用户名: 密码: 验证码:
以L-苯丙氨酸为“手性源”合成(S)-吲哚啉-2-甲酸及其衍生物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(S)-吲哚啉-2-甲酸及其衍生物是天然产物中广泛存在的结构片段,也是众多对心血管疾病有治疗保健作用的药物的特征结构片段,其合成难度大,传统方法存在路线长、收率低、成本高等问题,是影响相关药物制造成本的关键因素。
     (S)-吲哚啉-2-甲酸与L-苯丙氨酸的化学结构相似,手性中心相同,因此,本文提出了一种以L-苯丙氨酸为“手性源”,经引入辅助基团、分子内胺化成环、定向合成(S)-吲哚啉-2-甲酸的方法。L-苯丙氨酸为天然氨基酸,来源广泛,价格低廉,该方法具有反应步骤少、无需使用拆分剂、成本低、污染少、可从原料手性确定产物构型等优点。
     为保证L-苯丙氨酸的邻位取代顺利进行,需在其对位引入间位定位基团,本文选择硝基为辅助基团,定位效应强,生产成本低。
     首先,研究了混酸法合成4-硝基-L-苯丙氨酸的工艺。结果发现,釜式混酸硝化时反应时间长,生成的2-硝基-L-苯丙氨酸和4-硝基-L-苯丙氨酸易与浓硫酸发生缩合反应,是釜式反应收率较低的主要原因,为缩短停留时间、减少返混,特设计了管式反应器,抑制副反应,产物收率提高明显,并以正交实验优化了反应条件,在混酸中硝酸与硫酸体积比为2:1,50℃停留5min,产品收率可达80.9%。
     文献报道的混酸法难以直接制备2,4-二硝基-L-苯丙氨酸,其主要原因是第二个硝基的引入需要相对较高的反应温度,此时,混酸具有强氧化性,易将L-苯丙氨酸侧链上的苄基很氧化,得到苯甲酸衍生物。
     研究了以硝酸脲为硝化剂,以4-硝基-L-苯丙氨酸为原料,在硫酸中制备2,4-二硝基-L-苯丙氨酸的工艺,优化的工艺条件为:在60℃下反应6h,硝化剂与原料摩尔比为1.2:1,产品收率达87.7%。讨论了硝化机理,认为尿素的存在降低了硝酸的氧化性,提高了硝酰正离子的亲电能力,能够实现二硝化反应。
     尝试了以硝酸脲为硝化剂对L-苯丙氨酸的“一锅法”硝化制备2,4-二硝基-L-苯丙氨酸的工艺。分析了反应能够进行的原因,认为反应中硫酸浓度非常重要。优化了工艺条件,反应分段进行:前期单硝化时,硝酸脲与底物摩尔比为1:1,冰水浴反应2 h;后期二硝化时,补加1.2倍量的硝酸脲,在60℃反应4 h,2,4-二硝基-L-苯丙氨酸收率可达75.7%。
     为获得高纯度的2,4-二硝基-L-苯丙氨酸,测定了其在十种溶剂中的溶解度,结果表明正丙醇是合适的重结晶溶剂,以该溶剂对2,4-二硝基苯丙氨酸重结晶,可以得到高于99.5%纯度的产品,重结晶母液仍可循环使用。并用Apelblat方程对溶解度数据进行了回归,发现均方差不超过2.5%。
     着重研究了影响关键步骤2,4-二硝基-L-苯丙氨酸的分子内环合反应的因素,发现反应随温度和压力变化收率变化很大,以水为溶剂,在180℃下反应6 h,可以44.5%的收率得到6-硝基-(S)-吲哚啉-2-甲酸,其e.e.值高于99%。采用密度泛函理论对分子内氨基取代硝基的反应进行了量子化学计算,结果表明,分子内环合反应脱除亚硝酸生成6-硝基-(S)-吲哚啉-2-甲酸的反应在热力学上优于分子内脱水副反应,脱除亚硝酸释放的能量更多,产物更稳定。氨基取代硝基的反应可用于制备有机胺的反应,扩展了胺取代硝基的反应,选用了不同的硝基底物与胺,发现在相似的条件下,均三硝基苯和二硝基苯均能以较好的收率得到硝基苯胺衍生物,分析了反应机理,认为可能是由于一个硝基使另一个的活性上升所致,而硝基苯和胺分别为硬酸和硬碱,易于反应,是该反应能够进行的主要原因。
     为了获得更好的6-硝基-(S)-吲哚啉-2-甲酸的总收率,讨论了4-硝基-L-苯丙氨酸溴化环合的工艺,优化了该反应的工艺条件。其中,溴化反应以三溴异氰脲酸酯为溴化试剂,在室温反应3 h可以72.6%的收率得到2-溴-4-硝基-L-苯丙氨酸,其分子内Ullmann反应在氯化亚铜催化下进行,以碳酸钾为碱、水为溶剂,在回流温度下反应4 h,收率可达90.5%,产物没有发生消旋现象。详细讨论了各种溴化试剂的反应机理,认为三溴异氰脲酸在浓硫酸中能够多质子化,是其有效将溴正离子转移至钝化芳环的主要原因。
     6-硝基-(S)-吲哚啉-2-甲酸经催化还原、重氮化、去重氮基的“一锅”反应制备得到了(S)-吲哚啉-2-甲酸。三步反应在“一锅”内进行,反应过程的较优工艺条件为:还原反应中,使用5%钯碳为催化剂催化加氢,以水为溶剂,氢气压力为0.5 MPa,60℃反应4 h;重氮化反应在冰水浴中反应3 h;脱除重氮基的反应在55℃下反应3 h。在上述条件下,三步反应的总收率可达85.9%,e.e.值高于99.5%。
     (S)-吲哚啉-2-甲酸在Pd/C催化下,可还原为(2S,3aS,7aS)-八氢吲哚-2-甲酸,将其固载在Wang树脂载体上,与预先合成的N-[1-(S)-乙氧羰基丁基]-(S)-丙氨酸反应,可制备培哚普利,收率可达87.8%,将培哚普利与叔丁胺反应,制备得到了临床上广泛使用的培哚普利叔丁胺盐。
     反应过程的相关中间体和产物结构均经过了IR,1HNMR和13CNMR等检测,证明结果正确,所有中间体和产物的旋光度均经过检测,其e.e.值均经过手性柱进行HPLC分析,结果表明其e.e.均高于99%。
(S)-Indoline-2-carboxylic acid and its derivatives are common building block in natural products and it is the characteristic structure fragment of many drugs which are effective for cardiovascular diseases treatment. The synthesis of (S)-indoline-2-carboxylic acid suffers from much difficulty. Multistep, low yield and high cost, which are the main drawback in traditional methods, contribute the ex-tremely high cost of related drugs. The great similarities both in chemical structure and stereochemical configuration between (S)-indo line-2-carboxy lic acid and L-phenylalanine inspire us to carry out a chiral pool route from L-phenylalanine for its facile commercial availability and low price. Thus, this dissertation presents a chiral pool route for the synthesis of (S)-indoline-2-carboxylic acid following the procedure combined with assistant-group introduction and intramolecular ami-no-cycling. It benefits from wide raw material source, concise route, no resolution reagent, low cost, less pollution release and specific configuration.
     A blocking group is needed in the para position of L-phenylalanine for its subs-titution will firstly occur at that position. A meta guiding group will ensure the second substitution taking place at the ortho place of L-phenylalanine. In this dissertation, nitro group was adopted for its powerful guiding capability and low cost.
     The nitration of L-phenylalanine with mixed acid could give 4-nitro-L-phenylalanine in low yield with traditional batch reaction. The structure of the by-product was confirmed with 1H-NMR and 13C-NMR. And it is thought to be the con-densation of 2-nitro-L-phenylalanine and 4-nitro-L-phenylanine with sulfuric acid. Based on this, the possible mechanism was proposed and a new tubular reactor was designed. With the tubular reactor,4-nitro-L-phenylalanine can be got in 80.9% yield with optimized conditions as 50℃for 5min in vHNO3:vH2SO4=1:2. The synthesis of 2,4-dinitro-L-phenylalanine following previous way was a failure. The results showed that the main product was 2,4-dinitro benzoic acid instead of 2,4-dinitro-L-phenylalanine. And the reason is that the mixed acid showed high oxid- ative capability and the amino acid moisture was cleaved from the benyl site. Subs-quently, the preparation of 2,4-dinitro-L-phenylalanine follows a stepwise procedure.
     The nitration of 4-nitro-L-phenylalanine with urea nitrate/H2SO4 affords 2,4-dintro-L-phenylalanine in 87.8% yield at 60℃for 6h. The possible mechanism was discussed. It was thought that the urea greatly decreased the oxidative capability of nitric acid and enhanced the electrophilicity of NO2
     As sulfuric acid was the only solvent in both nitation, "one-pot" way was tried to synthesize 2,4-dinitro-L-phenylalanine. And the results demonstrated that it could not get the product with nitric acid and urea nitrate as the nitrating reagents for the huge water contained in nitric acid but could give the product with urea nitrate as the sole nitrating reagent. The optimized "one-pot" procedure was 75.7% yield-reaction oper-ated as follows:ice-water bath for 2h with lmole ratio urea nitrate, after that an addi-tional 1.2 mole of urea nitrate was added, the temperature was raised to 60℃, and kept for 4h.
     The solubilities of 2,4-dinitro-L-phenylalanine in ten different solvents were measured with a synthetic method to find a proper recrystillization solvent to deal with its difficult workup process. And the solubility data was regressed with Apelblat founction. The results demonstrated that 1-propanol was a suitable solvent for its re-crystillization and Apelblat founction fitted the solubility data with a root-mean-square relative deviation (rmsrd) less than 2.5%.
     The factors affecting intramolecular cyclization of 2,4-dinitro-L-phenylalanine was especially emphasized. Yields varied with the reaction temperature and pressure and 6-nitro-(S)-indoline-2-carboxylic acid could be got in 44.5% yield at 180℃for 6h in water with e.e. higher than 99%. Density founctional theory (DFT) was used to investigate the reaction. Results showed that the intramolecular reaction was the do-minating reaction and the reason why the reaction could proceed was that the intra-molecular cylization released more energy than the side reaction. The nitro amination reaction was researched in detail with expanded substrates and amines. Similar or higer yield could be got under similar conditions with trinitrobenzene and dinitroben-zenes as substrates. The possible mechanism was that the remaining nitro group could enhance the activity of the leaving one and that the nitrobenzene analogues and amines were hard acid and hard base, respectively, which properly matched.
     Meanwhile, another process was successfully performed starting with 4-nitro-L-phenylalnine through bromination and cyclization for the low yields of its nitro amination. The bromination with tribromoisocyanuric acid (TBCA) in H2SO4 at room temperature could give 72.6% yield of 2-bromo-4-nitro-L-phenylalanine, of which the intramolecular Ullmann reaction catalyzed by CuCl can give 6-nitro-(S)-indoline-2-carboxylic acid in 90.5% yield with water as solvent and K2CO3 as base. No racemizition was observed in the whole process and the enanti-omeric excess (e.e.) of product was higher than 99.5%. The possible mechanism was detailed discussed. Protonated tribromoisocyanuric acid (TBCA) can transfer Br to deactivated aromatics.
     The subsequently nitro-reduction, diazo-reaction and dediazo-reaction of 6-nitro-(S)-indoline-2-carboxylic acid was carried out with a "one-pot" way to get (S)-indoline-2-carboxylic acid. The yield of the "one-pot" reaction was 85.9% under the optimized conditions.
     (25,3aS,7aS)-Octahydroindole-2-carboxylic acid could be got with the reduc-tion of (S)-indo line-2-carboxylic acid catalyzed by 5% Pd/C with 75% yield, and it was loaded on Wang resin and subsequently react with N-[1-(S)-ethoxycarbonyl butyl]-(S)-glycine to prepare perindopril in 87.8% yield.
     All the intermediates and product were confirmed with IR, 1HNMR and 13CNMR. The optical rotations were checked and the enantiomer excess (e.e.) were confirmed with chiral high performance liquid chromatography (HPLC), which showed more than 99% purity.
引文
[1]王锋鹏.生物碱化学[M].化学工业出版社.北京.2008.
    [2]Freund, M. and Lebach G. Indoline colour pigments [J]. Berichte Der Deutschen Chemis-chen Gesellschaft.1903.36:308-309.
    [3]Weissgerber, R. The indoline in coal tar [J]. Berichte Der Deutschen Chemischen Gesell-schaft,1910,43:3520-3528.
    [4]Gorman, M., Neuss N., and Svoboda G.H. Vinca alkaloids.4. Structural features of Leuro-sine and Vincaleukoblastine, representatives of a new type of indole indoline alkaloids [J]. Journal of the American Chemical Society,1959,81(17):4745-4746.
    [5]Galeffi, C., Lupi A., and Marinibettolo G.B. Alkaloids of Strychnos.29. new indoline alka-loids from Strychnos-Fendleri (Sprague and Sandwith) [J]. Gazzetta Chimica Italiana,1976, 106(7-8):773-777.
    [6]Rolland, Y., Kunesch, N., Poisson, J., et al. Alkaloids of Voacanga.16. C-13 nuclear mag-netic-resonance spectroscopy of naturally occurring substances.43. C-13 nuclear magnet-ic-resonance analysis of bis-indoline alkaloids of 2 Voacanga species [J]. Journal of Or-ganic Chemistry,1976,41(20):3270-3275.
    [7]Chen, W.S., Li, S. H., Kirfel A., et al. Indoline alkaloids from Kopsia-Officinalis Tsiang [J]. Liebigs Annalen Der Chemie,1981,(10):1886-1892.
    [8]He, Y.L., Chen W.M., and Feng X.Z. Melomorsine, a new dimeric indoline alkaloid from Melodinus-Morsei [J]. Journal of Natural Products,1994,57(3):411-414.
    [9]Horiuchi, T., Miura, H., and Uchida, S. Highly-efficient metal-free organic dyes for dye sensitized solar cells [J]. Chemical Communications,2003, (24):3036-3037.
    [10]Horiuchi, T., Miura, H., Sumioka, K., et al. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J]. Journal of the American Chemical Society,2004, 126(39):12218-12219.
    [11]Schmidt-Mende, L., Bach, U., Humphry-Baker, R., et al. Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Advanced Materials,2005,17(7):813-815.
    [12]Ito, S., Miura, H., Uchida, S., et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chemical Communications,2008, (41):5194-5196.
    [13]Ogura, R.Y., Nakane, S., Morooka, M., et al. High-performance dye-sensitized solar cell with a multiple dye system [J]. Applied Physics Letters,2009,94(7):073308(1-3).
    [14]Huettner, J.E. Indole-2-carboxylic acid-α competitive antagonist ofpotentiation by glycine at the Nmda receptor [J]. Science,1989,243(4898):1611-1613.
    [15]Allen. M.W., Bothwell, T. G.. Slaughter. B. D., et al. Indoline:a novel fluorescent probe of peptide backbone dynamics [J]. Biophysical Journal,2002,82(1):428a.
    [16]Esenturk, O. and Walker R.A. Indoline: a versatile probe of specific and non-specific sol-vation forces[J]. Physical Chemistry Chemical Physics,2003,5(10):2020-2026.
    [17]Allen, M.W., Unruh, J. R., Slaughter, B. D., et al. Spectroscopy and photophysics of indo-line and indoline-2-carboxylic acid [J]. Journal of Physical Chemistry A,2003,107(30): 5660-5669.
    [18]Poondra, R.R., Kumar, N. N., Bijian, K. et al. Discovery of indoline-based, natural product like compounds as probes of focal adhesion kinase signaling pathways [J]. Journal of Combinatorial Chemistry,2009, 11(2):303-309.
    [19]胡敏培.血管紧张素转化酶抑制剂(ACE-1)国内外开发应用概况及进展[J].上海医药情报研究,1995,(1):1-6,14.
    [20]Goodman, F.R., Weiss, G.B., and Hurley, M.E. Pentopril in New Drugs Annual:Cardi-ovascular Drugs, S. Alexander., Editor.1985, Raven Press:New York.57-69.
    [21]Oonishi H. and Kosuzume K. Indolinecarboxylic acid derivatives [P]. JP57081460,1982.
    [22]Renfroe, H. B., Stanton, J. L. and Sele, A. 1-Carboxyazaalkylindolin-2-carboxylic acids, pharmaceutical compositions containing them and their therapeutical use [P]. EP51301, 1982.
    [23]Gruenfeld, N. l-Carboxyalkanoylindoline-2-carboxylic acids [P]. US4374847, US 4479963, 1984.
    [24]Bohacek, R., De Lombaert, S., McMartin, C., et al. Pharmaceuticals division, three dimen-sional models of ACE and NEP inhibitors and their use in the design of potent dual ACE/NEP inhibitors [J]. Journal of the American Chemical Society,1996,118(35): 8231-8249.
    [25]Garrett, C. E., Chen, G.-P., Lee, G. T., et al. Preparation of (2R)-2,3-dihydro-1-[[4-[[5-methyl-2-[4-(trifluoromethyl)phenyl]-4-oxazolyl]methoxyjphenyljsulfonyl]-1H-indole-2-carboxylic acid as peroxisome proliferator-activated receptor (PPAR)/agonist [P]. WO2007009080,2007.
    [26]Lebreton, L., Dumas, C., Massardier, C., et al. New sulfonylindoline derivative LXR recep-tor modulators, their preparation, and their therapeutic use [P]. FR2886293,2006.
    [27]Vincent, M., Baliarda, J., Marchand, B., et al. Industrial preparation of (2S,3aS,7aS)-per hydroindole-2-carboxylic acid as intermediate for antihypertensive perindopril [P]. EP308339,1989.
    [28]Kujala, T., Loponen J., and Pihlaja K. Betalains and phenolics in red beetroot (Beta vulga-ris) peel extracts: Extraction and characterization [J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences,2001,56(5-6):343-348.
    [29]Boger, D.L., Boyce, C. W., Garbaccio, R. M., et al. CC-1065 and the duocarmycins: Syn-thetic studies [J]. Chemical Reviews,1997,97(3):787-828.
    [30]Hudson, C.B. and Robertso A. V. Synthesis and chemistry of dl-indoline-2-carboxylic acid [J]. Australian Journal of Chemistry,1967,20(9):1935-1941.
    [31]Corey, E.J., Mccaully, R.J., and Sachdev, H.S. Studies on asymmetric synthesis of α-amino acids.1. α new approach [J]. Journal of the American Chemical Society,1970,92(8): 2476-2488.
    [32]Youn, I.K., Yon, G.H., and Pak, C.S. Magnesium-methanol as a simple convenient reduc-ing agent for α,β-unsaturated esters [J]. Tetrahedron Letters,1986,27(21):2409-2410.
    [33]Fagan, G.P., Chapleo, C. B., Lane, A. C. et al. Indoline analogs of idazoxan:potent α2-antagonists and α1-agonists [J]. Journal of Medicinal Chemistry,1988,31(5):944-948.
    [34]Martin, P. The access to the three subunits of the antitumor antibiotic CC-1065 by hetero cope rearrangement of vinyl N-phenylhydroxamates [J]. Helvetica Chimica Acta,1989, 72(7):1554-1582.
    [35]Collot, V., Schmitt, M., Marwah, A. K., et al. Synthesis of 3-phenylindoline-2-carbox-amides as semi-rigid phenylalanine mimetics [J]. Tetrahedron Letters,1997,38(46): 8033-8036.
    [36]Vigushin, D.M., Brooke, G., Willows, D., et al. Pyrazino[1,2-α]indole-1,4-diones, simple analogues of gliotoxin, as selective inhibitors of geranylgeranyltransferase Ⅰ [J]. Bioorgan-ic & Medicinal Chemistry Letters,2003,13(21):3661-3663.
    [37]Kurokawa, M. and Sugai, T. Both enantiomers of N-Boc-indoline-2-carboxylic esters [J]. Bulletin of the Chemical Society of Japan,2004,77(5):1021-1025.
    [38]Jorgensen, M.R., Olsen, C. A., Mellor, I. R., et al. The effects of conformational constraints and steric bulk in the amino acid moiety of philanthotoxins on AMPAR antagonism [J]. Journal of Medicinal Chemistry,2005,48(1):56-70.
    [39]Hlasta, D.J., Luttinger, D., Perrone, M. H., et al. a-2-Adrenergic agonists antagonists-the synthesis and structure-activity-relationships of a series of indolin-2-yl and tetrahydroqui-nolin-2-yl imidazolines [J]. Journal of Medicinal Chemistry,1987,30(9):1555-1562.
    [40]Hlasta, D. J. Preparation of antidepressant 2-(4,5-dihydro-1H-imidazolyl)-dihydro-lH-indoles,-1,2,3,4-tetrahydroquinolines, and-1H-indoles [P]. US5017584,1991.
    [41]Pierini, A.B., Cardozo, M. G., Montiel, A. A. et al.1,3-Dipolar cyclo-addition reactions-regioselective synthesis of heterocycles and theoretical-studies [J]. Journal of Heterocyclic Chemistry,1989,26(4):1003-1008.
    [42]Reimann, E., Erdle, W., and Unger, H. Selective catalytic hydrogenation and hydrogenoly-sis. Part 7. Stereoselective synthesis of 1-acyl-2,3-dihydro-2-carbalkoxy-1H-indoleacetic acid esters [J]. Pharmazie,1999,54(6):418-421.
    [43]Ontoria, J.M., Di Marco, S., Conte, I., et al. The design and enzyme-bound crystal structure of indoline based peptidomimetic inhibitors of hepatitis C virus NS3 protease [J]. Journal of Medicinal Chemistry,2004,47(26):6443-6446.
    [44]Shou, X.H., Miledi R., and Chamberlin A.R. Indole-and indoline-based kainate analogues with antagonist activity at ionotropic glutamate receptors [J]. Bioorganic & Medicinal Chemistry Letters,2005,15(17):3942-3947.
    [45]Chandrasekhar, S., Basu D., and Reddy C. R. Palladium-catalyzed reduction of N-(tert-butoxycarbonyl)indoles by polymethylhydrosiloxane [J]. Synthesis,2007, (10): 1509-1512.
    [46]Huebner, C. F., Francis, J. E. Preparation of 2,3-dihydro-2-(4,5-dihydroimidazol-2-yl) in-doles for reducing intraocular pressure [P]. US4912125,1990.
    [47]Kuwano, R., Sato K. and Ito Y. Hydrogenation of five-member ed heteroaromatic com-pounds catalyzed by a rhodium-phosphine complex [J]. Chemistry Letters,2000, (4):428-429.
    [48]Kuwano, R., Sato, K., Kurokawa, T., et al. Catalytic asymmetric hydrogenation of hete-roaromatic compounds, indoles [J]. Journal of the American Chemical Society,2000, 122(31):7614-7615.
    [49]Kuwano, R. and Kashiwabara M. Ruthenium-catalyzed asymmetric hydrogenation of N-Boc-indoles [J]. Organic Letters,2006,8(12):2653-2655.
    [50]Kuwano, R., Kashiwabara, M., Sato, K., et al., Catalytic asymmetric hydrogenation of in-doles using a rhodium complex with a chiral bisphosphine ligand PhTRAP [J]. Tetrahe-dron-Asymmetry,2006,17(4):521-535.
    [51]Kuwano, R. Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles [J]. Journal of Synthetic Organic Chemistry Japan,2007,65(2):109-118.
    [52]Kuwano, R. Catalytic asymmetric hydrogenation of 5-membered heteroaromatics [J]. He-terocycles,2008,76(2):909-922.
    [53]Mrsic, N., Jerphagnon, T., Minnaard, A. J., et al. Asymmetric hydrogenation of 2-substituted N-protected-indoles catalyzed by rhodium complexes of BINOL-derived phosphoramidites [J]. Tetrahedron:Asymmetry,2010.21(1):7-10.
    [54]Yanada, R., Bessho, K. and Yanada, K. Metallic samarium and iodine in alcohol-selective 1,4-reduction of alpha,beta-unsaturated carboxylic-acid derivatives [J]. Synlett,1995, (5): 443-444.
    [55]Yanada, R., Negoro, N., Bessho, K., et al. Metallic samarium and iodine in alcohol-dea-cylation and dealkyloxycarbonylation of protected alcohols and lactams [J]. Synlett,1995, (12):1261-1263.
    [56]Katritzky, A.R. and Sengupta, S. Carbon-dioxide-a reagent for simultaneous protection of nucleophilic centers and the activation of alternative locations to electrophilic attack.10. alpha-met all at ion of tetrahydroquinoline and indoline via their lithium carbamates-a versatile one-pot procedure [J]. Journal of the Chemical Society-Perkin Transactions 1, 1989, (1):17-19.
    [57]Vincent, M., Marchand, B.; Remond, G.; et al, Synthesis and ACE inhibitory activity of the stereoisomers of perindopril (S 9490) and perindoprilate (S 9780) [J]. Drug Design and Discovery,1992,9(1):11-28.
    [58]钱超,张家森,刘建青,等.S-(-)-2-羧基吲哚啉的制备研究.[J]高校化学工程学报,2006,20(3):422-427.
    [59]Pierini, A.B., Cardozo, M. G., Montiel, A. A. et al 1.3-Dipolar cyclo-addition reactions-regioselective synthesis of heterocycles and theoretical-studies [J]. Journal of Heterocyclic Chemistry,1989,26(4):1003-1008.
    [60]Wang, Z.-X., Raheem, M. A. and Weeratunga, G. New processes for the preparation of opt-ically pure indoline-2-carboxylic acid and N-acetylindoline-2-carboxylic acid by resolution with camphorsulfonic acid and phenylglycinol [P]. WO2006053440,2006.
    [61]Miyata, S., Fukuda, H. and Imamura, S. Resolving agent for N-acetylindoline-2-carboxylic acid and method for preparing optically active N-acetylindoline-2-carboxylic acid [P]. EP171616,1986.
    [62]Chava, S., Bandari, M. and Madhuresh, K. S. Resolution of racemic organic acids with chiral 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-l-naphthalen -amine resolving agents [P]. WO2006013581,2006.
    [63]Souvie, J. C. and Lecouve, J. P. Method for the synthesis of (2S)-indoline-2- carboxylic acid for use in the synthesis of perindopril [P]. EP1348684.2003.
    [64]Buzby, G. C. Jr. Chemical resolution of (±)-2,3-dihydroindole-2-carboxylic acid [P]. US4520205,1985.
    [65]Kim, D. H., Guinosso, C. J., Buzby, G. C. Jr., et al. (Mercaptopropanoyl)indoline-2-carbo-xylic acids and related compounds as potent angiotensin converting enzyme inhibitors and antihypertensive agents [J]. Journal of Medicinal Chemistry,1983,26(3):394-403.
    [66]Asada, M., Hamaguchi, S., Nakamura, Y., et al. Manufacture of optically active indo-line-2-carboxylic acid by immobilized enzymme or microbe [P]. JP61092596,1986.
    [67]Cho, N. R., Lim, J. H. and Kim, J. K. Process for preparation of methyl (S)-indoline-2-carboxylate via enzymic hydrolysis of racemic methyl indoline-2-carboxylate [P]. WO2005051910,2005.
    [68]Le, G. F. Process for the synthesis of(2S,3aS,7aS)-perhydroindole-2-carboxylic acid and its esters, useful intermediates in the manufacture of perindopril, via resoln. of 2,3-dihydro indole-2-carboxylic acid alkyl esters and catalytic hydrogenation of (2S)-2,3-dihydro in-dole-2-carboxylic acid [P]. FR2883874,2006.
    [69]De Vries, J. G., De Lange, B., De Vries, A. H. M., et al. Process for the preparation of enantiomerically enriched indoline-2-carboxylates via cyclization of substituted phenylala-nines [P]. EP1676838,2006.
    [70]De Vries, A. H. M., De Vries, J. G., Van Assema, F. B. J., et al. Process for the preparation of enantiomerically enriched indoline-2-carboxylic acids via cyclization of phenylalanine derivatives [P]. WO2006069799,2006.
    [71]Viswanathan, R., Prabhakaran, E. N., Plotkin, M. A., et al. Free radical-mediated aryl amination and its use in a convergent [3+2] strategy for enantioselective indoline a-amino acid synthesis [J]. Journal of the American Chemical Society,2003,125(1):163-168.
    [72]Buzby, G. C. Jr, Bell, B., Winkley, M. W., et al. Process for the asymmetric synthesis of chiral indoline-2-carboxylic acids [P]. US4644081,1987.
    [73]Winkley, M. W. and McCaully, R. J. Process for preparing indoline-2-carboxylic acids via alpha-hydroxy-2-nitrobenzenepropanoic acid [P]. US4585879,1986.
    [74]Winkley, M. W. and McCaully, R. J. Process for preparing indoline-2-carboxylic acids via alpha-hydroxy-2-nitrobenzenepropanoic acid[P]. US4785118,1988.
    [75]陈新志,钱超.一种制备(S)-吲哚啉-2-甲酸的方法[P].中国发明专利,CN200510049887.4,2005.
    [76]Blaser, H.U. The chiral pool as a source of enantioselective catalysts and auxiliaries [J]. Chemical Reviews,1992,92(5):935-952.
    [77]王晓东,姚金水,魏明星,等.手性识别及氨基酸类手性固定相的研究进展[J].有机化学,2006,26(7):912-921.
    [78]刘伟山,陶国宏,何玲,等.功能化的离子液体:手性离子液体的合成与应用[J].有机化学,2006,26(8):1031-1038.
    [79]孙洪海,高宇,翟永爱,等.手性离子液体的合成[J].化学进展,2008,20(5):698-712.
    [80]李冀新,张超.L-苯丙氨酸生产及应用研究现状[J].氨基酸和生物资源,2006,28(2):51-56.
    [81]Meier, M. and Ruechardt, C. Synthetic potential of the isocyanide-cyanide rearrangement [J]. Chemische Berichte,1987,120(1):1-4.
    [82]Waykole, L.M., McKenna, J. J., Bach, A. et al. Amino acids as a chiral pool:synthesis of (S)-and (R)-2-N-carbomethoxy-5-aminoindane from (S)-and (R)-phenylalanines [J]. Syn-thetic Communications,2007,37(7-9):1445-1454.
    [83]Song, Y.L., Tan, J. Z., Luo, X. M. et al. Utilization of 3'-carboxy-containing tyrosine de-rivatives as a new class of phosphotyrosyl mimetics in the preparation of novel non-phosphorylated cyclic peptide inhibitors of the Grb2-SH2 domain [J]. Organic & Bio-molecular Chemistry,2006,4(4):659-666.
    [84]Gopalsamy, A. and Shi, M. Novel synthetic approach to 6,7-dihydro-5H-imidazo[1,5-a]-pyrazin-8-ones [J]. Organic Letters,2003,5(21):3907-3909.
    [85]Basler, B., Brandes, S., Spiegel, A. et al. Total syntheses of Kelsoene and Preussin [J]. Natural Products Synthesis I:Targets Methods Concepts,2004,243:1-42.
    [86]Svete, J. Ex-chiral pool enaminones in the synthesis of functionalised heterocycles [J]. Monatshefte Fur Chemie,2004,135(6):629-647.
    [87]Majumdar, M.P. and Kudav, N.A. Nitration of organic-compounds with urea nitrate sul-furic acid [J]. Indian Journal of Chemistry Section B-Organic Chemistry Including Medi-cinal Chemistry,1976,14(12):1012-1013.
    [88]Mundla, S. R. Regioselective synthesis of 4-halo ortho-dinitrobenzene derivatives [J]. Te- trahedron Letters,2000,41(22):4277-4279.
    [89]Almog, J., Klein, A., Sokol, A., et al. Urea nitrate and nitrourea:powerful and regioselec-tive aromatic nitration agents [J]. Tetrahedron Letters,2006,47(49):8651-8652.
    [90]Ramana, M. M. V., Malik, S. S. and Parihar, J. A. Guanidinium nitrate: a novel reagent for aryl nitrations [J]. Tetrahedron Letters,2004,45(47):8681-8683.
    [91]Oxley, J. C., Smith, J. L., Moran, J. S., et al. Aromatic nitration using nitroguanidine and EGDN [J]. Tetrahedron Letters,2008,49(28):4449-4451.
    [92]Hajipour, A. R., Zarei, A., Khazdooz, L., et al. Supported tetramethylamonium nitrate sili-casulfuric acid as a useful reagent for nitration aromatic compounds under solvent-free conditions [J]. Synthetic Communications,2005,35(17):2237-2241.
    [93]Yadav, J.S. and Meshram, H.M. Green twist to an old theme. An eco-friendly approach [J]. Pure and Applied Chemistry,2001,73(1):199-203.
    [94]Zolfigol M. A., Mirjalili B. F., Bamoniri A., et al. Nitration of aromatic compounds on si-lica sulfuric acid [J]. Bulletin of the Korean Chemical Society,2004,25(9):1414-1416.
    [95]Shokrolahi, A., Zali, A. and Keshavarz, M.H. Wet carbon-based solid acid/NaNO3 as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions [J]. Chinese Chemical Letters,2007,18(9):1064-1066.
    [96]Botvay, A., Mathe, A. and Poppl, L. Nitration of polyethersulfone by ammonium nitrate and trifluoroacetic anhydride [J]. Polymer,1999,40(17):4965-4970.
    [97]Smith, K., Gibbins T, Millar R W, et al. A novel method for the nitration of deactivated aromatic compounds [J]. Journal of the Chemical Society-Perkin Transactions 1,2000, (16):2753-2758.
    [98]吕春绪,彭新华.交联柱撑皂土催经剂上甲苯的硝酸选择性硝化[J].火炸药学报.2001,(01):11-12.
    [99]Smith, K., Liu, S. F. and El-Hiti, G. A. Regioselective mononitration of simple aromatic compounds under mild conditions in ionic liquids [J]. Industrial & Engineering Chemistry Research,2005,44(23):8611-8615.
    [100]Dal, E. and Lancaster, N. L. Acetyl nitrate nitrations in [bmpy][N(Tf)2] and[bmpy] [OTfJ, and the recycling of ionic liquids [J]. Organic & Biomolecular Chemistry,2005,3(4): 682-686.
    [101]Wang, S. J., Sun, Z. Y. and Nie, J. Nitration of substituted benzenes catalyzed by metal bis[(perfluoroalkyl)sulfonyl]imides in quaternary ammonium ionic liquids [J]. Chinese Journal of Chemistry,2008,26(12):2256-2260.
    [102]Bharadwaj, S. K., Hussain, S., Kar, M., et al. Acid phosphate-impregnated titania-catalyzed nitration of aromatic compounds with nitric acid [J]. Applied Catalysis A:General,2008, 343(1-2):62-67.
    [103]Hajipour, A. R. and Ruoho, A. E. Nitric acid in the presence of P2O5 supported on silica gel-α useful reagent for nitration of aromatic compounds under solvent-free conditions [J]. Tetrahedron Letters,2005,46(48):8307-8310.
    [104]Olah, G. A., Orlinkov, A., Oxyzoglou, A. B., et al. Nitration of strongly deactivated aro-matics with superacidic mixed nitric-triflatoboric acid (HNO3/2CF3SO3H-B(O3SCF3)3).[J]. Journal of Organic Chemistry,1995,60(22):7348-7350.
    [105]Olah, G. A., Orlinkov, A. V., Ramaiah, P., et al. Chemistry of superacids 35. NO2Cl-3MXn systems:superelectrophilic aprotic nitrating agents for deactivated aromatics [J]. Russian Chemical Bulletin,1998,47(5):924-927.
    [106]Qiao, K. and Yokoyama, C. Nitration of aromatic compounds with nitric acid catalyzed by ionic liquids [J]. Chemistry Letters,2004,33(7):808-809.
    [107]Fang, D., Shi, Q. R., Cheng, J., et al. Regioselective mononitration of aromatic compounds using Bronsted acidic ionic liquids as recoverable catalysts [J]. Applied Catalysis A: Gen-eral,2008,345(2):158-163.
    [108]岳彩波,魏运洋,吕敏杰Brφnsted酸性离子液体中芳烃硝化反应的研究[J].含能材料,2007,15(02):118-121,127.
    [109]Yi, W. B. and Cai, C. Highly efficient dinitration of aromatic compounds in fluorous media using ytterbium perfluorooctanesulfonate and perfluorooctanesulfonic acid as catalysts [J]. Synthetic Communications,2006,36(20):2957-2961.
    [110]Yi, W. B. and Cai, C. A novel and highly efficient catalytic system for trinitration of aro-matic compounds:Ytterbium perfluorooctanesulfonate and perfluorooctanesulfonic acid in fluorous solvents [J]. Journal of Energetic Materials,2007,25(2):129-139.
    [111]方东,施群荣,巩凯,等.芳香族化合物绿色硝化反应研究进屣[J].含能材料,2008,16(01):103-112.
    [112]Frost, C. G., Hartley, J. P. and Griffin, D. Counterion effects in indium-catalysed aromatic electrophilic substitution reactions [J]. Tetrahedron Letters.2002,43(27):4789-4791.
    [113]Peng, X. H., Suzuki, H. and Lv, C. X. Zeolite-assisted nitration of neat toluene and chlo-robenzene with a nitrogen dioxide/molecular oxygen system. Remarkable enhancement of para-selectivity [J]. Tetrahedron Letters,2001,42(26):4357-4359.
    [114]Peng, X. H. and Suzuki, H. Regioselective double Kyodai nitration of toluene and chloro-benzene over zeolites. High preference for the 2,4-dinitro isomer at the second nitration stage [J]. Organic Letters,2001,3(22):3431-3434.
    [115]Peng, X. H., Fukui, N., Mizuta, M., et al. Nitration of moderately deactivated arenes with nitrogen dioxide and molecular oxygen under neutral conditions. Zeolite-induced en-hancement of regioselectivity and reversal of isomer ratios [J]. Organic & Biomolecular Chemistry,2003, 1(13):2326-2335.
    [116]Cho, J. K., Kim, Y. T., Kim, Y. G., et al. Practical neutral aromatic nitration with nitrogen dioxide in the presence of heterogeneous catalysts under moderate oxygen pressure [J]. Research on Chemical Intermediates,2006,32(8):759-766.
    [117]Bakke, J. M. and Hegbom, I. Dinitrogen pentoxide-sulfur dioxide, a new nitration system. [J]. Acta Chemica Scandinavica,1994,48(2):181-182.
    [118]Bakke, J. M. and Ranes, E. Nitration of pyridine by dinitrogen pentoxide, a study of the reaction mechanism [J]. Journal of the Chemical Society-Perkin Transactions 2,1997, (10): 1919-1923.
    [119]蔡春,吕春绪.五氧化二氮对一元取代苯的硝化研究[J].火炸药学报,2000,(01):25-27.
    [120]Bak, R. R. and Smallridge, A. J. A fast and mild method for the nitration of aromatic rings [J]. Tetrahedron Letters,2001,42(38):6767-6769.
    [121]Hill, A. J., Millar, R. W. and Sandall, J. Atom-efficient electrophilic aromatic nitration by dinitrogen pentoxide catalysed by zirconium(Ⅳ) 2,4-pentanedionate [J]. Organic & Bio-molecular Chemistry,2004,2(1):90-92.
    [122]Suzuki, H., Kozai, I. and Murashima, T. Ozone-mediated C-nitration of pyridine and me-thylpyridines with nitrogen-fioxide [J]. Journal of Chemical Research,1993, (4):156-157.
    [123]Suzuki, H., Iwaya, M. and Mori, T. C-nitration of pyridine by the Kyodai-nitration mod-ified by the Bakke procedure. A simple route to 3-nitropyridine and mechanistic aspect of its formation. [J]. Tetrahedron Letters,1997,38(32):5647-5650.
    [124]Zolfigol, M. A., Ghaemi, E. and Madrakian, E. Trichloroisocyanuric acid/NaNO2 as a nov-el heterogeneous system for the selective mononitration of phenols under mild conditions [J]. Synlett,2003,(2):191-194.
    [125]Iranpoor, N., Firouzabadi, H., Heydari, R., et al. Nitration of aromatic compounds by Zn(NO3)22N2O4 and its charcoal-supported system [J]. Synthetic Communications,2005, 35(2):263-270.
    [126]贾建洪,盛卫坚,高建荣.3,5-二氯-2,4-二氟硝基苯的合成新工艺[J].农药,2006,45(5):309-310,312.
    [127]Dewkar, G. K., Narina, S. V. and Sudalai, A. NalO4-Mediated selective oxidative halogena-tion of alkenes and aromatics using alkali metal halides [J]. Organic Letters,2003, 5(23):4501-4504.
    [128]刘长春.制备1,2-二氯-4-硝基苯的新方法[J].化学世界,2005,46(3):170-172.
    [129]Prakash, G. K. S., Mathew, T., Hoole, D., et al. N-Halosuccinimide/BF3-H2O, efficient electrophilic halogenating systems for aromatics [J]. Journal of the American Chemical Society,2004,126(48):15770-15776.
    [130]Tanemura, K., Suzuki,T., Nishida, Y., et al. Halogenation of aromatic compounds by N-chloro-, N-bromo-, and N-iodo-succinimide [J]. Chemistry Letters,2003, 32(10):932-933.
    [131]Fonseca, G., Rejane M., Magalhaes R., et al. Trichloroisocyanuric acid in H2SO4:An effi-cient superelectrophilic reagent for chlorination of isatin and benzene derivatives [J]. Journal of the Brazilian Chemical Society,2005,16(4):695-698.
    [132]Chambers, R. D., Skinner, C. J., Atherton, M. J., et al. Halogenation reactions of aromatic compounds in the presence of fluorine [P]. WO9603356,1996.
    [133]Huthmacher, K. and Effenberger, F. New reactive brominating agents [J]. Synthesis,1978, (9):693-694.
    [134]Rozen, S. and Lerman, O. Bromination of deactivated aromatics using BrFj without a cat-alyst [J]. Journal of Organic Chemistry,1993,58(1):239-240.
    [135]Harrison, J. J., Pellegrini, J. P. and Selwitz, C. M. Bromination of deactivated aromatics using potassium bromate [J]. Journal of Organic Chemistry,1981,46(10):2169-2171.
    [136]陈红飙,林原彬,刘正春,等.钝化芳环的溴化反应研究[J].有机化学,2002.22(5):371-374.
    [137]Groweiss, A. Use of sodium bromate for aromatic bromination:Research and development [J]. Organic Process Research & Development,2000,4(1):30-33.
    [138]Duan, J. X., Zhang, L. H. and Dolbier, W. R. A convenient new method for the bromination of deactivated aromatic compounds [J]. Synlett,1999, (8):1245-1246.
    [139]Rajesh, K., Somasundaram, M., Saiganesh, R., et al. Bromination of deactivated aromatics: A simple and efficient method[J]. Journal of Organic Chemistry,2007,72(15):5867-5869.
    [140]Gottardi, W. Brominations with dibromoisocyanuric Acid (DBI) under ionic conditions.Ⅰ. monobromination [J]. Monatshefte Fur Chemie,1968,99(2):815-822.
    [141]Okada, Y., Yokozawa, M., Akiba, M., et al. Bromination by means of sodium mono-bro-moisocyanurate (SMBI) [J]. Organic & Biomolecular Chemistry,2003, 1(14):2506-2511.
    [142]Sumida, T., Kikuchi, S. and Imafuku, K. Bromination of azulene derivatives with sodium monobromoisocyanurate [J]. Synthetic Communications,2004,34(23):4273-4284.
    [143]de Almeida, L. S., Esteves, P. M. and de Mattos, M. C. S. Superelectrophilic bromination of deactivated aromatic rings with tribromoisocyanuric acid-an experimental and DFT study [J]. Tetrahedron Letters,2009,50(25):3001-3004.
    [144]Urankar, D., Rutar, I., Modec, B., et al. Synthesis of bromo-and iodohydrins from deacti-vated alkenes by use of N-bromo-and N-iodosaccharin [J]. European Journal of Organic Chemistry,2005, (11):2349-2353.
    [145]Escher, E., M. Bernier, and Parent, P. Angiotensin-Ii Analogs.2. Synthesis and Incorpora-tion of the Sulfur-Containing Aromatic-Amino-Acids-L-(4'-SH)Phe, L-(4'-SO2NH2)Phe, L-(4'-SO3-)Phe and L-(4'-S-CH3)Phe [J]. Helvetica Chimica Acta,1983,66(5):1355-1365.
    [146]Xie, Y. R., Xiong, R. G., Xue, X., et al. Two chiral coordination polymers:Preparation and X-ray structures of mono(4-sulfo-L-phenylalanine)(diaqua) zinc(Ⅱ) and copper(Ⅱ) complexes [J]. Inorganic Chemistry,2002,41(12):3323-3326.
    [147]Bergel, F. and Stock, J. A. Cyto-Active Amino-Acid and Peptide Derivatives.1. Substituted Phenylalanines [J]. Journal of the Chemical Society,1954, (7):2409-2417.
    [148]Rao, P. N., Peterson D. M., Acosta C. K., et al. Synthesis of cis-4-aminocyclohexyl-d-alanine and trans-4-aminocyclohexyl-d-alanine derivatives and determination of their stereochemistry [J]. Organic Preparations and Procedures International,1991, 23(1):103-110.
    [149]De Leon-Rodriguez, L. M., Kovacs Z., and Sherry, A. D. Chemistry for DOTA peptide labeling at phenylalanine residues: On the road to preparing peptide ligand tagged libra-ries [J]. Letters in Organic Chemistry,2005,2(2):160-164.
    [150]Mishra, A. K., Panwar, P., Chopra, M. et al. Synthesis of novel bifunctional Schiff-base li-gands derived from condensation of 1-(p-nitrobenzyl)ethylenediamine and 2-(p-nitrobenzyl)-3-monooxo-1,4,7-triazaheptane with salicylaldehyde [J]. New Journal of Chemistry,2003,27(7):1054-1058.
    [151]Schroeder, B., Braden, R., Auge, W. et al. Process for the preparation of 1-alkylamino anthraquinones [P]. US4163747,1979.
    [152]Das, B., Venkateswarlu, K., Majhi, A., et al. Studies on novel synthetic methodologies. Part 116. A facile nuclear bromination of phenols and anilines using NBS in the presence of ammonium acetate as a catalyst [J]. Journal of Molecular Catalysis A:Chemical,2007, 267(1-2):30-33.
    [153]Wagner, P. J. and Wang, L.-L. Electronic effects of ring substituents on triplet benzylic bi-radicals [J]. Organic Letters,2006,8(4):645-647.
    [154]Okada, Y., Yokozawa, M., Akiba, M., et al. Bromination by means of sodium mono-bro-moisocyanurate (SMBI) [J]. Organic & Biomolecular Chemistry,2003, 1(14):2506-2511.
    [155]Monnier, D. and Guerne, R. Nitration et dosage de la phenylalanine [J]. Analytica Chimica Acta,1958,19(1):90-100.
    [156]李金鹏,顾君琳,王晓琴,等.佐米曲坦的合成研究[J].华东师范大学学报(自然科学版),2002,(03):61-65.
    [157]Sassatelli, M., Debiton, E., Aboab, B. et al. Synthesis and antiproliferative activities of in-dolin-2-one derivatives bearing amino acid moieties [J]. European Journal of Medicinal Chemistry,2006,41(6):709-716.
    [158]Zanol, M. and Gastaldo L., High-performance liquid-chromatographic separation of the 3 stereoisomers of diaminopimelic acid in hydrolyzed bacterial-cells [J]. Journal of Chroma-tography,1991,536(1-2):211-216.
    [159]ElWaziry, A. M., Tomita, Y., Ling, J. R., et al. Measurement of total and separate stereoi-somers of diaminopimelic acid in rumen bacteria by high-performance liquid chromato-graphy [J]. Journal of Chromatography B-Biomedical Applications,1996,677(1):53-59.
    [160]Ghuysen, J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism [J]. Bacteriological Reviews,1968,32(4p2):425-464.
    [161]Weichert R. U. DL-o-amino-phenylalanin [J]. Annlen Der Chemie-Justus Liebig,1963, 663:160-163.
    [162]李惠黎译Feuer Henryed主编、硝基和亚硝基化学(Chemistry of the Nitro and Nitroso Groups) [M]北京,国防工业出版社,1988.
    [163]Block, R. J. and Bolling, D. Chemical and metabolic studies on phenylalanine Ⅰ. The nitra-tion of phenylalanine [J]. Journal of Biological Chemistry,1939,129(1):1-12.
    [164]Kapeller-Adler, R. The detection and determination of phenylalanine [J]. Biochemische Zeitschrift,1932,252:185-200.
    [165]Beer, C. T., Dickens, F. and Salmony, D. The nitration of benzoic and phenylacetic acids and phenylalanine: the chemical basis of the Mohler and Kapeller-Adler reactions [J]. Bi-ochemical Journal,1951,49(5):700-704.
    [166]马沛生著.化工数据[M].北京,中国石化出版社,2003:233.
    [167]Armarego, W; Chai, C林英杰,刘伟,王会译.实验室化学品纯化手册(第五版)[M].北京,化学工业出版社,2007:21.
    [168]Ferreira, L. A., Macedo, E. A. and Pinho S. P. The effect of ammonium sulfate on the solu-bility of amino acids in water at (298.15 and 323.15) K. Journal of Chemical Thermody-namics,2009,41(2):193-196.
    [169]Stanley M. W. Phase Equilibria in Chemical Engineering [M]. New York: Butterworth Publishers,1985:445.
    [170]陈新志,蔡振云,胡望明等.化工热力学(第三版)[M].北京,化学工业出版社,2007:128.
    [171]Apelblat, A. and Manzurola, E. Solubilities of o-acetylsalicylic,3,5-dinitrosalicylic, and p-toluicacid, and magnesium-DL-aspartate in water from T=(278 to 348) K [J]. Journal of Chemical Thermodynamics,1999,31(2/3):85-91.
    [172]Macedo, E. A. Solubility of amino acids, sugars, and proteins [J]. Pure and Applied Che-mistry,2005,77(3):559-568.
    [173]Lavrenov, S. N., Lakatosh, S. A., Lysenkova, L. N., et al. Synthesis of methyl 5- and 6-nitroindole-2-carboxylates by nitration of indoline-2-carboxylic acid [J]. Synthesis,2002, (3):320-322.
    [174]何子乐著.有机化学中的硬软酸碱理论[M].北京,科学出版社,1987.
    [175]Pearson, R. G. Hard and Soft Acids and Bases [J]. Journal of the American Chemical So-ciety,1963,85(22):3533-3539.
    [176]Frisch, A., Frisch, M. J., Trucks, G. W., Zork译Guassian 03中文用户参考手册[M].
    [177]Horaguchi, T., Oyanagi, T., Creencia, E. C., et al. Synthesis of carbazole, acridine, phena-zine,4H-benzo[d,e,f]carbazole and their derivatives by thermal cyclization reaction of aromatic amines [J]. Journal of Heterocyclic Chemistry,2004.41(1):1-6.
    [178]Sutherland, J.K. Reaction of 1,8-diazabicyclo[5.4.0]undec-8-ene with methyl 3,5-dinitro benzoate and 1,3,5-trinitrobenzene [J]. Chemical Communications,1997, (3):325-325.
    [179]Roberts, J.C. and Selby, K. The separation of aromatic amines by partition chromatogra-phy.1. An investigation of the N-alkylation of 3-5-dinitroaniline [J]. Journal of the Chemi-cal Society,1949, (11):2785-2789.
    [180]Shakhnes, A.K., Vorob'ev, S. S., and Shevelev, S. A., Selective reduction of one, two, or three nitro groups in 1,3,5-trinitrobenzene with hydrazine hydrate [J]. Russian Chemical Bulletin,2006,55(5):938-939.
    [181]Iranpoor, N., Firouzabadi, H., Nowrouzi, N., et al. Highly chemoselective nitration of aro-matic amines using the Ph3P/Br2/AgNO3 system [J]. Tetrahedron Letters,2006,47(38): 6879-6881.
    [182]Barry, V. C., Belton, J. G., O'Sullivan, J. F., et al.The oxidation of derivatives of or-tho-phenylenediamine.2. Phenazine pigments obtained from N-alkyl, N-cyclo alkyl, N-alkylphenyl, and N-alkoxyphenyl-ortho-phenylenediamine hydrochloride [J]. Journal of the Chemical Society,1956, (4):893-895.
    [183]Pentimal.L and G. Milani,3-Phenylazo-N-methylaniline and 4-phenylazo-N-methylaniline [J]. Annali Di Chimica,1973,63(9-10):727-734.
    [184]Le Pera, A., A. Leggio, and A. Liguori, Highly specific N-monomethylation of primary aromatic amines [J]. Tetrahedron,2006,62(25):6100-6106.
    [185]Katritzky, A.R. and K.S. Laurenzo, Alkylaminonitrobenzenes by vicarious nucleophilic amination with 4-(alkylamino)-1,2,4-triazoles [J]. Journal of Organic Chemistry,1988, 53(17):3978-3982.
    [186]Yokoyama, Y., Yamaguchi, T., Sato, M., et al. Chemistry of unprotected amino acids in aqueous solution:Direct bromination of aromatic amino acids with bromoisocyanuric acid sodium salt under strong acidic condition [J]. Chemical & Pharmaceutical Bulletin,2006. 54(12):1715-1719.
    [187]Gopalakrishnan, G. and Hogg, J. L. Kinetic and mechanistic studies of the N-bromo succi-nimide-promoted oxidative decarboxylation of glycine, dl-alanine, and dl-valine [J]. Jour-nal of Organic Chemistry,1985,50(8):1206-1212.
    [188]陈新志,刘金强.一种2-溴-4-硝基苯乙腈的合成方法[P].中国发明专利,CN200810122220,2009.
    [189]Ramachandran, M. S., Easwaramoorthy, D., Rajasingh, V., et al. N-Chlorosuccinimide-promoted oxidative decarboxylation of alpha-amino-acids in aqueous alkaline-medium [J]. Bulletin of the Chemical Society of Japan,1990,63(8):2397-2403.
    [190]Yokoyama, Y., Hikawa, H. and Murakami, Y. Does water suppress the racemization and decomposition of amino acids? [J]. Journal of the Chemical Society-Perkin Transactions 1, 2001, (12):1431-1434.
    [191]Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., et al. Controlled racemization ofopti- cally active organic compounds:Prospects for asymmetric transformation [J]. Tetrahedron, 1997,53(28):9417-9476.
    [192]钱超.培哚普利及其中间体的合成工艺研究[D].杭州:浙江大学材料与化学工程学院,2006.
    [193]王德心主编.固相有机合成——原理及应用指南[M].北京,化学工业出版社,2004.
    [194]Merrifield, R. B. Solid phase peptide synthesis.1. Synthesis of a tetrapeptide [J]. Journal of the American Chemical Society,1963,85(14):2149-2154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700