treated by preoxidation-coagulation-sedimentation compared to that treated by coagulation-sedimentation, except that HKs and TCNM increased about 10~70% and 50%, respectively, and CH remained unchanged. In summary, preoxidation by permanganate was a better strategy to control the algal cells and the DBP formation in the treatment of algae-containing water.
引文
[1]中华人民共和国环境保护部. 2007年中国环境状况公报[R]. 2008.
    [2]中华人民共和国环境保护部. 2008年中国环境状况公报[R]. 2009.
    [3] Knappe D.R.U., Belk R.C., Briley D.S., Gandy S.R., Rastogi N., Rike A.H., Glasgow H., Hannon E., Frazier W.D., Kohl P., Pugsley S. Algae detection and removal strategies for drinking water treatment plants [M]. AwwaRF, Denver, CO, 2004.
    [4] Daly R.I., Ho L., Brookes J.D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation [J]. Environ. Sci. Technol. 2007, 41(12): 4447–4453.
    [5] Plummer J.D., Edzwald J.K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environ. Sci. Technol. 2001, 35: 3661–3668.
    [6] Edward A.B., George P.F., George C.B. Disinfection alternatives for safe drinking water [M]. New York,NY: Hazen and Sowyer; 1992.
    [7] Renner R. More chloramine complications [J]. Environ. Sci. Technol. 2004, 38(18): 342A–343A.
    [8] Weisz P.B. Chapter 19-synthesis and photosynthesis. The Science of Biology (3rd ed.) [M]. McGraw-Hill, Inc. New York, NY. 1967.
    [9] Codd G.A. Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control [J]. Ecol. Eng. 2000, 16: 51–60.
    [10] Lahti K., Rapala J., Kivim(a|¨)ki A.L., Kukkonen J., Niemel(a|¨) M., Sivonen K. Occurrence of Microcystins in Raw Water Sources and Treated Drinking Water of Finnish Waterworks [J]. Water Sci. Technol. 2001, 43(12): 225–228.
    [11]韩志国,武宝轩,郑解生,谢隆初.淡水水体中的蓝藻毒素研究进展(综述) [J].暨南大学学报(自然科学版). 2001, 22(3): 129–135.
    [12] Gerber N.N. Volatile Substanced from Actinomycetes: Their Role in the Odor Pollution of Water [J]. Water Sci. Technol. 1983, 15(6-7): 285–290.
    [13]李万英,董瑞菊.水库水源臭味来源与防治研究[C].给水与废水处理国际会议论文集.北京, 1994.
    [14] Harlock R. Use of chlorine for control of odors caused by algae [J]. J. Am. Water Works Assoc. 1955, 49(12): 1507–1512.
    [15] Hwang C.J. Determination of subnanagram-per-liter levels of earthy musty odorants in water by the salted closed-loop striping method [J]. Environ. Sci. Technol. 1984, 18(7): 535–541.
    [16] Reckhow D.A., Singer P.C., Malcolm R,L. Chlorination of humic materials: byproduct formation and chemical interpretations [J]. Environ. Sci. Technol. 1990, 24 (11): 1655–1664.
    [17] Graham N.J.D., Wardlaw V.E., Perry R. The significance of algae as trihalomethane precursors [J]. Water Sci.Technol. 1998, 37(2): 83–89.
    [18] Hoehn R.C, Barnes D.B., Thompson B.C. Algae as sources of trihalomethane precursors [J]. J. Am. Water Works Assoc. 1980, 72(6): 344–350.
    [19] Oliver B.G., Shindle D.B. Trihalomethanes from the chlorination of aquatic algae [J]. Environ. Sci. Technol. 1980, 14(12): 1502–1505.
    [20] Plummer J.D., Edzwald J.K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environ. Sci. Technol. 2001, 35(18): 3661–3668.
    [21] Westerhoff P., Mash H. Dissolved organic nitrogen in drinking water supplies: a review [J]. J. Water Supply Res. T. 2002, 51(8): 145–448.
    [22] Oliver B.G. Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors [J]. Environ. Sci. Technol. 1983,17: 80–83.
    [23] Richardson S.D., Plewa M.J., Wagner E.D., Schoeny R., DeMarini D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research, 2007, 636: 178–242.
    [24] Knappe D.R.U., Belk R.C., Briley D.S., Gandy S.R., Rastogi N., Rike A.H., Glasgow H., Hannon E., Frazier W.D., Kohl P., Pugsley S. Algae detection and removal strategies for drinking water treatment plants [M], AwwaRF, Denver, CO, 2004.
    [25] Bernhardt H., Clasen J. Investigations into the Flocculation Mechanisms of Small Algal Cells [J]. J. Water Supply Res. T. 1994, 43(5): 222–232.
    [26] Edzwald J.K. Algae, bubles, coagulants, and dissolved air flotation [J]. Water Sci. Technol., 1993, 27(10): 67–81.
    [27] Clasen J., Mischke U., Drikas M., Chow C. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: flocculant demand of different species and the impact of DOC [J]. J. Water Supply Res. T. 2000, 49(2): 89–101.
    [28] Parent L., Twiss M.R., Campbell P.G.C. Influences of natural dissolved organic matter on the interaction of aluminum with the microalga chlorella: a test of the free-ion model of trace metal toxicity [J]. Environ. Sci. Technol., 1996, 30(5): 1713–1720.
    [29] Davies D.R. Electrophoretic analyses of wall glycoprotein in normal and mutant cells [J]. Exptl Cell Res., 1972, 73: 512–516.
    [30] Hecky R.E., Mopper K., Kilham. P., Degens E.T. The amino acid and sugar composition of diatom cell-walls [J]. Mar. Biol. 1973, 9, 323–331.
    [31] Kiefer E., Sigg L., Schosseler P. Chemical and spectroscopic characterization of algae surfaces [J]. Environ. Sci. Technol.1997, 31: 759–764.
    [32] Thurman E.M. Organic geochemistry of natural waters. Springer Publishers [M], USA, 1985.
    [33] Hoagland K.D., Rosowski J.R., Gretz M.R., Roemer S.C. Diatoms extracellular polymeric substances: function, fine structure, chemistry, and physiology [J]. J. Phycol. 1993, 29: 537–566.
    [34] Bernhardt, H. Studies on the treatment of eutrophic water. Water supply: the review [J]. J. International Water Supply Assoc. 1989, 7: ss.12-1-ss.12–16.
    [35] Leppard G.G. Colloidal organic fibrils of acid polysaccharides in surface waters: electron-optical characteristics, activities and chemical estimates of abundance. Colloids and Surfaces A: physicochemical and Engineering Aspects [J], 1997, 120: 1–15.
    [36] Wingender J., Neu T.R., Flemming H-C. Microbial extracellular polymeric substances, characterization, structure and function [M]. Springer-Verlag Berlin Heidelberg, Germany, 1999.
    [37] Widrig D.L., Kimberly A.G., McAuliffe K.S. Removal of algal-derived organic material by preozonation and coagulation: monitoring changes in organic quality by pyrolysis-GC-MS [J]. Water Res. 1996, 30(11): 2621–2632.
    [38] Nguyen M.L., Westerhoff P., Baker L., Hu Q., Esparza-Soto M., Sommerfeld M. Characteristics and reactivity of algae-produced dissolved organic carbon [J]. J. Environ. Eng. 2005, 131(11): 1574–1582.
    [39] Lüsse B., Hoyer O., Soeder C.J. Mass cultivation of planktonic freshwater algae for the production of extracellular organic matter (EOM) [J]. Z. Wasser-Abwasser-Forsch, 1985, 18: 67–75.
    [40] Hoyer O., Lüsse B., Bernhardt H. Isolation and characterization of extracellular organic matter (EOM) from algae [J]. Z. Wasser-Abwasser-Forsch. 1985, 18: 76–90.
    [41] Paralkar A., Edzwald J.K. Effect of ozone on EOM and coagulation [J]. J. Am. Water Works Assoc. 1996, 88(4): 143–154.
    [42] Myklestad S.M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides [J]. Sci. Total Environ. 1995, 165: 155–164.
    [43] Her N., Amy G.L., Park H.R., Song M. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling [J]. Water Res. 2004, 38: 1427–1438.
    [44] Brown M.R., Garland C.D., Jeffrey S.W., Jameson I.D., Leroi J.M. The gross and amino-acid compositions of batch and semicontinuous cultures of Isochrysis Sp (Clone Tiso), Pavlova-Lutheri and Nannochloropsis-Oculata [J]. J. Appl. Phycol. 1993, 5: 285–296.
    [45]石颖.湖泊、水库水混凝处理及其投药自控应用研究[D].哈尔滨:哈尔滨建筑大学, 1999.
    [46] Henderson R.K., Baker A., Parsons S.A., Jefferson B. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Res. 2008, 42(13): 3435–3445.
    [47] Gregor J.E., Fenton E., Brokenshire G., Van Den Brink P., O'Sullivan B. Interactions of calcium and aluminium ions with alginate [J]. Water Res. 1996, 30(6): 1319–1324.
    [48] Pivokonsky M., Kloucek O., Pivokonska L. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter [J]. Water Res. 2006, 40: 3045–3052.
    [49] Bernhardt H. Treatment disturbances with water out of eutrophic reservoirs as a consequence of extensive algal development [J]. Water Supply 2, 1984, ss4-7–ss4-15.
    [50] Hoyer O., Bernhardt H., Lüsse B. The Effect of ozonation on the impairment of flocculation by algogenic organic matter [J]. Z. Wasser-Abwasser- Forsch,1987, 20: 123–131.
    [51] Dowbiggin W.B., Singer P.C. Effects of natural organic matter and calcium on ozone-induced particle destabilization [J]. J. Am. Water Works Assoc. 1989, 81:77–85.
    [52] Grasso D., Webber W.J. Ozone-induced particle destabilization [J]. J. Am. Water Works Assoc. 1988, 80(8): 73–82.
    [53] Chang S.D., Singer P.C. The impact of ozonation on particle stability and the removal of TOC and THM precursors [J]. J. Am. Water Works Assoc. 1991, 83(3): 71–79.
    [54] Kuo C.J., Amy G.L. Factors affecting coagulation and aluminum sulfate: II. Dissolved organic carbon removal [J]. Water Res. 1988, 22(7): 862–872.
    [55] Sukenik A., Teltch B. Effect of oxidants on microalgal flocculation [J]. Water Res. 1987, 21: 533–539.
    [56] USEPA. EPA Guidance Manual Alternative Disinfectants and Oxidants [M]. Washington D.C: USEPA, 1999
    [57] Petru?evski B., van Breemen A.N., Alaerts G.J. Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration [J]. J. Water Supp. Res. Technol. 1996, 45: 316–326.
    [58] Chen J.J., Yeh H.H., Tseng I.-C. Effect of ozone and permanganate on algae coagulation removal– Pilot and bench scale tests [J]. Chemosphere. 2009, 74: 840–846.
    [59] Chen J.J., Yeh H.H. The mechanisms of potassium permanganate on algae removal [J].Water Res. 2005, 39: 4420–4428.
    [60] Zhang L.Z., Ma J., Li X., Wang S. Enhanced removal of organics by permanganate preoxidation using tannic acid as a model compound-role of in situ formed manganese dioxide [J]. J. Environ. Sci. 1999, 21: 872–876.
    [61] Archer A.D., Singer P.C. Effect of SUVA and enchance coagulation on removal of TOX precursors. J. Am. Water Works Assoc. 2006, 98(8): 97–107.
    [62] Liang L., Singer P.C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water [J]. Environ. Sci. Technol. 2003, 37: 2920–2928.
    [63] Jacangelo J.G., Patania N.L., Reagan K.M., Aieta E.M., Krasner S.W., Mcguire M.J. Ozonation: Assessing its role in the formation and control of disinfection by-products [J]. J. Am. Water Works Assoc. 1989, 81(8): 74–84.
    [64] Krasner S.W., Weinberg H.S., Richardson S.D., Pastor S.J., Chinn R., Sclimenti M.J., Onstad G.D., Thruston A.D. Occurrence of a new generation of disinfection byproducts [J]. Environ. Sci. Technol. 2006, 40: 7175–7185.
    [65] Richardson S.D., Thruston A.D., Caughran T.V., Chen P.H., Collette T.W., Floyd T.L., Schenck K.M., Lykins B.W., Sun G.R., Majetich G. Identification of new ozone disinfection byproducts in drinking water [J]. Environ. Sci. Technol. 1999, 33: 3368–3377.
    [66] Hua G.H., Reckhow D.A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants [J]. Water Res. 2007, 41: 1667–1678.
    [67] Liang H., Tian J.Y., He W.J., Han H.D., Chen Z.L., Li. G.B. Combined preoxidation by permanganate and chlorine in enhancing the treatment of surface water [J]. J. Chem. Technol. Biotechnol. 2009, 84: 1229–1233.
    [68] Ma J., Graham, N. Controlling the formation of chloroform by permanganate preoxidation-destruction of precursors [J]. J. Water Supp. Res. Technol. 1996, 45(6): 308–315.
    [69] Singer P.C., Borchardt J.H., Colthurst J.M.. The effects of permanganate pretreatment on trihalomethane formation in drinking water [J]. J. Am. Water Works Assoc. 1980, 72(10): 573–578.
    [70] Pivokonsky M., Kloucek O., Pivokonska L. Evaluation of the production, composition and aluminium and iron complexation of algogenic organic matter [J]. Water Res. 2006, 40(16): 3045–3052.
    [71] Ca?izares-Villanueva R.O., Domínguez A.R., Cruz M.S., Ríos-Leal E. Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater [J]. Bioresour Technol. 1995, 51: 111–116.
    [72]曹吉祥,李德尚,王金秋. 10种淡水常见浮游藻类营养组成的研究[J].中山大学学报(自然科学版). 1997, 36(2): 22–27.
    [73] Peuravuori J., Koivikko R., Pihlaja K. Characterization, differentiation and classification of aquatic humic matter seperated with different sorbents: synchronous scanning fluorescence spectroscopy [J]. Water Res. 2002, 36: 4552–4562.
    [74] Lombardi A.T., Jardim W.F. Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials [J]. Water Res., 1999, 33(2): 512–520.
    [75] Dilling J., Kaiser K. Estimation of the hydrophobic fraction of dissolvedorganic matter in water samples using UV photometry [J]. Water Res., 2002, 36: 5037–5044.
    [76] Korshin G.V., Li C.W., Benjamin M.M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory [J]. Water Res., 1997, 31(7): 1787–1795.
    [77]何海军,翟文川,钱君龙,陆长青.湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J].分析测试技术与仪器. 1996, 2(1): 14–18.
    [78] Lee W., Esparza-Soto, M., Westerhoff, P. Occurrence of dissolved organic nitrogen in US drinking water [C]. In: Proceedings of American Water Works Association Annual Conference, Orlando, Florida, June 13-17, 2004.
    [79] Scully F.E., White W.N., Boethling R.S. Reactions of drinking water contaminants with aqueous chlorine and monochloramine [C]. In: Water Contamination and Health: Integration of Exposure Assessment, Toxicology, and Risk Assessment, Wang R.G.M. Ed., Dekker, New York, NY, 1994, pp. 45–65, 1994.
    [80] Chen W., Westerhoff P., Leenheer J.A., Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environ. Sci. Technol. 2003, 37(24): 5701–5710.
    [81] Chin Y.P., Aiken G., O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances [J]. Environ. Sci. Technol. 1994, 28(11): 1853–1858.
    [82] Lochmuller C.H., Saavedra S.S. Conformational changes in a soil fulvic acid measured by time-dependent fluorescence depolarization [J]. Anal. Chem. 1986, 58: 1978–1981
    [83] Chen J., LeBoeuf E.J., Dai S., Gu B. Fluorescence spectroscopic studies of natural organic matter fractions [J]. Chemosphere. 2003, 50: 639–647.
    [84] Mobed J.J., Hemmingsen S.L., Autry J.L., McGown L.B. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction [J]. Environ. Sci. Technol. 1996, 30: 3061–3065
    [85] ?wietlik J., Sikorska E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone [J]. Water Res. 2004, 38: 3791–3799
    [86] Coble P.G. Characterization of marine and terrestrial dom in seawater using excitation–emission matrix spectroscopy [J]. Marine Chem. 1996, 51: 325–346.
    [87] McKnight D.M., Boyer E.W., Westerhoff P.K., Doran P.T., Kulbe T., Andersen D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnol. Oceanogr. 2001, 46: 38–48.
    [88] Baker A. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent [J]. Environ. Sci. Technol. 2002, 36: 1377–1382.
    [89] Korshin G.V., Kumke M.U., Li Ch-W., Frimmel F.H. Influence of chlorination on chromophores and fluorophores in humic substances [J]. Environ. Sci. Technol. 1999, 33: 1207–1212.
    [90] Mounier S., Patel N., Quilici L., Benaim J.Y., Benamou C. Three-dimensional fluorescence of the dissolved organic carbon in the amazon river [J]. Water Res. 1999, 33(6): 1523–1533.
    [91] Mounier S., Braucher R., Benaim J.Y. Differentiation of organic matter’s properties of the Rio Negro basin by cross-flow ultra-filtration and UV-spectrofluorescence [J]. Water Res. 1999, 33, 2363–2373.
    [92] Amy G.L. Collins M.R. Kuo C.J., King P.H. Comparing gel permeation chromatography and ultrafiltration for the molecular weight characterization of aquatic organic matter [J]. J. Am. Water Works Assoc. 1987, 1: 43–49.
    [93] Glooor R., Leidner H., Wuhrmann K., Fleischmann T. Exclusion chromatography with carbon detection. A tool for further characterization of dissolved organic carbon [J]. Water Res. 1981, 15: 457–462.
    [94] Zhou Q., Cabaniss S.E., Maurice P.A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances [J]. Water Res. 2000, 34(14): 3505–3514.
    [95] O’Loughlin E., Chin Y. Effect of detector wavelength on the determination of the molecular weight of humic substances by high-pressure size exclusion chromatography [J]. Water Res. 2001, 35(1): 333–338.
    [96] Wu F.C., Evans R.D., Dillon P.J. Seperation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection [J]. Environ. Sci. Technol. 2003, 37(16): 3687–3693.
    [97] Nagao S., Matsunaga T., Suzuki Y., Ueno T., Amano H. Characteristics of humic substances in the Kuji river waters as determined by high-performancesize chromatography with fluorescence detection [J]. Water Res. 2003, 37: 4159–4170.
    [98] Her N., Amy G., Foss D., Cho J., Yoon Y., Kosenka P. Optimization of method for detecting and characterizing NOM by HPLC-Size Exclusion Chromatography with UV and on-line DOC detection [J]. Environ. Sci. Technol. 2002, 36(5): 1069–1076.
    [99] Zhang X.R., Minear R.A., Barrett S.E. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS [J]. Environ. Sci. Technol. 2005, 39(4): 963–972.
    [100] Egeberg P.K., Alberts J.J. Determination of hydrophobicity of NOM by RP-HPLC and the effect of pH and ionic strength [J]. Water Res. 2002, 36: 4997–5004.
    [101] Namjesnik-Dejanovic K., Cabaniss S.E. Reverse-phase HPLC method for measuring polarity distributions of natural organic matter [J]. Environ. Sci. Technol. 2004, 38(4): 1108–1114.
    [102] White G.C. Handbook of Chlorination and Alternative Disinfectants. 4th edition [M]. Wiley, J. Ed. New York, 1999.
    [103] Morris J.C. Kinetics of reactions between aqueous chlorine and organic compounds. In: Principles and Applications of Water Chemistry [J], Faust, S.D., Hunter, J.V. Eds. New York: John Wiley & Sons, 1967, pp. 23–53.
    [104] Sandford P.A., Nafziger A.J., Jeanes A. Reaction of sodium hypochlorite with amines and amides: a new method for quntitating amino sugars in monomeric forms [J]. Anal. Biochem. 1971, 42: 422–436.
    [105] Snyder M.P., Margerum D.W. Kinetics of chlorine transfer from chloramine to amines, amino acids, and peptides [J]. Inorg. Chem. 1982, 21: 2545–2550.
    [106] Margerum D.W., Gray E.T., Huffman R.P. Chlorination and the formation of N-chloro compounds in water treatment. In: Organometals and Organometalloids, Occurrence and Fate in the Environment [J], ACS Symposium Series 82, Washington, D.C., 1978, pp. 278–291.
    [107] Isaac R.A., Morris J.C. Transfer of active chlorine from chloramine to nitrogenous organic compounds. 1. Kinetics [J]. Environ. Sci. Technol. 1983, 17: 738–742.
    [108] Hureiki L., Croue J.P., Legube B. Chlorination studies of free and combinedamino-acids [J]. Water Res. 1994, 28: 2521–2531.
    [109] Jensen J.S., Lam Y.F., Helz G.R. Role of amide nitrogen in water chlorination: proton NMR evidence [J]. Environ. Sci. Technol. 1999, 33: 3568–3573.
    [110] Lee W., Westerhoff P. Formation of organic chloramines during water disinfection - chlorination versus chloramination [J]. Water Res. 2009, 43: 2233–2239.
    [111] World Health Organization. Disinfectants and disinfectant by-products [R]. 2000.
    [112] Westerhoff P., Chao P., Mash H. Reactivity of natural organic matter with aqueous chlorine and bromine [J]. Water Res. 2004, 38: 1502–1513.
    [113] Yang X. The role of dissolved organic nitrogen in by-product formation during drinking water chloramination [D]. Hong Kong: The Hong Kong University of Science and Technology, 2007.
    [114] USEPA. National Primary Drinking Water Regulations: Disinfectants and Disinfection By-products, Final Rule [M]. Washington, DC, 1998, pp. 69390–69476.
    [115]卫生部和国家标准化管理委员会.《生活饮用水卫生标准》GB5749-2006 [S], 2006.
    [116] Simpson K.L., Hayes K.P. Drinking water disinfection by-products: an Australian prospective [J]. Water Res. 1998, 32(5): 1522–1528.
    [117] Roberson J.A., Cromwell J.E. The D/DBP rule: Where did the numbers come from [J]? J. Am. Water Works Assoc. 1995, 87(10): 46–57
    [118] Nieminski C.E., Chaudhuri S., Lamoreaux T. The occurrence of DBPs in Utah drinking waters [J]. J. Am. Water Works Assoc. 1993, 85(9): 98–105.
    [119] Bull R.J., Robinson M. Carcinogenic activity of haloacetonitrile and haloacetone derivatives in the mouse skin and lung. In: Water chlorination: Chemistry, Environmental Impact and Health Effects, Jolley, R.L. et al. Eds. Vol. 5 [M]. Lewis Publishers, USA, 1986, pp. 221–227.
    [120] Oliver B.G. Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors [J]. Environ. Sci. Technol. 1983, 17(2): 80–83.
    [121] Krasner S.W., Weinberg H.S., Richardson S.D., Pastor S.J., Chinn R., Sclimenti M.J., Onstad G.D., Thruston A.D. Occurrence of a new generation of disinfection byproducts [J]. Environ. Sci. Technol. 2006, 40: 7175–7185.
    [122] Hu J., Song H., Addison J.W., Karanfil T. Halonitromethane formation potentials in drinking waters [J]. Water Res. 2010, 44(1): 105–114.
    [123] Plewa M.J., Kargalioglu Y., Vankerk D., Minear R.A., Wagner E.D. Development of a quantitative comparative cytotoxicity and genotoxicity assays for environmental hazardous chemicals [J]. Water Sci. Technol. 2000, 42: 109–116.
    [124] Plewa M.J., Wagner E.D., Jazwierska P., Richardson S.D., Chen P.H., McKague A.B. Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity [J]. Environ. Sci. Technol. 2004, 38(1): 62–68.
    [125] Lewis Sr., R.J. Sax’s Dangerous Properties of Industrial Materials, 19th ed [M]. Van Nostrand Reinhold, New York, NY, 1996.
    [126] Kononen D.W. Acute toxicity of cyanogen chloride to daphnia magna [J]. Bull. Environ. Contam. Toxicol. 1988, 41(3): 371–377.
    [127] USEPA. Record of decision for the western groundwater operable unit OU-3, aerojet sacramento site [M], July 20, 2001.
    [128] USEPA. Integrated Risk Information System. Office of Research and Development (ORD), National Center for Environmental Assessment [OL]; 2002, http://www.epa.gov/ngispgm3/iris/search.htm.
    [129] California Department of Health Services. Studies on the Occurrence of NDMA in Drinking Water [OL], 2002. http://www.dhs.ca.gov/ps/ddwem/chemicals/NDMA/studies. htm.
    [130] Weinberg H. Disinfection byproducts in drinking water: the analytical challenge [J]. Anal. Chem. 1999, 71(23): 801A–808A.
    [131] Zhang X., Echigo S., Minear R.A., Plewa M.J. Characterization and comparison of disinfection by-products of four major disinfectants. In: Natural Organic Matter and Disinfection By-Products: Characterization and Control in Drinking Water. Barrett [M], S. E., Krasner, S. W., Amy, G. L. Eds.; American Chemical Society: Washington, DC, 2000, pp. 299–314.
    [132] Plewa M.J., Wagner E.D., Muellner M.G., Hsu K.M., Richardson S.D. Comparative mammalian cell toxicity of N-DBPs and C-DBPs, in: Karanfil, T., Krasner, S.W., Westerhoff, P., Xie Y. (Eds.), Occurrence, Formation, Health Effects and Control of Disinfection By-products in Drinking Water [J], American Chemical Society, Washington, DC, 2007.
    [133] Reckhow D.A., Singer P.C., Malcolm R.L. Chlorination of humic materials: Byproduct formation and chemical interpretations [J]. Environ. Sci. Technol. 1990, 24: 1655–1664.
    [134] Yang X., Shang C., Westerhoff P. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination [J]. Water Res. 2007, 41: 1193–1200.
    [135] Hua G.H., Reckhow D.A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size [J]. Environ. Sci. Technol. 2007, 41(9): 3309–3315.
    [136] Pourmoghaddas H., Stevens A.A. Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination [J]. Water Res. 1995, 29(9): 2059–2062.
    [137] Reckhow D.A., Platt T.L., MacNeill A.L., McClellan J.N. Formation and degradation of dichloroacetonitrile in drinking waters [J]. J. Water Supply Res. T. 2001, 50(1): 1–13.
    [138] Heller-Grossman L., Idin A., Limoni-Relis B., Rebhun M. Formation of cyanogen bromide and other volatile DBPs in the disinfection of bromide-rich lake water [J]. Environ. Sci. Technol. 1999, 33(6): 932–937.
    [139] Cowman G.A., Singer P.C. Effect of bromide on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances [J]. Environ. Sci. Technol. 1996, 30: 16–24.
    [140] Xie Y.F. Disinfection Byproducts in Drinking Water: Formation, Analysis and Control [M]. Lewis Publishers, 2004.
    [141] Nikolaou A.D., Lekkas T.D. The role of natural organic matter during formation of chlorination by-products: A review [J]. Acta Hydrochimica Et Hydrobiologica. 2001, 29(2-3): 63–77.
    [142] Barrott L. Chloral hydrate: formation and removal by drinking water treatment [J]. J. Water Supply Res. T. 2004, 53(6): 381–390.
    [143] Krasner S.W., McGuire M.J., Jacangelo J.G., Patania N.L., Reagan K.W., Aieta E.M. The occurrence of disinfection by-products in US drinking water [J]. J. Am. Water Works Assoc. 1989, 81(8): 41–53.
    [144] Choi J., Valentine R.L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product [J]. Water Res. 2002, 36: 817–824.
    [145] Wu W.W., Chadik P.A., Delfino J.J. The relationship between disinfection by-product formation and structural characteristics of humic substances in chloramination [J]. Environ. Toxicol. Chem. 2003, 22: 2845–2852.
    [146] Qi Y.N., Shang C., Lo M.C. Formation of haloacetic Acids during monochloramination [J]. Water Res. 2004, 38(9): 2375–2383.
    [147] Wachter J.K., Andelman J.B. Organohalide formation on chlorination of algal extracellular products [J]. Environ. Sci. Technol. 1984, 18(11): 811–817.
    [148] Plummer J.D., Edzwald J.K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environ. Sci. Technol. 2001, 35: 3661–3668.
    [149] Fang J.Y., Ma J., Wang L.N. Impact of preozonation on haloacetic acids and trihalomathanes formation from algae cells and extracellular organic matter. Division of Environmental Chemistry [C], 233rd American Chemical Society (ACS) National Meeting, March 25-29, Chicago, IL, USA, 2007.
    [150] Scully F.E., Howell D., Kravltz R., Jewell J.T., Hahn V., Speed M. Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfectiont [J]. Environ. Sci. Technol. 1988, 22: 537–542.
    [151] Karimi A.A., Singer P.C. Trihalomethane formation in open reservoirs [J]. J. Am. Water Works Assoc. 1991, 83: 84–88.
    [152] Greenberg A.E., Clesceri L.S., Eaton A.D., Standard Methods. Standard Methods for the Examination of Water and Wastewater, 20th Edition [M]. APHA-AWWA-WEF, Washington, DC, 1998.
    [153] Hand V.C., Margerum D.W. Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution [J]. Inorg. Chem. 1983, 22: 1449–1456.
    [154] Shang C., Blatchley III E.R. Differentiation and quantification of free chlorine and inorganic chloramines in aqueous solution by MIMS [J]. Environ. Sci. Technol. 1999, 33(13): 2218–2223.
    [155] Shang C., Gong W-L., Blatchley III E.R. Breakpoint chemistry andvolatile byproduct formation resulting from chlorination of model organic-N compounds [J]. Environ. Sci. Technol. 2000, 34 (9): 1721–1728.
    [156]国家环保局《水和废水监测分析方法》编委会.水和废水分析监测方法[M].中国环境科学出版社. 1989.
    [157] Lee W., Westerhoff, P. Dissolved organic nitrogen measurement using dialysis pretreatment [J]. Environ. Sci. Technol. 2004, 39: 879–884.
    [158] USEPA. Method 551: Determination of chlorination disinfection byproducts and chlorinated solvents in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection [M]. 1990.
    [159] USEPA. Method 552.3 Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction, derivatization, and gas chromatography with electron capture detection [M]. 2003.
    [160] Yang X., Shang C. Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS [J]. Water Res. 2005, 39(9): 1709–1718.
    [161] Bernhardt H., Hoyer O., Lusse B., Shell H. Investigations on the influence of algal-derived organic substances on flocculation and filtration. In: Huck, P.M., Toft, P. (Eds.), Treatment of Drinking Water of Organic Contaminants [M], Pergamon Press, London, 1987, pp. 185–216.
    [162] Gregor J., Mar?álek B. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods [J]. Water Res. 2004, 38: 517–522.
    [163] Hughes M.N. The inorganic chemistry of biological process, 2nd ed [J]. John Wiley Sons. 1972.
    [164] Cabaniss S.E., Zhou Q., Maurice P.A., Chin Y.-P., Aiken G.R. A log-normal distribution model for the molecular weight of aquatic fulvic acids [J]. Environ. Sci. Technol. 2000, 34: 1103–1109.
    [165] Mitch W.A., Sedlak D.L. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants [J]. Environ. Sci. Technol. 2004, 38: 1445–1454.
    [166] Wetzel R.G.,. Limnology [M]. Saunders College Publishing, New York, NY. 1983
    [167] Reckhow D.A., Platt T.L., MacNeill A.L., McClellan J.N. Formation and degradation of dichloroacetonitrile in drinking waters [J]. J. Water Supply Res. T. 2001, 50(1): 1–13.
    [168] USEPA. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule; Final Rule [M]. Washington, DC, 2006. pp. 387–493.
    [169] Mitch W.A., Schreiber I.M. Degradation of tertiary alkylamines during chlorination/chloramination: implications for formation of aldehydes, nitriles,halonitroalkanes, and nitrosamines [J]. Environ. Sci. Technol. 2008, 42 : 4811–4817.
    [170] Young M.S., Mauro D.M., Uden P.C., Reckhow D.A. The formation of nitriles and related halogenated disinfection by-products in chlorinated and chloraminated water; applications of microscale analytical procedures [J]. ACS, Environmental Chemistry Division Preprints. 1995, 35(2): 748–751.
    [171] Deborde M., von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment - kinetics and mechanisms: A critical review [J]. Water Res. 2008, 42: 13–51.
    [172] Glezer V., Harris B., Tal N., Iosefzon B., Lev O. Hydrolysis of haloacetonitriles: Linear free energy relationship, kinetics and products [J]. Water Res. 1999, 33: 1938–1948.
    [173] Joo S.H., Mitch W.A. Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines [J]. Environ. Sci. Technol. 2007, 41, 1288–1296.
    [174] Zhang X.R., Echigo S., Minear R.A., Plewa M.J. Characterization and comparison of disinfection by-products of four major disinfectants. In: Natural Organic Matter and Disinfection By-Products: Characterization and Control in Drinking Water. Barrett, S. E., Krasner, S. W., Amy, G. L. Eds. [M]; American Chemical Society: Washington, DC, 2000, pp. 299–314.
    [175] Symons J.M., Krasner S.W., Simms L.A., Sclimenti M. Measurement of THM and precursor concentrations revisited: the effect of bromide ion [J]. J. Am. Water Works Assoc. 1993, 85: 51–62.
    [176] Shukairy H.M., Miltner R.J., Summers R.S. Bromide’s effect on DBP formation, speciation and control: part I, ozonation. J. Am. Water Works Assoc. , 1994, 86, 72–87.
    [177] Koudjonou B.K., LeBel G.L. Halogenated acetaldehydes: analysis, stability and fate in drinking water [J]. Chemosphere. 2006, 64(5): 795–802.
    [178] Zhang X.R., Minear R.A. Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water [J]. Water Res., 2002, 36, 3665–3673.
    [179] Brown M.R., Garland C.D., Jeffrey S.W., Jameson I.D., Leroi J.M. The gross and amino-acid compositions of batch and semicontinuous cultures of Isochrysis Sp (Clone Tiso), Pavlova-Lutheri and Nannochloropsis-Oculata [J].J. Appl. Phycol. , 1993, 5, 285–296.
    [180] Gallard H., von Gunten U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation [J]. Water Res. 2002, 36: 65–74.
    [181] Cockell C.S., Knowland J. Ultraviolet radiation screening compounds [J]. Biol Rev. 1999, 74: 311–345.
    [182] Garcia-Pichel F., Wingard C.E., Castenholz R.W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp [J]. Appl. Environ. Microbiol. 1993, 59(1): 170–176.
    [183] Sommaruga R., Garcia-Pichel F. UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake [J]. Arch Hydrobiol. 1999, 144(3): 255–69.
    [184] Korshin G.V., Wu W.W., Benjamin M.M., Heimingway O. Correlations between differential absorbance and the formation of individual DBPs [J]. Water Res. 2002, 36: 3273–3282.
    [185] Yang X., Shang C., Lee W., Westerhoff P., Fan C. Correlations between organic matter properties and DBP formation during chloramination [J]. Water Res. 2008, 42: 2329–2339.
    [186] Peters R.J.B., de Leer E.W.B., de Galan L. Dihaloacetonitriles in Dutch drinking waters [J]. Water Res. 1990a, 24: 797–800.
    [187] Peters R.J.B., de Leer E.W.B., de Galan L. Chlorination of cyanoethanoic acid in aqueous medium [J]. Environ. Sci. Technol. 1990b, 24, 81–86.
    [188] Larson R.A., Weber E.J. Reactions with disinfectants. In: Reaction Mechanisms in Environmental Organic Chemistry [M], Lewis Publishers, Chelsea, MI, 1994.
    [189] Hua G.H. Characterization of total organic halogen produced by chlorine, chloramines, and chlorine dioxide [D]. University of Massachusetts Amherst, 2006.
    [190] Pedersen E.J., Urbansky E.T., Marinas B.J., Margerum D.W. Formation of cyanogen chloride from the reaction of monochloramine with formaldehyde [J]. Environ. Sci. Technol. 1999, 33: 4239–4249.
    [191] Dowbiggin W.B., Singer P.C. Effects of natural organic matter and calcium on ozone-induced particle destabilization [J]. J. Am. Water Works Assoc. 1989, 81: 77–85.
    [192] Grasso D., Webber W.J. Ozone-induced particle destabilization [J]. J. Am.Water Works Assoc. 1988, 80(8): 73–82.
    [193] Chang S.D., Singer P.C. The impact of ozonation on particle stability and the removal of TOC and THM precursors [J]. J. Am. Water Works Assoc. 1991, 83(3): 71–79.
    [194] Kuo C.J., Amy G.L. Factors affecting coagulation and aluminum sulfate: II. Dissolved organic carbon removal [J]. Water Res. 1988, 22(7): 862–872.
    [195] Strewart P., William D. Algal Physiology and Biochemistry [M]. University of California Press, Los Angeles, 1974.
    [196] Klare M.G., Bauer W.R., Jacobs H., Broekaert J.A.C. Degradation of nitrogen contaning organic compounds by combined photocatalists and ozonation [J]. Chemosphere. 1999, 38 (9): 2013–2027.
    [197] Stadtman E.R., Berlett B.S. Fenton chemistry. Amino acid oxidation [J]. J. Biological Chemistry. 1991, 266: 17201–17211.
    [198] Yang X., Fan C., Shang C., Zhao Q. Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds [J]. Water Res. 2010, 44 (9): 2691–2702.
    [199]刘锐平.高锰酸钾及其复合剂氧化吸附集成化除污染效能与机制[D].哈尔滨:哈尔滨工业大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700