用户名: 密码: 验证码:
氯化胆碱-CrCl_3·6H_2O体系中电沉积铬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬镀层因具有显微硬度高,耐磨耐蚀性能优良和外表美观等优点,在世界电镀行业中占据着举足轻重的地位,成为世界上三大镀种之一,并被广泛用于功能性和装饰性镀层。目前,获得工业应用的镀铬工艺普遍采用水溶液电解体系,根据铬的赋存价态又可分为六价铬和三价铬两大类别,我国电镀行业普遍采用传统的六价铬镀铬工艺。由于六价铬镀液对人体的危害和对环境的污染,各国政府已加强了立法管理,以期减少乃至完全禁止六价铬的使用。相对而言,三价铬镀铬工艺具有六价铬镀铬无法比拟的优点,如毒性低,分散能力和覆盖能力好等。但由于水溶液体系的限制,不论是三价铬体系还是六价铬体系,均存在电流效率不高(8-20%),析氢现象严重等问题。离子液体作为一种新型电解质,与水溶液相比,具有电化学窗口宽、可室温操作、热稳定性高、导热导电性良好等优点,能避免电沉积过程中的析氢反应,极大地提高电流效率并降低能耗。因此本文针对当前电镀铬体系六价铬污染严重和三价铬电镀电流效率低的问题,系统研究了氯化胆碱(ChCl)-CrCl3·6H2O体系中三价铬电沉积的工艺及其电化学机理。
     通过电解液电导率的研究,确定了合适的电解液配比为CrCl3·6H2O的摩尔百分含量为67%。在此基础上,通过单因子实验考察了温度、电流密度和时间对电沉积过程的影响。实验结果表明:温度升高,提高了电极反应速率,但同时也会加快腐蚀速度;增大电流密度,会使副反应增加,电流效率降低;延长电沉积时间,会导致镀层质量下降。在综合外观质量、电流效率等因素后得到了氯化胆碱(ChCl)-CrCl3·6H2O体系三价铬电沉积的最优实验条件。在未添加任何光亮剂和整平剂的条件下,电沉积获得光滑致密的铬镀层,厚度为1.66μm达到了装饰性镀层的要求。电流效率相比水溶液六价铬体系和三价铬体系分别提高了71-76和64-74个百分点。
     采用循环伏安法、电流阶跃法、电势阶跃法及电化学阻抗法等多种电化学方法,首次系统研究了三价铬在ChCl-CrCl3·6H2O体系中的电化学还原过程。稳态极化曲线证明了Cr(Ⅲ)还原过程的电子转移数为3。电流阶跃法和循环伏安法证明Cr(Ⅲ)还原是单步骤三电子的不可逆过程,反应受扩散控制,反应不存在前置反应,但有吸附的情况。理论上推导了存在吸附情况下的电化学阻抗图谱,实验结果与理论推导相吻合,吸附速率相对较快,整个反应受扩散控制。电势阶跃法的研究结果表明,Cr(Ⅲ)的电化学成核机理是三维成核并与过电位有关。当过电位较小时,Cr(Ⅲ)的电结晶过程为三维连续成核,其扩散系数为(2.56±0.33)×10-11m2·s-1。当过电位较大时,Cr(Ⅲ)的电结晶过程趋向于三维瞬时成核过程,其扩散系数和晶核数密度均与过电位无关,分别为(3.04±0.3)×10-11m2·s-1和(4.47±0.05)×1011m-2。两种成核方式的法向生长速率常数均与过电位成线性关系,晶体法向的生长没有受到任何阻滞。
     采用量子化学从头计算法,研究了ChCl-CrCl3·6H2O体系中各个相关配合物的稳定结构、振动光谱、前线轨道及自然布居分析(NPA)等电子结构信息。通过理论光谱信息与实验测定的三价铬电解液红外光谱数据比对,确定了所研究体系中三价铬的主要存在形态为CrCl(H2O)52+和CrCl3(H2O)3。探讨了各三价铬配合物结构与其氧化还原反应活性的关系,从微观结构讨论了反应可能发生的途径,在几种铬配合物中,CrCl(H2O)52+的反应活性最大,前线轨道中铬所占的比重最大,最有可能在阴极上还原。
Chromium plating has been widely used for functional and decorative coatings because of hardness, corrosion performance and aesthetic appearance, etc. In the electroplating industry, chromium plating occupies a pivotal position and is one of the world's three major platings. Currently, chromium plating process is conventionally performed by aqueous electrolytic system, which can be divided into hexavalent chromium and trivalent chromium according to the existing forms of chromium. In China, the traditional hexavalent chromium plating process has been widely used. But hexavalent chromium plating bath has environmental pollution problem, governments have strengthened the management to reduce or even a totally ban on the use of hexavalent chromium. Comparing with the hexavalent chromium, trivalent chromium plating process has many incomparable advantages, such as low toxicity, good dispersion capacity and coverage, etc. However, due to the limitation of aqueous solution, both hexavalent chromium plating process and trivalent chromium plating process exist problems such as low current efficiency (8 to 20%) and hydrogen evolution. Ionic liquids, comparing with water solution, include common properties:wide liquid range and thermal stability, lower melting points and wide electrochemical windows. The properties can avoid of hydrogen evolution reaction in the deposition process, greatly improve the current efficiency and reduce the energy consumption. In order to resolve the hexavalent chromium plating environmental pollution problem and low current efficiency problem in trivalent chromium plating, the technology and correlative theories of trivalent chromium plating in choline chloride (ChCl)-CrCl3·6H2O system were investigated.
     Electrolyte conductivity have studied to determine the appropriate ratio which was the 67% mol ratio CrCl3·6H2O. On this basis, the influence of temperature, current density and deposition time on the current efficiency, thickness, deposition rate, surface appearance and cell voltage have been obtained respectively. The results show that the temperature was directly proportional to the electrode reaction rate and the corrosion rate. The film quality deteriorated with the current density and deposition time increasing. Under the optimum conditions, the adherent chromium coating with thickness up to 1.65μm was obtained without using brighterner and leveling agent. Adopting the complex system, the current efficiency can be up to 84.44%, which increased by 71 to 76 and 64 to 74 percentage points comparing aqueous solution.
     The electrochemical reduction process of chromium in ChCl-CrCl3·6H2O system have been investigated by modern electrochemical methods, such as cyclic voltammetry, chronopotentiometry, chronoamperometry, alternating current impedance etc. Tafel curves indicated that the number of electron transferred was 3 in Cr(III) electrochemical reduction process. Chronopotentiometry and cyclic voltammetry indicated that Cr(III)/Cr is a one step irreversible process with diffusion controlled. It was found that existence of the adsorption process before reaction, and electrochemical impedance spectroscopy in this case were been theoretically derived. The experimental results agree very well with the theoretical spectroscopy. Chronoamperometry showed that the electrodeposition nucleation mechanisms of Cr(Ⅲ) is 3-D nucleation and related to overpotential. At lower overpotential, the electrocrystallization of chrome follows a 3-D progressive nucleation mechanism with a diffusion coefficient of (2.56±0.33)×10-11m2·s-1. While at higher overpotential, it follows a 3-D instantaneous nucleation mechanism. And in the latter case, diffusion coefficient and nucleus density with values of (3.04±0.3)×10-11m2·s-1 and (4.47±0.05)×1011·m-2 are independent of overpotential. However, in the both cases, the normal direction growth rate constant is directly proportional to the overpotential, and the crystal growth in normal direction undergoes no block.
     The structure, vibrational spectra, the frontier orbitals, natural population analysis (NPA) and other structure information of related complex in ChCl-CrCl3·6H2O system were studied by ab initio method. It was found that the existence of CrCl(H2O)52+ and CrCl3(H2O)3 in ChCl-CrCl3·6H2O system expect choline chloride cations, through the comparing of infrared spectral data and theoretical vibrational spectra. The relationships between the structure of trivalent chromium complexes and their redox activity were been discussed. In several chromium complexes, CrCl(H2O)52+ has maximum reactivity and has the largest proportion of chromium in the frontier orbital.
引文
[1]申泮文,车云霞,罗裕基等.无机化学丛书第八卷:钛分族、钒分族、铬分族.北京:科学出版社,1998.
    [2]阎江峰,陈加希,胡亮.铬冶金.北京:冶金工业出版社,2007
    [3]Sully A.H. and Brandes.E.A. Chromium,2nd ed., London:Butterworths,1967
    [4]李家柱,林安.三价铬电镀研究进展.材料保护,2003,3(36):11-18
    [5]王先友,电化学方法制备非晶态铬的理论及工艺研究[博士学位论文].长沙:中南工业大学,1996
    [6]丁立津.HEEF25镀铬工艺的介绍.电镀与环保,1991,2(11):38-39
    [7]曾华梁,吴仲达.电镀工艺手册.北京:机械工业出版社,1987
    [8]张汉池,张继军,刘峰.铬的危害与防治.内蒙古石油化工,2003,30:72-73
    [9]江澜,王小兰.铬的生物作用及污染治理.重庆工商大学学报:自然科学版,2004,21(4):325-328
    [10]李响.铬与健康关系.中国疗养医学,2004,13(4):237-238
    [11]王永芳.铬与健康研究进展.中国食品卫生杂志,2001,13(1):45-47
    [12]李素娟,郄文娟,张文典.铬与人体健康.中华临床与卫生,2003,2(2):64-68
    [13]郑林,周侃,翁本德等.铬与人体健康研究.广东微量元素科学,2003,10(5):11-15
    [14]陈巧珠.微量元素铬与人体健康.宁德师专学报:自然科学版,2003,15(3):244-246
    [15]李静萍,杜亚利.铬对人体的作用.甘肃科技,2003,19(12):118-119
    [16]潭西顺.危害人体健康的杀手—六价铬.劳动保护,2003,(1):6-9
    [17]李家柱,林安,甘复兴.取代重污染六价铬电镀的技术及应用.电镀与涂饰,2004,23(5):30-33
    [18]陈琼宇,李洪,李时恩等.六价铬对接触工人子代智力发育影响的研究.中国公共卫生学报,1998,17(6):356-357
    [19]Costa M. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl Pharmacol,2003,1(188):1-5
    [20]Crowther J. C. Chromium electroplating baths, US. Patent,1977,4053374
    [21]杨哲龙,屠振密,张景双等.三价铬电镀的新进展.电镀与环保,2001,2(21):1-4
    [22]李家柱,林安.三价铬电镀研究进展.材料保护,2003,3(36):8-11
    [23]王华,曾振欧,赵国鹏等.硫酸盐溶液体系中三价铬镀厚铬工艺及镀层性能研究.电镀与涂饰,2007,6:14-17
    [24]李艳Macdermid电镀三价铬工艺研究.化工技术与开发,2005,6(34):30-32
    [25]Ward J. J. B, Barnes C. Chromite coating, electrolytes, and electrolytic method of forming the coating. US. Patent,1979,4137132
    [26]焦书高.三价铬电镀装饰铬.电镀与环保,1984,4(1):47-48
    [27]Ward J. J. B, Barnes C. Trivalent chromium electroplating baths and method. US. Patent, 1978,4107004
    [28]El-Sharif M, Chrisholim C V. Electrodepostion of Thick Chromium Coatings from an Environmentally Acceptable Chromium(Ⅲ) Glycine Complex. Trans. IMF,1999, 77(4):139-144
    [29]Ibrahim S K, Gawne D T. Watson A. Corrosion and wear resistance of thick chromium deposits from accelerated Cr(Ⅲ) electrolytes. Transactions of the Institute of Metal Finishing,1998,76(4):156-161
    [30]Edigaryan A A, Polukarov Yu. Elect M. Plants from Sulfate Solution Cr(Ⅲ) and the Properties deposits of Chromium and its alloys, International Conference and Exhibition of Electrochemistry and Surface Technology Abstracts. Moscow:Institute of Physical Chemistry Russian Academy of Science,2001,25
    [31]Abd El Rehim, Sayed S, Ibrahim M. A. M. Thin films of chromium electrodepostion from a trivalent chromium electrolyte. Transactions of the Insititute of Metal Finishing,2002, 80(1):29-33
    [32]沈品华,钱宝梁.电镀铬新工艺.腐蚀与防护,2002,23(7):308~311
    [33]屠振密,杨哲龙.对几种三价铬电镀液性能的初步探讨.兵工学报,1982,4(64):37-42
    [34]屠振密,杨哲龙.甲酸盐-乙酸盐体系三价铬电镀工艺研究.材料保护,1985,6(18):8-12
    [35]杜登学,周磊,邱光正等.甲酸盐-乙酸盐体系三价镀铬的再研究.材料保护,1998,5(31):14-16
    [36]王先友,姜汉藏.甲酸盐型三价铬电镀溶液稳定性研究,电镀与涂饰,1995,2(14):1-6
    [37]姚守拙,李克平.氨基羧酸体系三价铬镀铬的研究.电镀与环保,1986,1(8):8-11
    [38]张新,李惠东,段淑贞等.三价铬例子在电沉积过程中的形态.北京科技大学学报,1995, 6(17):582~583
    [39]张新,李惠东,段淑贞等.常见杂质离子对三价铬电镀的影响.材料保护,1996,1(29)14-16
    [40]李惠东,张新.以六价格还原做铬源的三价铬电镀工艺的研究.材料保护,1993,9(26):8-12
    [41]邓登学,张长鑫.二甲基甲酰胺体系三价铬镀液的研究.材料保护,1995,5(25):19-21
    [42]邓姝皓,脉冲电沉积纳米晶格铬—镍—铁合金工艺及其基础理论研究[博士学位论文],长沙:中南大学,2003年
    [43]陈磊,龚竹青.在三价铬Cl-—SO42-体系中电沉积厚铬镀层的研究.材料保护,1999,6(32):1-3
    [44]何湘柱, 非晶态Fe—Ni—Cr合金电沉积工艺及理论研究[博士学位论文], 长沙:中南工业大学,1999年
    [45]Potter R. J, Schiffrin D. J. Chromium alloy coatings-a new method preparation. J. Electrochem. Soc.1986,3(133):547-555
    [46]Fawet W. R, Markusova K. The kinetics of electroreduction of Cr(III) at mercury in dimethyformamide solutions. J. Electroanal. Chem., Interfracial Electrochem.,1989, 1-2(270):119-135
    [47]Sarnaik K. M. et al. Cyclic voltammetric study of chromium(III) reduction in different supporting electrolytes. J. Electrochem. Soc,1989,4(38):283-287
    [48]江琳才,简素碧.铬(Ⅲ)离子阴极还原过程研究.高等学校化学学报,1989,5(10):551-556
    [49]林忠夫.日本电镀技术的发展.电镀与精饰,2002,1(24):39-43
    [50]Song Y. B, Chin D. T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process. Electrochemica Acta,2002,48:349-356
    [51]Surviliene S, Orlovskaja L, Biallozor S. Black chromium electrodeposition on electrodes modified with formic acid and the corrosion resistance of the coating. Surface and Coatings Technology,1999, (122):235-241
    [52]Edigaryan A. A, Safonov V. A, Lubnin E. N. Properties and preparation of amorphous chromium carbide electroplates. Electrochimica Acta,1999, (47):2775-2786
    [53]何湘柱,龚竹青,蒋汉瀛.三价铬离子水溶液电沉积非晶态铬的电化学.中国有色金属学报,2000,10(1):95-99
    [54]Song Y. B, Study of pulse plating and reaction mechanism of trivalent chromium deposition process[博士学位论文], Canada, Clarkson University,2000
    [55]吕玮,从三价铬镀液中电沉积非晶态铁铬合金镀层的研究[硕士学位论文],福建:福建师范大学,2002年
    [56]Danilov F, Protsenko V. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochemica Acta, 24(54):5666-5672
    [57]毛祖国,管勇,丁运虎等.硫酸盐体系三价铬电镀工艺研究.材料保护,2007,40(6):26-28
    [58]Song Y. B, Chin D. T. Pulse plating of hard chromium from trivalent baths. Plating and surface finishing,2000(87):80-87
    [59]屠振密,杨哲龙,汪沦海等.三价铬电镀机理的研究.材料保护,1985,3:17-21
    [60]黄长山,李长鸣.关于三价铬电镀铬层增厚问题的研究.电镀与精饰,1992,6:3-6
    [61]李汝雄.绿色溶剂—离子液体的合成与应用.北京:化学工业出版社.2004
    [62]张星辰.离子液体—从理论基础到研究进展.北京:化学工业出版社.2009
    [63]邓友全.离子液体—性质、制备与应用.北京:中国石化出版社.2006
    [64]张锁江.离子液体与绿色化学.北京:科学出版社.2009
    [65]王军.离子液体的性能及应用.北京:中国纺织出版社.2007
    [66]田鹏,康艳红,宋溪明.绿色溶剂—离子液体的相平衡和微观结构.北京:科学出版社.2009
    [67]王喜然,离子液体中电解精炼铝的研究[硕士学位论文],昆明,昆明理工大学,2006
    [68]李吉青,牟宗刚,鲍猛等.离子液体[bmim]BF4作溶剂合成金属酞箐.济南大学学报(自然科学版),2009(2):159-161
    [69]卢向军,窦辉,戴耀东等.磷酸酯盐离子液体的微波辅助合成及其在Knoevenagel反应中的应用.南京航空航天大学学报,2009,3(41):414-417
    [70]王孝科,田敉.离子液体萃取精馏分离乙醇—环己烷共沸物.过程工程学报,2009(2):269-273
    [71]伍小云.离子液体中二步法合成钙拮抗剂尼群地平.化工时刊,2008,12:14-16
    [72]刘春滟,李正军,张廷有.离子液体在碳酸丙烯酯合成中的作用.皮革科学与工程,2008,(6):13-17
    [73]蒋伟燕,余文轴.离子液体的分类、合成与应用.金属材料与冶金工程,2008(4):51-54
    [74]王孝科,田敉.离子液体萃取精馏分离苯-环己烷物质.石油化工,2008(9):905-909
    [75]唐传球.离子液体的研究进展.郧阳师范高等专科学校学报,2008(6):39-42
    [76]陈孝云,邱仁辉,林金春等.绿色离子液体在空气污染治理中的应用研究进展.科学技术与工程,2008,8(19):5457-5462
    [77]仇深杰,刘海燕,郑朝惠等.溶胶-凝胶法制备固载型离子液体催化剂以及在不对称双羟基化反应中的应用.石油学报:石油加工,2008(B10):328-332
    [78]Marisa C. B, Russell G. Evans, Richard G. Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem,2004,8(5):1106-1120
    [79]乐长高.离子液体及其在有机合成反应中的应用.上海:华东理工大学出版社.2007
    [80]刘鹰.离子液体在催化过程中的应用.北京:化学工业出版社.2008
    [81]Nuli Y, Yang J, Wang P. Electrodeposition of magnesium film from BMIMBF4 ionic liqud. Appled Surface Science,2006,(252):8086-8090
    [82]Amir N, Vestfrid Y, Chuside O, et al. Progress in nonaqueous magnesium electrochemistry. Journal of Power Sources,2007,(174):1234-1240
    [83]Nuli. Y, Yang. J, Wu. R. Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid. Electrochemistry Communications,2005,(7):1105-1110
    [84]Giridhar. P, Venkatesan. K. A, Srinivasan. T. G, et al. Electrochemical behavior of uranium(Ⅳ) in 1-butyl-3-methylimidazolium chloride and thermal characterization of uranium oxide deposit. Electrochimica Acta,2007,(52):3006-3012
    [85]Legeai. S, Diliberto. S, Stein. N, et al. Room-temperature ionic liquid for lanthanum electrodeposition. Electrochemistry Communications,2008,(10):1661-1664
    [86]Mukhopadhyay. I, Aravinda. C. L, Borissov D, et al. Electrodeposition of Ti from TiCl4 in the ionic liquid 1-methyl-3-butyl-imidazolium bis(trifluoro methylysulfone)imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy. Electrochimica Acta,2005,(50):1275-1281
    [87]Pradhan. D, Reddy R. G. Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-lbutyl-3-methyl imidazolium chloride (BmimCl) electrolytes. Electrochimica Acta,2009,(54):1874-1880
    [88]Zein. S, Abedin El, Welz-Biermann U, et al. A study on the electrodeposition on tantalum on NiTi alloy in an ionic liquid and corrosion behavior of the coated alloy. Electrochemistry Communications,2005,(7):941-946
    [89]Arnould. C, Delhalle J, Mekhalif Z. Multifunctional hybrid coating on titanium towards hydroxyapatite growth:Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films. Electrochimica Acta,2008,(53):5632-5638
    [90]Borisenko N, Ispas A, Zschippang E, et al. In situ STM and EQCM studies of tantalum electrodeposition from TaF5 in the air-and water-stable ionic liquid 1-butyl-1-methylphrrolidinium bis(trifluoromethlsulfonyl)amide. Electrochimica Acta, 2009,(54):1519-1528
    [91]Deng M. J, Chen P. Y, Sun I. W. Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid. Electrochimica Acta,2007,(53):1931-1938
    [92]Chen P. Y, Hussey C. L. The electrodeposition of Mn and Zn-Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid. Electrochimica Acta,2007,(52):1857-1864
    [93]Mann O, Freyland W, Raz O, et al. Electrochemical deposition of ultrathin ruthenium films on Au(111) from an ionic liquid. Chemical Physics Letters,2008,(460):178-181
    [94]Raz O, Cohn G, Freyland W, et al. Ruthenium electrodeposition on silicon from a room-temperature ionic liquid. Electrochimica Acta,2009(54):6042-6045
    [95]Jayakumar M, Venkatesan K. A, Srinivasan T. G. Electrochemical behavior of rhodium(Ⅲ) in 1-butyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta,2008, (53): 2794-2801
    [96]Aravinda C. L, Burger B, Freyland W. Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochimica Acta,2003, (48):3053-3061
    [97]Chen P. Y, Sun I. W. Electrodeposition of cobalt and zinc—cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochimica Acta, 2001,(46):1169-1177
    [98]Koura N, Endo T. Idemoto Y, et al. The electrodeposition of amorphous Co-Zn alloys from ambient temperature molten salt electrolytes. Journal of Non-Crystalline Solid,1996, (205-207):650-655
    [99]Ali M, Nishikata A, Tsuru T. Electrodeposition of Co—Al Alloys of different composition from the AICl3-BPC-CoCl2 room temperature molten salt. Electrochimica Acta, 1997,(42):1819-1828
    [100]Yang P, An M, Su C, et al. Fabrication of cobalt nanowires from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol using porous anodic alumina template. Electrochimica Acta,2008,(54):763-767
    [101]Bando Y, Katayama Y, Miura T. Electrodeposition of palladium in a hydrophobic 1-n-butyl-l-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquid. Electrochimica Acta,2007,(53):87-91
    [102]Tai C. C, Su F. Y, Sun I. W. Electrodeposition of palladium-silver in a lewis basic l-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid. Electrochimica Acta, 2005,(50):5504-5509
    [103]Hsiu S. I, Tai C. C, Sun I. W. Electrodeposition of palladium-indium from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid. Electrochimica Acta, 2006,(51):2607-2613
    [104]Huang J. F, Sun I. W. Electrodeposition of Pt Zn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim. Acta 2004, (49) 3251-3259
    [105]Gou S. P, Sun I. W, Chen P. Y, et al. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride 1-ethyl-3-methylimidazolium chloride low temperature molten salt. Electrochimica Acta,2008,(53):2538-2544
    [106]Deng M. J, Sun I. W, Chen P. Y, et al. Electrodeposition behavior of nickel in the water-and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid. Electrochima Acta,2008,(53):5812-5818
    [107]Kazeminezhad I, Barnes A. C, Holbrey J. D, et al. Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Applied Physics A,2007,(86):373-375
    [108]Bhatt A. I, Bond A. M. Electrodeposition of silver from the'distillable'ionic liquid, DIMCARB in the absence and presence of chemically induced nanoparticle formation. Journal of Electroanalytical Chemistry,2008,(619-620):1-10
    [109]Dobbs W, Suisse J. M, Douce L, et al. Electrodeposition of Silver Particles and Gold Nanoparticles from Ionic Liquid-Crystal Precursors. Angewandte Chemie. 2006,(118):4285-4288
    [110]Zein El A. S, Saad A.Y, Farag H. K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochimica Acta, 2007,(52):2746-2754
    [111]Bakkar A, Neubert V. Electrodeposition onto magnesium in air and water stable ionic liquids: From corrosion to successful plating. Electrochemistry Communications. 2007,(9):2428-2435
    [112]Hsiu S.I, Huang J. F, Sun I. W, et al. Lewis acidity dependency of the electrochemical window of zinc chloride-l-ethyl-3-methylimidazolium chloride ionic liquids. Electrochimica Acta.2002,(47):4367-4372
    [113]Wang J. G, Tang J, Fu Y. C, et al. STM tip-induced nanostructuring of Zn in an ionic liquid on Au(111) electrode surfaces. Electrochemistry Communications.2007,(9):633-638
    [114]Abbott A. P, Capper G, McKenzie K. J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. Journal of Electroanalytical Chemistry. 2007,(599):288-294
    [115]Mann O, Freyland W. Mechanism of formation and electronic structure of semiconducting ZnSb nanoclusters electrodeposited from an ionic liquid. Electrochimica Acta. 2007,(53):518-524
    [116]Lin Y. F, Sun I. W. Electrodeposition of zinc from a Lewis acidic zinc chloride-l-ethyl-3methylimidazolium chloride molten salt. Electrochimica Acta.1999,(44):2771-2777
    [117]Koura N, Suzuki Y, Idemoto Y, et al. Electrodeposition of Zn-Ni alloy from ZnCl2-NiCI2-EMIC and ZnCl2-NiCl2-EMIC-EtOH ambient-temperature molten salts. Surface and Coatings Technology.2003,(169-170):120-123
    [118]Hsiu S. I, Sun I. W. Electrodeposition Behavious of Cadmium Telluride from 1-ethyl-3-methylimidazolium Chloride Tetrafluroborate Ionic Liquid. Journal of Applied Electrochemistry.2004,(34):1057-1063
    [119]Chang J. K, Chen S. Y, Tsai W. T, et al. Electrodeposition of aluminum on magnesium alloy in aluminum chloride(AlCl3)-1-ethyl-3-methylimidazolium chloride(EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications.2007,(9):1602-1606
    [120]Jiang T, Chollier B. M. J, Dube G, et al. Electrodeposition of aluminium from ionic liquids: Part Ⅰ-electrodeposition and surface morphology of aluminium from aluminium chloride(AlCl3)-1-ethyl-3-methylimidazolium chloride([EMIm]Cl) ionic liquids. Surface and Coatings Technology.2006,(201):1-9
    [121]Liu Q. X, Zein E. A. S., Endres F. Electroplating of mild steel by aluminium in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents. Surface and Coatings Technology.2006,(201):1352-1356
    [122]Jiang T, Chollier B. M. J, Dube G, et al. Electrodeposition of aluminium from ionic liquid: Part Ⅱ-studies on the electrodeposition of aluminum from aluminum chloride(AlCl3)-trimethylphenylammonium chloride(TMPAC) ionic liquids. Surface and Coatings Technology.2006,(201):10-18
    [123]Zein E. A. S, Moustafa E. M, Hempelmann R, et al. Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochemistry Communications.2005,(7):1111-1116
    [124]Aravinda C. L, Burger B, Freyland W. Nanoscale electrodeposition of Al on n-Si(111):H from an ionic liquid. Chemical Physics Letters.2007, (434):271-275
    [125]Kamavaram V, Mantha D, Reddy R. G. Recycling of aluminum metal matrix composite using ionic liquids:Effect of process variables on current efficiency and deposit characteristics. Electrochimica Acta.2005,(50):3286-3295
    [126]Zein E. A. S, Moustafa E. M, Hempelmann R, et al. Electrodeposition of Nano-and Microcrystalline Aluminium in Three Different Air and Water Stable Ionic Liquids. ChemPhysChem.2006,(7):1535-1543
    [127]Abbott A. P, Eardley C. A, N. Farley R. S, et al. Electrodeposition of aluminium and aluminium/platinum alloys from AlCl3/benzyltrimethylammonium chloride room temperature ionic liquids. Journal of Applied Electrochemistry.2001,(31):1345-1349
    [128]Liu Q. X, Zein E. A. S, Endres F. Electroplating of mild steel by aluminium in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents. Surface and Coatings Technology.2006,(201):1352-1356
    [129]Caporali S, Fossati A, Lavacchi A, et al. High temperature corrosion properties of ionic liquids. Corr. Sci.2006,9(48):2349-2362
    [130]Tsuda T, Hussey C. L. Electrodeposition of photocatalytic AlInSb semiconductor alloys in the Lewis acidic aluminum chloride-l-ethyl-3-methylimidazolium chloride room-temperature ionic liquid. Thin Solid Films.2008, (516):6220-6225
    [131]Deng M. J, Chen P. Y, Leong T. I, et al. Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communication.2008, (10):213-216
    [132]Zein E. A. S, Saad A. Y, Farag H. K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim. Acta,2007, (52):2746
    [133]Zhao Y, Vander N. T. J. Electrodeposition of aluminium from room temperature AICl3-TMPAC molten salts. Electrochimica Acta.1997,(42):1639-1643
    [134]Jackson J. E, Olson D. L, Mishra B, et al. Deposition and characterization of Al-Si metallic TBC precursor on Mo-Si-B turbine metarials. International Journal of Hydrogen Energy. 2007, (32):3789-3796
    [135]Tsuda T, Nohira T, Ito Y. Nucleation and surface morphology of aluminum-lanthanum alloy electrodeposited in a LaCl3-saturated AlCl3-EtMelmCl room temperature molten salt. Electrochimica Acta.2002, (47):2817-2822
    [136]Ali M. R, Nishikata A, Tsuru T. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt. Journal of Electroanalytical Chemistry.2001, (513):111-118
    [137]Ali M, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AICl3-BPC melt and its corrosion and high temperature oxidation behaviors. Electrochimica Acta.1997, (42):2347-2354
    [138]Simanavicius L, Stakenas A, Sarkis A. Codeposition of aluminum with some metals from AlBr3-dimethylethylphenylammonium bromide solutions containing acetylacetonate of selected metal. Electrochimica Acta.2000, (46):499-507
    [139]Mann O, Pan G. B, Freyland W. Nanoscale electrodeposition of metals and compound semiconductors from ionic liquids. Electrochimica Acta.2009, (54):2487-2490
    [140]Tachikawa N, Serizawa N, Katayama Y, et al. Electrochemistry of Sn(Ⅱ)/Sn in a hydrophobic room-temperature ionic liquid. Electrochimica Acta.2008, (53):6530-6534
    [141]Yang M. H, Sun I. W. Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid. Journal of Applied Electrochemistry.2003, (33):1077-1084
    [142]Pan G. B, Freyland W. Electrocrystallization of Bi on Au(111) in an acidic chloroaluminate ionic liquid. Electrochimica Acta.2007, (52):7254-7261
    [143]Fung Y. S, Zhang W. B. Electrochemical deposition of superconductor alloy precursor in a low melting molten salt medium. Journal of Applied Electrochemistry.1997, (27):857-861
    [144]Abbott A. P, Capper G, Davies D. L, et al. Ionic Liquid Analogues Formed from Hydrated Metal Salts. Chem. Eur. J.2004, (10):3769-3774
    [145]Sonia E, Rangel C. M, Vilar R, et al. Electrodeposition of black chromium spectrally selective coatings from a Cr(III)-ionic liquid solution. Thin Solid Films.2010, (in press)
    [146]Abid M, Khan Z. The effect of complexing agents on the DMF-chromium(VI) reaction.A kinetic study. Transition Metal Chemistry,2003,1(28):79-84
    [147]Sarnaik K. M, Palrecha M. M, Dhaneshwar R. G. Differential pulse adsorptive voltammetric determination of chromium in aluminum. Electroanalysis.1989(1):469-471
    [148]阿伦.J.巴德,拉里.R.福克纳著,邵元华等译.电化学方法原理和应用(第二版).北京: 化学工业出版社,2005
    [149]周绍民等编著.金属电沉积—原理与研究方法.上海:上海科学技术出版社,1987
    [150]查全性等著.电极过程动力学导论(第三版).北京:科学出版社,2002
    [151]田昭武著.电化学研究方法.北京:科学出版社,1984
    [152]吴辉煌编著.应用电化学基础.厦门:厦门大学出版社,2006
    [153]贾铮,戴长松,陈玲编著.电化学测量方法.北京:化学工业出版社,2006
    [154]曹楚南,张鉴清著.电化学阻抗谱导论.北京:科学出版社,2002
    [155]方景礼.多元络合物电镀.北京:国防工业出版社,1983
    [156]Bewick A, Fleshmann M, Thirsk H R. kinetics of the electrocrystallization of thin films of calomel. Transactions of the Faraday Soc.,1962,58:2200-2216
    [157]Scharifker B, Hills G. Theoretical and experimental studies of multiple numcleation. Electrochim. Acta,1983,28:879-889
    [158]Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision. Electrochim Acta,1983,28:917-923
    [159]辜敏,杨防祖,黄令等.氯离子对铜在玻碳电极上电结晶的影响.化学学报,2002,11(60):1946-1950
    [160]Abyaneh M.Y, Hendrikx J, Visscher W. The Electrocrystallization of Zinc from Alkaline Media. J. Electrochem. Soc.,1982,129(12):2654-2659
    [161]Foreman J. B. Exploring chemistry with electronic structure methods. Gaussian Inc. Pittsburgh Pa,1996
    [162]陈飞武.量子化学中的计算方法.北京:科学出版社.2008
    [163]徐光宪,黎乐民,王德民等编著.量子化学:基本原理和从头计算法.北京:科学出版社,1999
    [164]Eleen Frisch, Michael J.Frisch. Gaussian 03 User's reference. Gaussian, Inc.2003
    [165]陈玉.过渡金属络合物成键本质分析的常用方法.化学通报,2007(9):69-73
    [166]李娜,孙世铃,刘春光等.含吡啶配体过渡金属(M=Cr(0), Mn(Ⅰ), Fe(Ⅱ), Co(Ⅲ)配合物二阶NLO性质的DFT研究, 分子科学学报,2008,5(24):307-311
    [167]雷雪玲,邹艳波,祝恒江.自旋多重度对铬分子结构的影响.新疆师范大学学报(自然科学版),2010,(2),
    [168]钟爱,黄凌,李佰林.双螺旋金属(Ⅱ)卟啉的结构、电子光谱及其反应活性.物理化学学报.2010,26(10):2763-2771
    [169]钟爱国,吴俊勇,闫华.三聚氰胺金属(Ⅱ)配合物的结构、紫外鄄可见光谱和反应活性.物理化学学报,2009,25(7):1367-1372
    [170]刘彩萍,吴克琛,洪涛.过渡金属体系非线性光学性质计算的ECP基组研究.化学学报.,2005,6(63):465-472
    [171]马骁楠,夏树伟,于良民等As(V)TiO2、Zn(II)/TiO2体系电子结构的密度泛函研究,高等学校化学学报,2009,11(30):83-88
    [172]吴阳张甜甜李静蕊.半胱氨酸阴离子与咪唑阳离子间相互作用的理论研究化学学报2009,16(67):1851-1858
    [173]赖卡特C.有机化学中的溶剂反应.北京:化学工业出版社,1987
    [174]弗莱明Ⅰ.陈如栋译.前线轨道与有机化学反应.北京:科学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700