用户名: 密码: 验证码:
氧化铈复合纳米粒子的非水微乳液制备及其应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇燃油作为一种清洁燃料已经在我国的山西、陕西、贵州、江苏等省得到了广泛的推广应用。但在甲醇燃油的实际应用中发现:甲醇较高的汽化潜热导致甲醇汽油燃烧温度低,并伴随含甲醛尾气产生;甲醇汽油较低的尾气温度可导致三效催化器对NOx等物质的转化效率下降;对甲醇柴油来说,在降低烟度的同时却增加了甲醇柴油CO、HC、PM等的排放。尽管甲醇燃油具有替代比高、易于推广、经济效益明显等优点,但目前产业界尚无有效方法解决甲醇燃油尾气排放问题。
     论文从提高汽车燃油效率、降低有害物排放量角度出发,通过筛选适合的表面活性剂,获得了形成以甲醇/甲酰胺为极性相,正辛烷为非极性相,AE03为表面活性剂的非水微乳液体系;在此基础上研究了前驱物种类、浓度对微乳液相行为的影响规律;最终通过微乳液法制备参杂铜、锆的纳米级的氧化铈,并将之添加到甲醇燃油中,进行了氧化铈复合纳米粒子对90#汽油及M15甲醇汽油的动力性能、燃油经济性能、尾气排放性能的测试,得出了氧化铈复合纳米粒子对燃油尾气排放及动力性的影响规律。本论文主要研究工作及结论如下:
     1.与常规微乳液不同,非水微乳液不含水,而是以极性溶剂代替水相形成的具有常规微乳液结构的体系。但目前国内外对非水微乳液研究很少,甚至对非水微乳液是否具有类似常规微乳液的结构都存在争议。论文以甲醇、甲酰胺为极性相,研究了不同类型表面活性剂与正辛烷形成微乳液的规律。在微乳液相图考察基础上,以甲基橙、亚甲基蓝为显色探针,通过紫外-可见吸收光谱研究了AE03/甲醇(甲酰胺)/正辛烷体系的微观结构,确定了该非水体系是一种粒径较小、正辛烷为连续相、甲醇或甲酰胺为分散相的反相微乳液,首次证明了该体系具有与常规含水反相微乳液相同的微结构。
     2.以微乳液中纳米级水滴为微反应器合成纳米粒子已经成为当前制备纳米粒子的常规方法,但非水微乳液制备纳米粒子仅有数篇文献报道。尽管非水微乳液具有后处理相对简单、可制备水溶性纳米粒子等优势,但利用非水微乳液制备纳米粒子的一般过程、机理、合成规律均非常缺乏。论文通过电导率、动态光散射等手段首次确定了含有0.075M NaOH和0.025M Ce(NO3)3前驱物的AE03/甲酰胺/正辛烷体系具有典型的油包水微乳液结构,AE03/甲醇/正辛烷体系呈现双连续结构。在此基础上,首次用非水微乳液法制备了氧化铈及参杂铜、锆的氧化铈纳米粒子,并用TEM、XRD等进行了表征。研究结果发现:非水微乳液可以通过与常规微乳液相同的机理形成纳米粒子,微乳液结构将确定纳米粒子的形貌及粒径分布,甲醇、甲酰胺的极性将明显影响纳米粒子形貌。此外,通过研究非水微乳液制备的纳米粒子形貌,进一步证实了甲酰胺微乳液具有类似含水常规微乳液的油包水结构,而甲醇微乳液具有双连续的微结构。
     3.与含水的常规微乳液不同,非水微乳液加入甲醇汽油中不会引起相分离。受此启发,论文在甲酰胺非水微乳液中进行了以Ce3+、Cu2+、Zr4+为前驱物的复合纳米粒子合成,仅通过高速离心分离后,以100ppm浓度将该纳米粒子分散于甲醇汽油中,静置30天未发现相分离和沉淀。这一方法避免了含水微乳液制备纳米粒子需要多次洗涤、离心、干燥等步骤,工艺更为简单,具有更好的经济性。为了进一步验证氧化铈复合纳米粒子对甲醇汽油尾气的清洁效果,论文进行了发动机尾气排放测试实验,实验结果显示:在100ppm添加量下,氧化铈、参杂铜的氧化铈、参杂铜、锆的氧化铈纳米粒子可以明显降低90#汽油及M15甲醇汽油的CO、HC、PM、NOx排放;此外,90#汽油及M15甲醇汽油中加入上述纳米粒子后,在发动机高转速下有提高油品动力性能的特点。以上研究结果作为核心技术已成功用于山西艾得成公司的甲醇汽(柴)油产品调制中,并通过山西省科技厅成果鉴定(登记号091206;登记号091207)。上述研究成果及应用已经申请国家发明专利(CN 101591576A),正在实质审核中。
As a clean alternative fuel, methanol gasoline has been widely applied in Shanxi, Shannxi, Guizhou, and Jiangsu provinces. However, some researches found that the higher latent heat of vaporization of methanol induced combustion under low temperature, and the reduction in exhaust gas temperature promoted the emission of formaldehyde. For methanol/diesel fuel, some papers have reported that the emission of CO, HC, and PM was increased while the smoke intensity was decreased. Up to the date, there is no effective solution for the exhaust emission of methanol gasoline.
     From the perspective of promoting power efficiency and reducing the exhaust emission, the components of nonaqueous microemulsion was identified. The nonaqueous microemulsion was composed of methanol/ formamide as polar phase, n-octane as oil phase, and AEO3 as surfactant. The effect of concentrations of Ce3+, OH-, Cu2+ and Zr4+ on the microemulsion phase behavior was also investigated. The nanoparticles of cerium oxide with Cu, Zr doping were prepared and applied in 90# gasoline and M15 methanol gasoline. The power performance, fuel economy performance, and the exhause emission of oil with nanoparticles added were investigated by platform experiments. The main results are as follows:
     1. Nonaqueous microemulsions with polar nonaqueous solvents replaced the water in the common microemulsion, which have a silimar micro-structrue as that of common microemuslion. Nonaqueous microemulsion were rarely studied, even some researches strongly indicated these polar organic solvent-hydrocarbon dispersions to be molecular solutions without well-defined microemulsion droplets. In the paper, the microemulsion phase diagram and the mechanism of surfactants, methanol/formamide, and n-octane forming microemulsion werer investigated. Moreover, the methyl orange (MO) and methylene blue (MB) were used as absorption probes. The microstructure of nonaqueous microemulsions was probed with uv-vis spectroscopy measurements. The results indicated that an n-octane continuous structure with formamide nano-droplets formed in formamide/AEO3/n-octane system.
     2. Microemulsions are thermodynamically stable, transparent and isotropic liquid mediums with nanosized "water pools" dispersed in a continuous phase, which have been widely used to prepare stable colloidal dispersions of different types of nanoparticles. However, there are only few publications on formation of nanoparticles from nonaqueous microemulsions. Although nonaqueous microemulsion showed some advantages on simple post-processing deal, the use in water-sensitive environments, the general process, mechanism, synthesis rules were rarely reported. In the paper, the microstructure of nonaqueous microemulsion containing 0.075M NaOH and 0.025M Ce (NO3)3 were investigated by DLS measurements and conductivity measurements. The results showed that formamide systems have similar microstructure to aqueous microemulsions and bi-continuous structure was shown in methanol system. Moreover, cerium oxide and Zr, Cu doping nanoparticles were synthesized by mixing formamide/AEO3/ n-octaneoil continuous microemulsion containing cerium nitrate and sodium hydroxide. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the phase and morphology of synthesized nanoparticles. It was found that the synthesis mechanism within nonaqueous microemulsions were similar with that of aqueous microemulison. The micro-structure of microemulsion affected the size distribution and the morphology of nanoparticles. The polarity of methanol/formamide influenced the morphology of nanoparticles obviously. Furthermore, the morphology of nanoparticles induced the bi-continuous structure or nano polar solvent pool formed in these nonaqueous systems.
     3. As a waterless system, nonaqueous microemulsion could not induce phase separation in methanol gasoline. Inspired by the phenomena, nonaqueous microemulsion was applied to prepare Zr, Cu doping cerium oxide nanoparticle. With the high-speed centrifuge, doping cerium oxide nanoparticles were added in M15 methanol gasoline with 100 ppm for 30 days, and no obvious aggregations were found. This method overcomes the disadvantages of the relatively complicated process in common microemulsions, such as washing, centrifuge, dry and so on, which is a more economic and easy method. Moreover, platform experiments for the 90# gasoline and M15 methanol gasoline with 100 ppm cerium oxide and Zr, Cu doping nanoparticle added were preceded. As the results shown, the content of CO, HC, PM, and NOx in the exhausted emission of 90# gasoline/M15 were markedly decreased with the nanoparticles added. All the gasoline with different additives showed well external characteristics and power performance, and the output torque were promoted at higher engine speed. This technics has been successfully applied in the methanol gasoline production of Shanxi Aidec Science and Technologies Co. as a key technology. The technology progeny has been certificated by the Shanxi science and technology department, and the certificate of identification is domestic advanced level (No.091206; No.091207). Furthermore, the technics has inquiry China Invention Patent (CN 101591576A).
引文
[1]田春荣.2009年中国石油进出口状况分析[J],国际石油经济,2010,18(03):4-13.
    [2]黄磷.中国车用塑料循环利用市场潜力巨大[J],精细与专用化学品,2009,17(1): 9-12.
    [3]曾东建,黄海波,姚英,童勇.汽油机燃用甲醇汽油的动力性、经济性及非常规排放物试验研究[J],小型内燃机与摩托车,2009,38(3):50-54.
    [4]魏衍举,刘杰,朱赞,李广乐,刘圣华.甲醇汽油发动机甲醛排放快速检测方法研究[J],内燃机学报,2008,26(6):23-30
    [5]CHAO M, LIN T, CHAO H, et al. Effects of methanol-containing additive on emission characteristics from a heavy-duty diesel engine[J], The Science of the Total Environment,2001,279(1-3):167-179.
    [6]GORSE JR R, BENSON J, BURNS V, et al. In The effects of methanol/gasoline blends on automobile emissions, International Congress & Exposition, Detroit, MI, USA, Detroit, MI, USA,1992.
    [7]杨绍斌,王继仁.中国煤制甲醇的现状及发展[J],洁净煤技术,2001,7(4):36-40.
    [8]黄磷.近期国内煤制甲醇项目动态[J],煤化工,2009,141(2):61-63.
    [9]GAUTAM M, MARTIN II D, CARDER D. Emissions characteristics of higher alcohol/gasoline blends[J], Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2000,214(2):165-182.
    [10]BILGIN A, SEZER I. Effects of methanol addition to gasoline on the performance and fuel cost of a spark ignition engine[J], Energy & Fuels,2008,22(4): 2782-2788.
    [11]BERNHARDT W. Future fuels and mixture preparation methods for spark ignition automobile engines[J], Progress in Energy and Combustion Science,1977, 3(3):139-150.
    [12]KOWALEWICZ A, WOJTYNIAK M. Alternative fuels and their application to combustion engines[J], Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2005,219(1):103-125.
    [13]SOLOMON B, BARNES J, HALVORSEN K. Grain and cellulosic ethanol: History, economics, and energy policy[J], Biomass and Bioenergy,2007,31(6): 416-425.
    [14]朱自强,王建中,宋伟.甲醇发动机的研发历程和发展趋势[J],内燃机,2009,(2): 1-4.
    [15]李忠,郑华艳,谢克昌.甲醇燃料的研究进展与展望[J],化工进展,2008,27(11):1684-1695.
    [16]霍新强,杨有胜,赵霞.车用甲、乙醇燃料及其生产方法,CN200610147200[P],2008.
    [17]. 降连葆.助推中国车用甲醇燃料从试点走向市场[J],中国石油和化工,2009,(9):11-13.
    [18]段家祥.车用甲醇汽油清洁增标乳化剂,CN 200610105014[P],2006.
    [19]陈茂高.甲醇汽油核心剂母液及其制备方法以及将该母液配制成为甲醇汽油的方法,CN 200810000485[P],2008.
    [20]季子善.一种甲醇汽油及其配制方法,CN 03130822[P],2003.
    [21]万清平.一种甲醇汽油及其制备方法,CN 200410022167[P],2004.
    [22]龚旌.车用环保甲醇柴油制备工艺的研究[J],环境工程学报,2009,(10):1917-1920.
    [23]MARELLI E. Fuel for diesel engines in microemulsion form and method for preparing the same, US 2005/0183324 A1[P],2005.
    [24]YOSHIMOTO Y. O M, TAMAKI H. In Performance and emission characteristics of diesel engines fueled by vegetable oils, Small Engine Technology Conference SETC2001,2001:351-358.
    [25]HAZBUN E, SCHON S, GREY R. Microemulsion fuel system, US 4744796[P], 1988.
    [26]EDWARD A. HAZBUN S G S, ROGER A. GREY. Microemulsion fuel system, US 4744796[P],1986.
    [27]IKURA M, STANCIULESCU M, HOGAN E. Low temperature stable diesel oil/alcohol mixtures, US 2002/0178650 A1[P],2002.
    [28]LYKOV O P. Stabilization of methanol-containing gasolines[J], Chemistry ang technology of fuels and oils,1994,30(2):64-68.
    [29]OSTEN D W, SELL N J. Methanol-gasoline blends:blending agents to prevent phase separation[J], Fuel,1983,62(3):268-270.
    [30]EARLE, D. R. methanol automotive fuel, US 4,386,938[P],1983.
    [31]GUNNERMAN, W. R. Aqueous fuel for internal combustion engine and method of combustion, US RE35,237[P],1996.
    [32]DWYER F G, HANSONK F V, SCHWARTZ A B. Conversion of methanol to gasoline product, US 4,035,430[P],1977.
    [33]潘中娟.含汽油添加剂的多元体系液液相平衡的测定[T],暨南大学,2005.
    [34]顾杏泉.甲醇汽油添加剂,CN 200610086371[P],2007.
    [35]王菊林.一种车用甲醇汽油,CN 200610040171[P],2006.
    [36]崔华,赵来甫,刘继峰.一种醇燃料金属腐蚀抑制剂,CN 92113238[P],1992.
    [37]吴耀曲,郭四虎.甲醇汽油金属腐蚀抑制剂的应用研究[J],内燃机,2008,(2):52-54.
    [38]许世海,刘晓,秦敏.甲醇汽油的蒸发性与气阻倾向研究[J],车用发动机,2008,(03).
    [39]杨建军,黄海波,曾东建.低比例甲醇汽油蒸发性研究[J],内燃机与动力装置,2007,(04).
    [40]BAI W, CHOY K L, STELZER N H J, et al. Thermophoresis-assisted vapour phase synthesis of CeO2 and CexYl-xO2-[delta] nanoparticles[J], Solid State Ionics, 1999,116(3-4):225-228.
    [41]GUILLOU N, NISTOR L C, FUESS H, et al. Microstructural studies of nanocrystalline CeO2 produced by gas condensation[J], Nanostructured Materials, 1997,8(5):545-557.
    [42]TSCH PE A, SCHAADT D, BIRRINGER R, et al. Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation[J], Nanostructured Materials,1997,9(1-8):423-432.
    [43]SUZUKI T, KOSACKI I, ANDERSON H. Defect and mixed conductivity in nanocrystalline doped cerium oxide[J], Journal of the American Ceramic Society, 2002,85(6):1492-1498.
    [44]YU X, LI F, YE X, et al. Synthesis of cerium (IV) oxide ultrafine particles by solid-state reactions[J], Journal of the American Ceramic Society,2000,83(4): 964-966.
    [45]庄稼,迟燕华,吴修贤.固相反应两步法制备纳米Ce02及其机制研究[J],中国稀土学报,2004,22(5):641-646.
    [46]LI F, YU X, PAN H, et al. Syntheses of MO2 (M= Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature[J], Solid state sciences,2000,2(8): 767-772.
    [47]BONDIOLI F, BONAMARTINI CORRADI A, LEONELLI C, et al. Nanosized CeO2 powders obtained by flux method[J], Materials Research Bulletin,1999, 34(14-15):2159-2166.
    [48]李永绣,陈伟凡,周雪珍.氯化钠在球形纳米氧化铈形成过程中的作用[J],中国稀土学报,2004,22(5):636-640.
    [49]张丽.湿固相机械球磨法制备超细二氧化铈粉末[T],西华大学,2008.
    [50]CHEN P, CHEN I. Reactive cerium (IV) oxide powders by the homogeneous precipitation method[J], Journal of the American Ceramic Society,1993,76(6): 1577-1583.
    [51]TSAI M. Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance[J], Materials Science and Engineering B, 2004,110(2):132-134.
    [52]CHEN H, CHANG H. Synthesis of nanocrystalline cerium oxide particles by the precipitation method [J], Ceramics International,2005,31(6):795-802.
    [53]董相廷,洪广言.沉淀法制备Ce02纳米晶与表征[J],中国稀土学报,2001,19(1): 24-26.
    [54]CHEN H, CHANG H. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,242(1-3):61-69.
    [55]LABERTY-ROBERT C, LONG J, LUCAS E, et al. Sol-Gel-Derived Ceria Nanoarchitectures:Synthesis, Characterization, and Electrical Properties [J], Chem. Mater,2006,18(1):50-58.
    [56]MASUI T, FUJIWARA K, MACHIDA K, et al. Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles[J], Chem. Mater,1997, 9(10):2197-2204.
    [57]GU Z, HAN Y, PAN F, et al. Synthesis of Cerium Oxide Nanoparticles by the Precipitation Method[J], Materials Research,2009,601-613:233-238.
    [58]LI M, LIU Z, HU Y, et al. Effects of the synthesis methods on the physicochemical properties of cerium dioxide powder[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,301(1-3):153-157.
    [59]嘎日迪,李霞,丽丽.酒石酸络盐均相沉淀法制备CeO2纳米晶的研究[J],光谱学与光谱分析,2006,26(9):1746-1748.
    [60]KIRK N, WOOD J. The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing[J], Journal of Materials Science, 1995,30(8):2171-2175.
    [61]YU T, JOO J, PARK Y, et al. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes[J], Angewandte Chemie International Edition,2005,44(45):7411-7414.
    [62]BRITTAIN H, GRADEFF P. Synthesis and characterization of organosoluble cerium dioxide[J], Journal of the Less Common Metals,1983,94(2):277-283.
    [63]KANEKO K, INOKE K, FREITAG B, et al. Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis[J], Nano Lett,2007,7(2):421-425.
    [64]MASUI T, HIRAI H, IMANAKA N, et al. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid[J], Journal of Materials Science Letters,2002,21(6):489-491.
    [65]BRIOIS V, WILLIAMS C, DEXPERT H, et al. Formation of solid particles by hydrolysis of cerium (IV) sulphate[J], Journal of Materials Science,1993,28(18): 5019-5031.
    [66]TOK A, BOEY F, DONG Z, et al. Hydrothermal synthesis of CeO2 nano-particles[J], Journal of Materials Processing Technology,2007,190(1-3): 217-222.
    [67]GU H, SOUCEK M. Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents[J], Chem. Mater,2007,19(5): 1103-1110.
    [68]KOCKRICK E, SCHRAGE C, GRIGAS A, et al. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles[J], Journal of Solid State Chemistry,2008,181(7):1614-1620.
    [69]NAGY K, D K (?)NY I. Preparation of nanosize cerium oxide particles in W/O microemulsions[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,345(1-3):31-40.
    [70]BAI J, XU Z, ZHENG Y, et al. Shape control of CeO2 nanostructure materials in microemulsion systems[J], Materials Letters,2006,60(9-10):1287-1290.
    [71]SCHWAB A, PRYDE E. Triglyceride CMethanol Microemulsions[J], Journal of Dispersion Science and Technology,1985,6(5):563-574.
    [72]DAS K, CEGLIE A, LINDMAN B. Microstructure of formamide microemulsions from NMR self-diffusion measurements [J], Journal of Physical Chemistry,1987,91(11):2938-2946.
    [73]JI M, CHEN X, WAI C, et al. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion[J], J. Am. Chem. Soc,1999, 121(11):2631-2632.
    [74]EASTOE J, GOLD S, ROGERS S, et al. Ionic liquid-in-oil microemulsions[J], J.Am. Chem. Soc,2005,127(20):7302-7303.
    [75]WANG A, D'SOUZA N, GOLDEN T. Ceramic montmorillonite nanocomposites by electrochemical synthesis[J], Applied Clay Science,2008,42(1-2):310-317.
    [76]ZHOU Y, PHILLIPS R, SWITZER J. Electrochemical synthesis and sintering of nanocrystalline cerium oxide powders[J], J. Am. ceram. soc. bull.,1995,78(4):981-984.
    [77]YAMAGUCHI I, WATANABE M, SHINAGAWA T, et al. Preparation of Core/Shell and Hollow Nanostructures of Cerium Oxide by Electrodeposition on a Polystyrene Sphere Template[J], ACS Applied Materials & Interfaces,2009,1(5): 1070-1075.
    [78]KANG H, KANG Y, KOO H, et al. Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution[J], Materials Science and Engineering: B,2006,127(2-3):99-104.
    [79]宋洪柱.稀土燃油添加剂及其生产工艺,CN 00118969[P],2000.
    [80]勒马里.铈化合物在保护内燃机方面的用途,CN 1176653[P],1998.
    [81]王菊林.一种车用甲醇汽油,CN 200610040171[P],2010.
    [82]MIYAWAKI S, ISHII K, YAMANE M. Fuel composition and fuel additive, US 4968322[P],1990.
    [83]JELLES S, MAKKEE M, MOULIJN J. Ultra low dosage of platinum and cerium fuel additives in diesel particulate control[J], Topics in Catalysis,2001,16(1): 269-273.
    [84]SCATTERGOOD R. Cerium oxide nanoparticles as fuel additives, US 10542770[P],2004.
    [85]CHUN'AI D, BO L, LUTING Y, et al. Researches and Application of Cerium as Environmental Material [J], Rare Metal Materials and Engineering,2009,:S1.
    [86]OBUCHI A, KANEKOI, OI J, et al. A practical scale evaluation of catalysts for the selective reduction of NOx with organic substances using a diesel exhaust[J], Applied Catalysis B:Environmental,1998,15(1-2):37-47.
    [87]ATRIBAK I, AZAMBRE B, BUENO L PEZ A, et al. Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot[J], Applied Catalysis B:Environmental,2009,92(1-2):126-137.
    [88]GRAHAM G, JEN H, MCCABE R, et al. Characterization of model automotive exhaust catalysts:Pd on Zrrich ceriaCzirconia supports[J], Catalysis Letters,2000, 67(2):99-105.
    [89]BEKYAROVA E, FORNASIERO P, KAPAR J, et al. CO oxidation on Pd/CeO2-ZrO2 catalysts[J], Catalysis Today,1998,45(1-4):179-183.
    [90]LAMBROU P, COSTA C, CHRISTOU S, et al. Dynamics of oxygen storage and release on commercial aged Pd-Rh three-way catalysts and their characterization by transient experiments [J], Applied Catalysis B:Environmental,2004,54(4):237-250.
    [91]SUGIURA M. Oxygen storage materials for automotive catalysts:ceria-zirconia solid solutions[J], Catalysis Surveys from Asia,2003,7(1):77-87.
    [92]BALDUCCI G, KASPAR J, FORNASIERO P, et al. Computer Simulation Studies of Bulk Reduction and Oxygen Migration in CeO2-ZrO2 Solid Solutions[J], J. Phys. Chem.B,1997,101(10):1750-1753.
    [93]TERRIBILE D, TROVARELLI A, DE LEITENBURG C, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J], Catalysis Today,1999,47(1-4):133-140.
    [94]SUGIURA M, OZAWA M, SUDA A, et al. Development of innovative three-way catalysts containing ceria " Czirconia solid solutions with high oxygen storage/release capacity[J], Bulletin of the Chemical Society of Japan,2005,78(5):752-767.
    [1]KUMAR P, MITTAL K L, Handbook of microemulsion science and technology [M]. New York:CRC Press,1999.387-390.
    [2]FANUN M, Microemulsions:properties and applications [M]. New York:CRC Press,2009.17-20.
    [3]LAIA C A T, LOPEZ-CORNEJO P, COSTA S M B,et al Dynamic light scattering study of AOT microemulsions with nonaqueous polar additives in an oil continuous phase [J]. Langmuir,1998,14(13):3531-3537.
    [4]MUKHERJEE L, MITRA N, BHATTACHARYA P K, et al Phase behavior and microstructure of nonaqueous microemulsions. Ⅱ[J]. Langmuir,1995,11(8): 2866-2871.
    [5]LAI K Y, Liquid detergents [M]. New York:CRC Press,2009.162-163.
    [6]LI N, GAO Y A, ZHENG L Q, et al Studies on the micropolarities of bmimBF(4)/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy [J]. Langmuir,2007,23(3):1091-1097.
    [7]PRAMANICK D, MUKHERJEE D, Molecular interaction of methylene blue with Triton X-100 in reverse micellar media [J], J. Colloid Interface Sci.1993,157(1): 131-134.
    [8]JONSTROEMER M, SJOEBERG M, WAERNHEIM T, Aggregation and solvent interaction in nonionic surfactant systems with formamide [J], J. Phys. Chem.,1990, 94 (19):7549-7555.
    [1]JIY, CHOIJ S, TOOPST J, CROCKERM, NASERIM, Influence of ceria on the NOx storage/reduction behavior of lean NOx trap catalysts [J]. Catal. Today,2008, 136:146-155.
    [2]IZUN, SHIN W, MURAYAMAN, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder [J].Sen. Actuators B.,2003,93:449-453.
    [3]KHARTONVV, FIGUEIREDOFM, NAVARROL, NAUMOVICHE N, KOVALEVSKYA V, YAREMCHENKOA A, VISKUPA P, CARNEIROA F, MARQUES MB, FRADEJ R,Ceria-based materials for solid oxide fuel cells[J]. J. Mater. Sci.,2001,36:1105-1117.
    [4]ZHAIY, ZHANGS, PANGH, Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant[J]. Mater. Lett.,2007,61:1863-1866.
    [5]VERMAA, SRIVASTAVAAK, BAKHSHIAK, KISHORE R, AGNIHOTRYS A, Sol-gel processed nanostructured CeO2-TiO2 thin films for electrochromic applications[J]. Mater. Lett.,2005,59:3423-3426.
    [6]YINLX, WANGYQ, PANGGS. KOLTYPIN Y, GEDANKENA, Sonochemical synthesis of cerium oxide nanoparticles--effect of additives and quantum size effect [J]. J. Colloid Interface Sci.,2002,246:78-84.
    [7]SUNDARRS, DEEVIS, CO oxidation activity of Cu-CeO 2 nano-composite catalysts prepared by laser vaporization and controlled condensation [J]. J. Nanopart. Res.,2006,8:497-509.
    [8]TOKAIY, BOEYFYC, DONG Z, SUNXL, Hydrothermal synthesis of CeO2 nano-particles[J]. J. Mater. Process. Tech.,2007,190:217-222.
    [9]HADIA, YAACOBII, Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods[J]. Mater. Lett.,2007,61: 93-96.
    [10]CHENHI, CHANGHY, Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents[J].Colloids Surf. A,2004,242:61-69.
    [11]LIN, GAOYA, ZHENGLQ, ZHANGJ, YUL, LIXW, Studies on the micropolarities of bmimbf4/tx-100/toluene ionic liquid microemulsions and their behaviors characterized by uv-visible spectroscopy[J]. Langmuir,2007,23: 1091-1097.
    [12]PENGSJ, ANXQ, SHENWG, Coexistence curves of critical nonaqueous microemulsions of (AOT+DMA+nonane) and (AOT+DMA+octane)[J]. J. Chem. Thermo.,2006,38:43-48.
    [13]PENGSJ, ANX Q, SHENWG, Critical behavior of{DMA+AOT+Octane} nonaqueous microemulsions with various molar ratios of DMA to AOT[J]. J. Colloid Interface Sci.,2005,287:141-145.
    [14]GASPERLINM, BESTER-ROGACM., In Microemulsions:Properties and Applications (Surfactant Science)[M]. CRC Press,2008,258-259.
    [15]MEHTASK, KAURG, MUTNEJAR, BHASINKK, Solubilization, microstructure, and thermodynamics of fully dilutable U-type Brij microemulsion [J]. J. Colloid Interface Sci.,2009,338:542-549.
    [16]CHITTOFRATIA, VISCAM, KALLAYN, Perfluoro-polyethermicroemulsions: conductivity behaviour of four-component systems[J]. Colloids Surf. A.,1993,74: 251-258.
    [17]BUMAJDADA, EASTOEJ, Conductivity of water-in-oil microemulsions stabilized by mixed surfactants [J]. J. Colloid Interface Sci.,2004,274:268-276.
    [18]BAIJ, XUZ, ZHENGY, YINH, Shape control of CeO2 nanostructure materials in microemulsion systems[J]. Mater. Lett.,2006,60:1287-1290.
    [19]WAKEFIELD G, Fuel or fuel additive containing doped cerium oxide nanoparticles [P]. US Patent 7169196,2007.
    [1]HENDRIKSENBLM, BOBARUS C, FRENKENJWM, Oscillatory CO Oxidationon Pd(100) Studied with in Situ Scanning Tunneling Microscopy. Surf Sci 2004,552,229-242.
    [2]ACKERMANN, M. D., Structure and Reactivity of Surface Oxides on Pt(110) DuringCatalytic Co Oxidation. Phys Rev Lett 2005,95,255505.
    [3]LUNDGREN, E., Kinetic Hindrance During the Initial Oxidation of Pd(100) atAmbient Pressures. Phys Rev Lett 2004,92,046101.
    [4]汽车发动机性能试验方法[S], GB/T 18297-2001.
    [5]点燃式发动机汽车排气污染物排放限值及测量方法(双怠速法及简易工况法)[S],GB 17691-2005.
    [6]SCHIFTER I, DIAZ L, RODRIGUEZ R, DURAN J, Trends in exhaust emissions from in-use Mexico City vehicles [J]. Environ. Mon. Assess.,2008,137(1-3):459-470.
    [7]M5、M15车用甲醇汽油[S],DB山西省地方标准14/T 92-2002.
    [8]HUT, WEIY, LIUS, Improvement of spark-ignition (SI) engine combustion and emission during cold startfueled with methanol/gasoline blends [J]. Energy Fuels, 2007,21 (1):171-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700