用户名: 密码: 验证码:
CuO_x/WO_(x-)ZrO_2催化剂制备及其NH_3-SCR催化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过共沉淀法合成WO_x-ZrO_2固溶体作为载体材料,采用等体积浸渍法在载体上负载组分CuO;以NH_3-SCR活性测试、NO/NH_3的程序升温氧化、XRD、Raman光谱、紫外可见光漫反射光谱、H_2程序升温还原和NO/NH_3原位吸附与脱附测试等手段研究了催化剂组分、结构与性能的构效关系,建立了NH_3-SCR反应机理模型,进而通过动力学方法探讨了机理模型的合理性。
     CuO、WO_3和ZrO_2重量百分比为1:1:8,且焙烧温度为500°C时,催化剂的催化性能最好,在210-310°C NO转化率和N_2选择性均超过了80%,具有比商业V_2O_5-WO_3-TiO_2催化剂更好的低温NH_3-SCR活性。催化剂的NO氧化能力越强,其低温NH_3-SCR活性就越高。催化剂的NH_3吸附性能越高且对NH_3的氧化能力越弱,其高温NH_3-SCR活性越好。
     以WO_x-ZrO_2固溶体作为载体材料,一方面部分未固溶的钨组分在载体表面形成高分散的WO_x基团,不但可以提高催化剂表面的Lewis酸位和Br(?)nsted酸位浓度促进NH_3和NO在催化剂表面的吸附,而且可以抑制NH_3在催化剂表面的氧化从使催化剂的高温活性得到提高;另一方面,可以提高载体表面铜的分散性,促使WO_x与CuO_x发生结构相互作用生成含Cu~(n+)-O_2--W~(n+)基团的界面可以促进两者之间的电子相互作用,有利于NO氧化为亚硝酸根提高催化剂的低温活性。
     NH_3-SCR反应机理研究表明:CuO_x为主要的NO吸附位,WO_x为主要的NH_3吸附位。“NH_3-NO_2机理”为低温(<200°C)NH_3+NO+O_2反应的主要途径,即NO吸附于Cu位并被氧化为NO_2,然后与吸附于W位的NH_3反应生成N_2和H_2O;“NH_2-NO_2/NO机理”为高温(>250°C)NH_3+NO+O_2反应的主要途径,即NH_3在W位上被活化为NH_2,然后与吸附于Cu位的NO_2/NO反应生成N_2和H_2O。NH_3在W位上吸附进而活化为NH_2是该温度条件下NH_3-SCR反应的控速步骤。提高催化剂的低温NO氧化活性和抑制催化剂的高温NH_3氧化活性是拓宽其温度窗口的关键。
WO_x-ZrO_2 solid solution support was synthesized by a coprecipitation method before loading CuO. The catalysts were characterized by NH_3-SCR, temperature-programmed oxidation of NO/NH_3, XRD, Raman, UV-vis, H_2-TPR and NO/NH_3 adsorption, to study the relationships among the catalyst composition, structure, adsorption property and NH_3-SCR activity. The NH_3-SCR reaction mechanisms at different temperature intervals were established and validated via kinetics methods.
     The highest activity is achived over the optimized catalyst with the CuO: WO_3:ZrO_2 weight ratio of 1:1:8 and calcined at 500°C. Above 80% NO conversion and 80% N_2 selectivity ishas been obtained on this catalyst at 210-310°C, which is even better than commercial V_2O_5-WO_3-TiO_2 catalyst. The optimized catalyst present higher low-temperature NH_3-SCR activity and N_2 selectivity thanthe commercial V_2O_5-WO_3-TiO_2 catalyst. High NO oxidation activity facilitates the high NH_3-SCR activity of the catalysts in low-temperature range. The larger NH_3 adsorption capacity and lower NH_3 oxidation ability of the catalysts lead to the higher NH_3-SCR activity of catalysts in high-temperatures range. O_xidation treatment of catalyst results in an increase of NH_3-SCR activity.
     Copper oxides are well dispersed on WO_x-ZrO_2 supports due to the increased surface area by the incorporation of tungsten, and the activity for NO to NO_2 on copper sites is thereby improved. Highly dispersed WO_x clusters form on the support when the tungsten content exceeds its solubility in zirconia. Therefore, the concentration of Lewis and Br(?)nsted acid sites on the catalysts increases, facilitating the adsorption of NO and NH_3 and inhibiting the ammonia oxidation on the catalysts. Furthermore, these highly dispersed WO_x clusters strongly interact with the highly dispersed CuO_x, generating abundant Cu~(n+)-O_2--W~(n+) interfaces. The electronic interaction arising from the oxide interfaces leads to NO oxidation to nitro compounds rather than nitrates. These factors improve the activity and selectivity to nitrogen of the catalysts in NH_3-SCR reaction.
     “Ammonia-NO_2 route”at low temperatures (<200°C) and“amine -NO/NO_2”at high temperatures (>250°C) are presented for NH_3-SCR reaction over this catalyst. Copper oxides are considered as the active sites for NO adsorption and its oxidation to NO_2. The adsorption of ammonia and activation to amine is the rate-determing step for the high-temperature SCR reaction, which is effectively improved by tungsten modification. These effects improve the high-temperature NH_3-SCR activity and N_2 selectivity of catalyst. According to the above mechanism, the key factor to enlarge the temperature window of the SCR catalyst is to enhance the NO oxidation activity at low temperatures and to suppress the NH_3 oxidation activity at high temperatures.
引文
[1] Chan K, Yao X. Air pollution in mega cities in Chin. Atmos Environ, 2008, 42: 1-42.
    [2]李新民.强化火电厂污染治理工作削减SO_2和NO_x排放总量,国家环保总局污控司, 2005年.
    [3]王金南,曹东,杨金田,等.能源与环境中国2020.北京:中国环境科学出版社, 2004: 71-72.
    [4]陈景,张永俐,李关方.贵金属-周期表中一组璀璨的元素.北京:清华大学出版社, 2002: 181–182.
    [5]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学, 2000, 3: 21-25.
    [6]马垠.中国电厂烟气脱硝工艺的选择[硕士学位论文].北京:华北电力大学, 2005: 5-8.
    [7] Adler J. Ceramic diesel particulate filters. Int J Appl Ceram Techol, 2005, 2: 429-439.
    [8]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述.环境科学, 2007, 28: 1169-1176.
    [9]毛健雄,毛健全.煤的清洁燃烧.北京:科学出版社,2000: 209-298.
    [10] Xue Y, Lu G, Guo Y, et al. Effect of pretreatment method of actived carbon on the catalytic reduction of NO by carbon over CuO. Appl Catal B, 2008, 79: 262-269.
    [11] Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl Catal B, 2006, 62: 104-114.
    [12] Smirniotis P G, Sreekanth P M, Pe?a D A, et al. Manganese oxide catalysts supported on TiO_2, Al_2O_3, and SiO_2: A comparison for low-temperature SCR of NO by NH3. Ind Eng Chem Res, 2006, 45: 6436-6443.
    [13] Casanova M, Rocchini E, Trovarelli A, et al. High-temperature stability of V_2O_5/TiO_2-WO_3-SiO_2 SCR catalysts modified with rare-earths. J Alloys Compd, 2006, 408-412: 1108-1112.
    [14] Lebarbier V, Clet G, Houalla M. Relations between structure, acidity, and activity of WO_x/TiO_2: Influence of the initial state of the support, titanium oxyhydroxide, or titanium oxide. J Phys Chem, 2006, 110: 22608-22617.
    [15] Long R Q, Yang R T. Catalytic performance and characterization of VO~(2+)-exchanged titania-pillared clays for selective catalytic reduction of nitric oxide with ammonia. J Catal, 2000, 196: 73-85.
    [16] Chupin C, Veen A C, Konduru M, et al. Identity and location of active species for NO reduction by CH4 over Co-ZSM-5. J Catal, 2006, 241: 103-114.
    [17] García-BordejéE, Lázaro M J, Moliner R, et al. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: Influence of the oxidation pre-treatment. Carbon, 2006, 44: 407-417.
    [18] Liu H, Zhao J, Li C, et al. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer. Catal Today, 2005, 105: 401-406.
    [19] Li M, Yeom Y, Weitz E, et al. Possible reasons for the superior performance of zeolite-based catalysts in the reduction of nitrogen oxides. J Catal, 2005, 235: 201-208.
    [20] Busca G, Finocchio E, Ramis G, et al. On the role of acidity in catalytic oxidation. Catal Today, 1996, 32: 133-143.
    [21] Forzatti P. Environmental catalysis for stationary applications. Catal Today, 2000, 62: 51-65.
    [22] Moreno-Tost R, Santamaría-González J, Rodríguez-Castellón E, Jiménez-López A. NO reduction with ammonia employing Co/Pt supported on a mesoporous silica containing zirconium as a low temperature selective reduction catalyst. Appl Catal B, 2004, 52: 241-249.
    [23] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V_2O_5-WO_3/MoO_3-TiO_2 De-NO_x catalysts. J Catal, 1995, 155: 117-130.
    [24] Ramis G, Busca G, Cristiani C, et al. Characterization of tungsta-titania catalysts. Langmiur, 1992, 8: 1744-1749.
    [25] Wachs I E. Molecular structures of surface vanadium oxide species on titania supports. J Catal, 1990, 124: 570-573.
    [26] Deo G, Wachs I E. Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. J Catal, 1994, 146: 323-336.
    [27] Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic rduction of NO_x by ammonia over oxide catalysts: A review. Appl Catal B, 1998, 18: 1-36.
    [28] Kobayashi M, Miyoshi K. WO_3-TiO_2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability. Appl Catal B, 2007, 72: 253-261.
    [29] Liu F, He H, Ding Y, Zhang C. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B, 2009, 93: 194-204.
    [30] Brandhorst M, Zajac J, Jones D J, et al. Cobalt-, copper- and iron-containing monolithic aluminaosilicate-supported preparations for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B, 2005, 5: 267-276.
    [31] Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl Catal B, 2006, 62: 104-114.
    [32] Long R Q, Yang R T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal, 2000, 194: 80-90.
    [33] Broclawik E, Datka J, Gilb B, et al. Why Cu~+ in ZSM-5 framework is active in DeNO_x reaction-quantum chemical calculations and IR studies. Catal Today, 2002, 75: 353-357.
    [34] Xu L F, McCabe R W, Hammerle R H. NO_x self-inhibition in selective catalytic reduction with urea (ammonia) over a Cu-zeolite catalyst in diesel exhausts. Appl Catal B, 2002, 39: 51-63.
    [35] Krishna K, Seijger G B F, Bleek C M, et al. Very active CeO_2-zeolite catalysts for NO_x reduction with NH3. Chem Comm, 2002, 18: 2030-2031.
    [36] Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnO_x/Na_Y composite catalysts. J Catal, 2002, 206: 98-113.
    [37] García-BordejéE, Kapteijn F, Moulin J A. Preparation and characterisation aspects of carbon-coated monoliths. Catal Today, 2001, 69: 357-363.
    [38] García-BordejéE, Pinilla J L, Lázaro M J, et al. Role of sulphates on the mechanism of NH_3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. J Catal, 2005, 233: 166-175.
    [39] Iwamoto M. Process of catalytic technology for removal of nitrogen monoxide. Catal. Soc. Jpn., 1990, P17.
    [40] Chung S Y. In-containing H-ZSM5 zeolites with various Si/Al ratios for the NO SCR in the presence of CH_4 and O_2.PAC, TPAD and FTIR studies. Catal Today, 1999, 54: 521-529.
    [41] Miyadara T. Alumina-supported silver catalysts for the selective reduction of nitric oxide with propane and oxygen-containing compounds. Appl Catal B, 1993, 2: 199-205.
    [42] Keshavaraja A, She X, Stephanopoulos M F. Selective catalytic reduction of NO with methane over alumina catalysts. Appl Catal B, 2000, 27: 1-9.
    [43] Burch R, Halpin E, Sullivan J A. A comparison of the selective catalytic reduction of NO_x over Al_2O_3 and sulphated Al_2O_3 using CH3OH and C3H6 as reductants. Appl Catal B, 1998, 17: 115-129
    [44] Inomata M, Miyamoto A, Murakami Y. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas conditions. J Catal, 1980, 62: 140-148.
    [45] Ramis G, Busca G, Bregani F, et al. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl Catal, 1990, 64: 259-278.
    [46] Janssen F, Meijer R. Quality control of DeNO_x catalysts: Performance testing, surface analysis and characterization of DeNO_x catalysts. Catal Today, 1993, 16: 157-185.
    [47] Ozkan U S, Cai Y, Kumthekar M W. Investigation of the mechanism of ammonia oxidation and oxygen exchange over vanadia catalysts using N-15 and O-18 tracer studies. J Catal, 1994, 149: 375-389.
    [48] Pietrogiacomi D, Sannino D, Magliano A, et al. The catalytic activity of CuSO_4/ZrO_2 for the selective catalytic reduction of NO_x with NH3 in the presence of excess O_2. Appl Catal B, 2002, 36: 217–230.
    [49] Caballero A, Morales J J, Cordon A M, et al. An in situ XAS study of Cu/ZrO_2 catalysts under de-NO_x reaction conditions. J Catal, 2005, 235: 295-301.
    [50] Delahay G, Coq B, Ensuque E, et al. Interaction between nitric oxide and copper on copper zirconia sulfated catalysts. Langmuir, 1997, 13: 5588-5592.
    [51] Suárez S, Martín J A, Yates M, et al. N2O formation in the selective catalytic reduction of NO_x with NH3 at low temperature on CuO-supported monolithic catalysts. J Catal, 2005, 229: 227-236.
    [52] Sullivan J A. The effect of support and Cu precursor on the activity of supported CuO catalysts in the selective catalytic reduction of NO_x. Catal Lett, 2002, 79: 59-62.
    [53] Sullivan J A, Doherty J A. NH3 and urea in the selective catalytic reduction of NO_x over oxide-supported copper catalysts. Appl Catal B, 2005, 55: 185-194.
    [54] Centi G, Perathoner S, Biglino D, et al. Adsorption and reactivity of NO on copper-on-alumina catalysts (I). J Catal, 1995, 151: 75-92.
    [55] Centi G, Perathoner S, Biglino D, et al. Adsorption and reactivity of NO on copper-on-alumina catalysts (II). J Catal, 1995, 152: 93-102.
    [56] Centi G, Perathoner S. Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides. Appl Catal A, 1995, 132: 179-259.
    [57] Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO_2 at low temperatures. Catal Today, 2002, 73: 239-247.
    [58] Fabrizioli P, Bürgi T, Baiker A. Environmental catalysis on iron oxide–silica aerogels: selective oxidation of NH3 and reduction of NO by NH3. J Catal, 2002, 206: 143-154.
    [59] Valigi M, Gazzoli D, Pettiti I, et al. WO_x/ZrO_2 Catalysts Part 1. Preparation, Bulk and Surface Characterization. Appl Catal A, 2002, 231: 159–172.
    [60] Cortés-Jácome M A, Toledo-Antonio J A, Armendáriz H, et al. Solid Solutions of WO_3 into Zirconia in WO_3/ZrO_2 Catalysts. J Solid State Chem, 2002, 164: 339-344.
    [61] Ross-Medgaarden E I, Knowles W V, Kim T, et al. New insights into the nature of the acidic catalytic active sites present in ZrO_2-supported tungsten oxide catalysts. J Catal, 2008, 256: 108–125.
    [62] Onfroy T, Clet G, Houalla M. Acidity, Surface Structure, and Catalytic Performance of WO_x Supported on Monoclinic Zirconia. J Phys Chem B, 2005, 109: 3345-3354.
    [63] Cortés-Jácome M A, Angeles-Chavez C, Bokhimi X, et al. Generation of WO_3–ZrO_2 catalysts from solid solutions of tungsten in zirconia. J Solid State Chem, 2006, 179, 2663-2673.
    [64] Cortés-Jácome M A, Angeles-Chavez C, López-Salinas E, et al. Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO_3-ZrO_2 catalysts. Appl Catal A, 2007, 318: 178–189.
    [65] Sohn J R, Park M Y. Characterization of Zirconia-Supported Tungsten Oxide Catalyst. Langmuir, 1998, 14: 6140-6145.
    [66] Pokrovski K A, Rhodes M D, Bell A T. Effects of cerium incorporation into zirconia on the activity of Cu/ZrO_2 for methanol synthesis via CO hydrogenation. J Catal, 2005, 235: 368-377.
    [67] Chen J, Zhan Y, Zhu J, et al. The synergetic mechanism between copper species and ceria in NO abatement over Cu/CeO_2 catalysts. Appl Catal A, 2010, 377: 121-127.
    [68] Shan W, Feng Z, Li Z, et al. Oxidative steam reforming of methanol on Ce0.9Cu0.1Oγcatalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods. J Catal, 2004, 228: 206-217.
    [69] Chary V R K, Sagar G V, Naresh D, et al. Characterization and reactivity of copper oxide catalysts supported on TiO_2·ZrO_2. J Phys Chem B, 2005, 109: 9437-9444.
    [70] Chary K V R, Seela K K, Sagar G V, et al. Characterization and reactivity of niobia supported copper oxide Catalysts. J Phys Chem B, 2004, 108: 658-663.
    [71] Indovina V, Pietrogiacomi D, Campa M C. CuO_x/sulphated-ZrO_2, in situ sulphated- CuO_x/ZrO_2, and CuSO_4/ZrO_2 as catalysts for the abatement of NO with C_3H_6 in the presence of excess O_2. Appl Catal B, 2002, 39: 115–124.
    [72] Praliaud H, Mikhailenko S, Chajar Z, et al. Surface and bulk properties of Cu–ZSM-5 and Cu/Al_2O_3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons. Appl Catal B, 1998, 16: 359-374.
    [73]águila G, Gracia F, Cortés J, et al. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts. Appl Catal B, 2008, 77: 325-338.
    [74] Lu C, Qi L, Yang J, et al. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route. Adv Mater, 2005, 17: 2562-2567.
    [75] Indovina V, Occhiuzzi M, Pietrogiacomi D, et al. The Surface Composition of CuO_x/ZrO_2 Catalysts as Determined by FTIR, XPS, ESR Spectroscopies and Volumetric CO Adsorption. J Phys Chem B, 1999, 103: 9967-9977.
    [76] Cortés-Jácome M A, Toledo J A, Angeles-Chavez C, et al. Influence of synthesis methods on tungsten dispersion, structural deformation, and surface acidity in binary WO_3?ZrO_2 system. J Phys Chem B, 2005, 109: 22730-22739.
    [77] Ross-Medgaarden E I, Wachs I E. Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and raman spectroscopy. J Phys Chem C, 2007, 111: 15089-15099.
    [78] Scheithauer M, Grasselli R K, Knzinger H. Genesis and structure of WO_x/ZrO_2 solid acid catalysts. Langmuir, 1998, 14: 3019-3029.
    [79] Macht J, Baertsch C D, May-Lozano M, et al. Iglesia. Support effects on Br(?)nsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains. J Catal, 2004, 227: 479–491.
    [80] Venkov T, Dimitrov M, Hadjiivanov K. FTIR spectroscopic study of the nature and reactivity of NO_x compounds formed on Cu/Al_2O_3 after coadsorption of NO and O_2. J Mol Catal A, 2006, 243: 8–16.
    [81] Zhou R, Yu T, Jiang X, et al. Temperature-programmed reduction and temperature- programmed desorption studies of CuO/ZrO_2 catalysts. Appl Surf Sci, 1999, 148: 263–270.
    [82] Rhodes M , Bell A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO_2 catalysts Part I. Steady-state studies. J Catal, 2005, 233: 198-209.
    [83] Dow W P, Wang Y P, Huang T J. Yttria-stabilized zirconia supported copper oxide catalyst I. Effect of oxygen vacancy of support on copper oxide reduction. J Catal, 1996, 160: 155-170.
    [84] Dow W P, Wang Y P, Huang T J. Yttria-Stabilized Zirconia Supported Copper O_xide Catalyst II. Effect of O_xygen Vacancy of Support on Catalytic activity for CO O_xidation. J Catal, 1996, 160: 171-182.
    [85] Bennici S, Gervasini A. Catalytic activity of dispersed CuO phases towards nitrogen oxides (N_2O, NO, and NO_2). Appl Catal B, 2006, 62: 336–344.
    [86]águila G, Jiménez J, Guerrero S, et al. A novel method for preparing high surface area copper zirconia catalysts: Influence of the preparation variables. Appl Catal A, 2009, 360: 98–105.
    [87] Jiang X, Ding G, Lou L, et al. Catalytic activities of CuO/TiO_2 and CuO-ZrO_2/TiO_2 in NO + CO reaction. J Mol Catal A, 2004, 218: 187–195.
    [88] Ma Z, Yang C, Wei W, et al. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation. J Mol Catal A, 2005, 231: 75–81.
    [89] Zhao Y, Tao K, Wan H. Effect of zirconia phase on the reduction behaviour of highly dispersed zirconia-supported copper oxide. Catal Comm, 2004, 5: 249–252.
    [90]águila G, Guerrero S, Araya P. Influence of the crystalline structure of ZrO_2 on the activity of Cu/ZrO_2 catalysts on the water gas shift reaction. Catal Comm, 2008, 9: 2550–2554.
    [91] Devadas M, Kr?cher O, Elsener M, et al. Influence of NO_2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl Catal B, 2006, 67: 187-196.
    [92] Savara A, Li M , Sachtler W M H, et al. Catalytic reduction of NH_4NO_3 by NO: Effects of solid acids and implications for low temperature DeNO_x processes. Appl Catal B, 2008, 81: 251-257.
    [93] Ciardelli C, Nova I, Tronconi E, et al. NH3 SCR of NO_x for diesel exhausts aftertreatment: role of NO_2 in catalytic mechanism, unsteady kinetics and monolith converter modeling. Chem Engin Sci, 2007, 62: 5001-5006.
    [94] Schwidder M, Heikens S, Toni A D, et al. The role of NO_2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts: Active sites for the conversion of NO and of NO/NO_2 mixtures. J Catal, 2008, 259: 96-103.
    [95] Olsson L, Sj?vall H, Blint R J. Detailed kinetic modeling of NO_x adsorption and NO oxidation over Cu-ZSM-5. Appl Catal B, 2009, 87: 200-210.
    [96] Ramis G, Yi L, Busca G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts. J Catal, 1995, 157: 523-535.
    [97] Hu S, Apple1 T M. 15N NMR study of the Adsorption of NO and NH_3 on titania-supported vanadia catalysts. J Catal, 1996, 158: 199–204.
    [98] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NO_x and the selective catalytic oxidation of NH3: An FT-IR study. Catal Today, 1996, 28: 373-380.
    [99] Amores J M G, Escribano V S, Ramis G, et al. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. Appl Catal B, 1997, 13: 45-58.
    [100] Vargas M A L, Casanova M, Trovarelli A, et al. An IR study of thermally stable V_2O_5-WO_3-TiO_2 SCR catalysts modified with silica and rare-earths (Ce, Tb, Er). Appl Catal B, 2007, 75: 303–311.
    [101] Gutirrez-Alejandre A, Ramrez J, Busca G. A vibrational and spectroscopic study of WO_3/TiO_2·Al2O_3 catalyst precursors. Langmuir, 1998, 14: 630-639.
    [102] Naito N, Katada N, Niwa M. Tungsten Oxide Monolayer Loaded on Zirconia: Determination of Acidity Generated on the Monolayer. J Phys Chem B, 1999, 103: 7206-7213.
    [103] Satsuma A, Shimizu K, Kashiwagi K, et al. Ammonia sensing mechanism of tungstated-Zirconia thick film sensor. J Phys Chem C, 2007, 111: 12080-12085.
    [104] Sohn J R, Doh I J, Pae Y I. Spectroscopic Study of V_2O_5 Supported on Zirconia and Modified with WO. Langmuir, 2002, 18: 6280-6288.
    [105] Pe?a D A, Uphade B S, Smirniotis P G. TiO_2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 I. Evaluation and characterization of first row transition metals. J Catal, 2004, 221: 421–431.
    [106] Hadjiivanov K I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev, 2000, 42: 71-144.
    [107] Henriques C, Ribeiro M F, Abreu C, et al. An FT-IR study of NO adsorption over Cu-exchanged MFI catalysts: effect of Si/Al ratio, copper loading and catalyst pre-treatment. Appl Catal B, 1998, 16: 79-95.
    [108] Kantcheva M. FT-IR spectroscopic investigation of the reactivity of NO_x species adsorbed on Cu~(2+)/ZrO_2 and CuSO_4/ZrO_2 catalysts toward decane. Appl Catal B, 2003, 42: 89-109.
    [109] Guerrero S, Guzmán I, Aguila G, et al. Sodium-promoted NO adsorption under lean conditions over Cu/TiO_2 catalysts. Catal Comm, 2009, 11: 38-42.
    [110] Despres J, Koebel M, Kr?cher O, et al. Adsorption and desorption of NO and NO_2 on Cu-ZSM-5. Micropor Mesopor Mat, 2003, 58: 175-183.
    [111] Cheung T, Bhargava S K, Hobday M, et al. Adsorption of NO on Cu exchanged zeolites, an FTIR study: Effects of Cu levels, NO pressure, and catalyst pretreatment. J Catal, 1996, 158: 301-310.
    [112] Szanyi J,Paffett M T. The adsorption of NO and reaction of NO with O_2 on H-, NaH-, CuH-, and Cu-ZSM-5: Anin situ FTIR investigation. J Catal, 1996, 164: 232-245.
    [113] Hadjiivanov K, Dimitrov L. IR spectroscopy study of CO and NO_x adsorption on a Cu/Zr-HMS catalyst. Micropor Mesopor Mat, 1999, 27: 49-56.
    [114] Bhargava S K, Akolekar D B. Adsorption of NO and CO over transition-metal- incorporated mesoporous catalytic materials. J Colloid Interf Sci, 2005, 281: 171-178.
    [115] Chi Y, Chuang S S C. Infrared study of NO adsorption and reduction with C_3H_6 in the presence of O_2 over CuO/Al2O_3. J Catal, 2000, 190: 75-91.
    [116] Hadjiivanov K, Tsoncheva T, Dimitrov M, et al. Characterization of Cu/MCM-41 and Cu/MCM-48 mesoporous catalysts by FTIR spectroscopy of adsorbed CO. Appl Catal A, 2003, 241: 331-340.
    [117] Dandekar A, Vannice M A. Determination of the dispersion and surface oxidation states of supported Cu catalysts. J Catal, 1998, 178: 621-639.
    [118] Boccuzzi F, Chiorino A, Martra G, et al. Preparation, characterization, and activity of Cu/TiO_2 catalysts. I. Influence of the preparation method on the dispersion of copper in Cu/TiO_2. J Catal, 1997, 165: 129-139.
    [119] Chen C S, Lin J H, Lai T W, et al. Active sites on Cu/SiO_2 prepared using the atomic layer epitaxy technique for a low-temperature water–gas shift reaction. J Catal, 2009, 263: 155-166.
    [120] Morterra C, Giamello E, Cerrato G, et al. Role of surface hydration state on the nature and reactivity of copper ions in Cu-ZrO_2 catalysts: N_2O decomposition. J Catal, 1998, 179: 111-128.
    [121] Wan H, Li D, Dai Y, et al. Effect of CO pretreatment on the performance of CuO/CeO_2/γ-Al_2O_3 catalysts in CO + O_2 reactions. Appl Catal A, 2009, 360: 26-32.
    [122] Tsoncheva T, Venkov T, Dimitrov M, et al. Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. J Mol Catal A, 2004, 209: 125-134.
    [123] Chen C S, Cheng W H, Lin S S. Study of reverse water gas shift reaction by TPD, TPR and CO_2 hydrogenation over potassium-promoted Cu/SiO_2 catalyst. Appl Catal A, 2003, 238: 55-67.
    [124] Gómez-Cortés A, Márquez Y, Arenas-Alatorre J, et al. Selective CO oxidation in excess of H2 over high-surface area CuO/CeO_2 catalysts. Catal Today, 2008, 133-135: 743-749.
    [125] Mart?′nez-Arias A, Catalu(n|~)a R, Conesa J C, et al. Effect of copper-ceria interactions on copper reduction in a Cu/CeO_2/Al_2O_3 catalyst subjected to thermal treatments in CO. J Phys Chem B, 1998, 102: 809-817.
    [126] Chen J P, Yang R T. Role of WO_3 in mixed V_2O_5-WO_3/TiO_2catalysts for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis A, 1992, 80: 135-148.
    [127] Gang L, Anderson G B, Grondelle van J, Santen van R A. Intermediate species and reaction pathways for the oxidation of ammonia on powered catalysts. J Catal, 2001, 199: 107-114.
    [128] Long R Q, Yang R T. Selective catalytic oxidation of ammonia to nitrogen over Fe_2O_3-TiO_2 prepared with a Sol-Gel method. J Catal, 2002, 207: 158-165.
    [129] Jones J M, Pourkashanian M, Williams A, et al. The selective oxidation of ammonia over alumina supported catalysts-experiments and modeling. Appl Catal B, 2005, 60: 139-146.
    [130] Si Z, Weng D, Wu X, et al. Structure, acidity and activity of CuO_x/WO_x–ZrO_2 catalyst for selective catalytic reduction of NO by NH_3. J Catal, 2010, 271: 43–51.
    [131] Xu L, McCabe R W, Hammerle R H. NO_x self-inhibition in selective catalytic reduction with urea (ammonia) over a Cu-zeolite catalyst in diesel exhaust. Appl Catal B, 2002, 39: 51-63.
    [132] Busca G, Larrubia M A, Arrighi L, et al. Catalytic abatement of NO_x: Chemical and mechanistic aspects. Catal Today, 2005, 107-108: 139-148.
    [133] Shimizu K, Venkatraman T N, Song W. NMR study of tungstated zirconia catalyst: characterizing the surface of tungstated zirconia and the influence of reduction treatment. Appl Catal A, 2002, 225: 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700