用户名: 密码: 验证码:
基于布拉格光栅传感的复合材料固化及冲击损伤监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料具有优异的比强度、比刚度、抗疲劳性能和耐久性,已广泛用于飞机的承力结构中。然而,由于厚度方向没有增强体,复合材料对损伤非常敏感。高效的无损检测技术对于复合材料结构损伤检查和持续监测有着重要意义。将光纤光栅传感器(FBG:Fiber Bragg Grating)内置于复合材料结构中,可以实现复合材料结构的实时健康监测,同时具有成本低、不受电磁干扰、能监测结构内部变化等特点,是复合材料结构无损检测技术的重要发展趋势。研究FBG传感器埋入复合材料结构中,对于大飞机的结构健康监测具有非常重要的意义。
     本文分别对采用手糊成型、真空灌注成型(VIMP:Vaccum infusion molding process)、RTM (Resin transfer molding)成型、热压罐成型等几种不同的复合材料成型工艺时的光纤引出及保护方式进行了研究。利用自制光纤定位装置及模具活块解决了RTM成型工艺非分型面光纤引出问题,研究了系统正压和负压光纤引出时的模具密封问题。针对热压罐成型工艺研究了端面引出和表面引出两种引出方式,解决了光纤引出保护问题。采用光学显微镜及扫描电镜对埋入光纤后的复合材料截面进行观察,分别对埋入光纤后的玻璃纤维/乙烯基酯树脂复合材料、碳纤维/环氧树脂复合材料静态力学性能进行了测试。发现埋入光纤对复合材料拉伸、弯曲性能影响不大,对压缩性能有一定影响。成功地将FBG传感器埋入通过不同成型方式成型的玻璃纤维/乙烯基酯树脂和碳纤维/环氧树脂两种复合材料中。
     对埋入FBG传感器后的碳纤维/环氧树脂复合材料进行拉伸性能和弯曲性能测试,结果显示FBG传感器可以准确反映材料内部应变的变化趋势。
     利用埋入FBG传感器对乙烯基酯树脂浇注成型、复合材料VIMP成型、热压罐成型等成型工艺进行了监测。根据乙烯基酯树脂的固化监测结果,确定了乙烯基酯树脂固化时凝胶点及放热峰出现的时间,与拉丝法测定的凝胶时间基本一致。对埋入玻璃纤维/乙烯基酯树脂复合材料的FBG传感器进行了温度灵敏系数和应变灵敏系数的标定,通过监测复合材料VIMP成型时FBG波长及光强的变化,确定了玻璃纤维/乙烯基酯树脂复合材料的凝胶点,并排除温度的影响,得出复合材料固化过程中内部的应变变化历程。将FBG埋入碳纤维/环氧树脂复合材料飞机扰流板缩比件,在高温VIMP工艺下成型,得到了升温、注胶、保温过程中的波长漂移曲线,对成型后的部件进行加载,结果显示存活的FBG可以灵敏的反映复合材料的应力变化。将FBG传感器和热电偶埋入碳纤维/环氧树脂复合材料,采用热压罐工艺成型,得到了整个固化过程的波长漂移曲线,并消除了温度对FBG信号的影响,得到了整个固化过程中复合材料内部应变的变化历程。
     采用准静态压缩的方法代替低速落锤冲击,并使用FBG传感器进行信号监测,验证了FBG传感器铺设角度、距离冲击点的位置对FBG信号的影响,提出了一种埋入光纤传感器监测复合材料冲击信号的FBG传感器网络布置方法。根据监测信号推导出相同距离不同角度、相同角度不同距离时的波长漂移公式,并对公式进行了验证和修改,为后续研究奠定了理论基础。
     分别将FBG传感器埋入到玻璃纤维和碳纤维复合材料中,利用自制落锤试验机进行了低速冲击试验,采用低频和高频光纤光栅解调仪对信号进行了监测,结果显示高频光纤光栅解调仪可以有效的监测到冲击信号,低频光纤光栅解调仪监测数据偶然性过大,只能作为参考。对不同能量、相同能量不同距离、相同能量不同层间、累计冲击时埋入复合材料内的FBG信号进行了监测,对冲击发生时的波长变化、冲击前后的波长变化、冲击振动信号进行了研究。采用超声C扫描设备对碳纤维复合材料的分层状况进行了检测。试验结果显示,光纤FBG传感器可以有效的监测复合材料冲击信号,根据信号的变化可以推测出冲击造成的复合材料内部损伤类型及损伤面积大小。
     最后分别采用ANSYS和LS-DYNA有限元软件对复合材料准静态压缩和低速冲击过程进行了数值模拟。将模拟结果与光纤FBG传感器监测试验结果对比,材料内部应变场的分布及变化趋势与试验结果基本一致。
The composite material has excellent specific strength and specific stiffness, fatigue resistance and durability, has been widely used in load-bearing structure of aircrafts. However, along the thickness direction, there is no reinforcement existed in composite materials, which are very sensitive to injury. Efficient nondestructive testing technology is very important for composite structure damage inspection and continuous monitoring. The optical fiber grating sensor (FBGs) is embedded into the composite material structure, can achieve real-time health monitoring of composite structure, FBGs shows the advantages of low cost, no electromagnetic interference and monitor the internal structure, which is an important trend of a composite structure nondestructive testing technology.The study of FBG sensor embedded in the composite material structures is very important for health monitoring in aircraft structures.
     Several different composite molding technologies such as hand lay-up, vacuum infusion molding (VIMP), RTM (Resin transfer molding) molding, autoclave molding were used to study the output and protection of optical fiber in this paper.The problem of fiber extraction in the non-parting surface of RTM molding was solved by using optical fiber positioning device and mold loose piece, mold sealing problems was also studied during this system was under positive and negative pressure respectively.In view of autoclave moulding technology, we studied two kinds of eduction mode,end extraction and surface enduction, solved the problem of fiber protection.on After optical fibers were embedded in composites, the cross-section were observed through optical microscope and scanning electron microscope, static mechanics performance of vinyl/glass fiber, epoxy/carbon fiber composite materials were tested respectively which were both embedded by optical fibers.We found that a single optical fiber was embedded in the two composite, their static mechanical properties hadn't been effected a lot. FBG sensor was successfully embedded in this two composite materials -glass fiber/vinyl and carbon fiber/epoxy resin.
     After FBG sensor was embedded in carbon fiber/epoxy composite material, tensile and bending properties were tested, results showed that the FBG sensor could accurately reflect the changing trend of material internal stress.
     The use of embedded FBG sensors for vinyl resin curing, composite materials VIMP curing, autoclave curing, molding process was monitored. According to vinyl resin cure monitoring results, the gel point when the vinyl resin curing and when the exothermic peak occurs were determined, and basically corresponding to the results of Roberts Law. The calibration for temperature sensitivity and strain sensitivity coefficient of vinyl resin/glass fiber composite materials with FBG sensor embedded in, by monitoring FBG wavelength and light intensity changes during molding composite materials VIMP, the gel point of the material was determinded, and the influence of temperature was excluded, composite curing process changes within the course of the strain was achieved as well. FBG was embedded in the carbon fiber/epoxy composite aircraft spoiler subscale pieces, under the VIMP molding process at high temperatures, wavelength drift curve in the process of heating up, plastic injection, heat could be obtained, applied the load after forming the parts, the results showed that the survival response of the FBG can be sensitive to stress changes of the composite. FBG sensors and thermocouples were embedded in the carbon fiber/epoxy composites, using autoclave molding process, the wavelength shift curve of the curing process was obtained, the effects of temperature on the FBG signal was edcluded, and the material changes in the course of the internal strain during the whole curing process were obtained.
     Low-speed compression drop hammer impact was replaced by Quasi-static compression methods, and using FBG sensors monitoring signal, it was verified that the laying of fiber angle, the distance from the impact point on the FBG signals, presented a buried fiber optic sensors to monitor the impact of the FBG sensor network signal layout. According to the monitoring signal is derived from the different angles in the same distance, the same point in different angels from the wavelength shift, verified and modified the formula to establish a theoretical basis for the follow-up study.
     The FBG sensor is embedded in the glass fiber and carbon fiber composite materials, using the self-made drop test machine for the low speed impact test, using a low frequency and high frequency fiber Bragg grating demodulation instrument for signals were monitored, the results showed that the impact signal could be effectively monitored by a high frequency fiber Bragg grating demodulation instrument,while monitoring datas were great chance by a low frequency fiber Bragg grating demodulation instrument, for reference only. We monitored composite material within the FBG signals of different energy, the same energy of different distance, the same energy between different layers during cumulative impact, wavelength changes and the signal of the vibration during the impact, tchange of the wavelength before and after the impact was studied. Carbon fibre composite material stratification status was detected by ultrasonic C scanning device. The test results showed that the composite material impact signal could be monitored effectively through the FBG optical fiber sensor, internal damage types and damage area of composite which caused by the impact could also be conjectured according to the signal.
     Finally, composites under quasi-static compression and low-velocity impact process were simulated through ANSYS and LS-DYNA finite element software. The simulation results were compared with the FBG optical fiber sensor monitoring test results, the material of the inner strain variation and the test results were essentially consistent.
引文
[1]陈绍杰.大型飞机与复合材料.航空制造技术.2008.15.P32-37.
    [2]黄志雄,秦岩,梅启林.智能复合材料发展综述.国外建材科技.2002.Vol.23,No.1.
    [3]Chris Red. Beyond the Concorde: Next-generation SSTs. High-performance Composites. 2009 Jan.:30-36.
    [4]C.Thill, J.Etches, I.Bond, K.Potter and P.Weaver. Morphing Skins. The Aeronautical Journal. March 2008.
    [5]陈绍杰.复合材料与大型飞机.新材料产业.2008,No.1.
    [6]Adriaan Beukers,Harald E. N.Bersee,Otto Bergsma,et al.Future aircraft structures:from metal to composite structures. Polymeric and Composite Materials. IMAST, Capri,2008.
    [7]Tim Edwards.Composite materials revolutionise aerospace engineering [J].Ingenia,2008,36: 24-28.
    [8]N Takeda, Y Okabe,T Mizutani.Damage detection in composites using optical fibre sensors, Proceedings of the Institution of Mechanical Engineers[J]. Journal of Aerospace Engineering, 2007,221(4):497-508.
    [9]B.Benchekchou, N.S.Ferguson. The effect of embedded optical fibres on the fatigue behavior of composite plate[J]. Composite Structures,1998,41:113-120.
    [10]O. Frazao, C.A. Ramos, N.M.P. Pinto, et al.Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated Composites[J].Science and Technology,2005,65:1756-1760.
    [11]L.G. Melin, K. Levin, S. Nilsson, et al. A study of the displacement field around embedded fibre optic sensors[J]. Composites,1999:1267-1275.
    [12]F. Jacquemin, S. Freour, R. Guillen.Analytical modeling of transient hygro-elastic stress concentration-Application to embedded optical fiber in a non-uniform transient strain field[J].Composites Science and Technology,2006,66:397-406.
    [13]Heng Ly, Mahmood Tabaddor, Charles Aloisio.Coating failure in the pull-out of a multiply-coated optical fiber[J]. Polymer Testing,2005,24:953-962.
    [14]Yu Fan.Characterization of fiber bragg grating sensor array embedded in composite structure[J].Library and Archives Canada, Heritage Branch,2004.
    [15]Captain Eric J Travis.Comparative assessment of impact damage disband in composite materials. April,2002.
    [16]Thomas Rossmanith. Technology development for multiple internal strain measurement in composite structures using embedded fiber optic sensors [M]. University of Maryland, College Park, Md.2000:1-288.
    [17]崔三烈.光纤传感原理与应用技术[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [18]李卓球,宋显辉.智能复合材料结构体系[M].武汉:武汉理工大学出版社,2005.
    [19]王殿富,万里冰,张博明.光纤传感器在复合材料固化监测中的应用[J].哈尔滨工业大学学报,2002,34(5):710-714.
    [20]杨春,骆飞,沈超,等.用光纤进行树脂基复合材料的成型过程监测[J].材料工程,1999,7:36-39.
    [21]AFROMOWITZ M A. Fiber optic polymer cure sensor [J]. Journal of Lightwave Technology, 1988,6(10):1591-1594.
    [22]邹建,吴安平,黄尚廉.用于复合材料固化监控的光纤传感器[J].传感技术学,1994,3:53-55.
    [23]Afromowitz M A, Lam K Y. The optical properties of curing epoxies and applications to the fiber optic epoxy cure sensor[J]. Sensors and Actuators,1990,23(10):1107-1110.
    [24]Kassamakov I, Kafedjiev S. Fiber optic refractive index sensor[A]. Proc 6th International School on Quantum Electronics [C]. Rome:[s. n],1990.566-570.
    [25]Powell G R, Crosby P A, Waters D N,et al.In-situ cure monitoring using optical fibre sensors—a comparative study [J]. Smart Materials and Structures,1998,7(4):557-568.
    [26]Crosby P A, Powell G R, Fernando G F,et.al.In-situ cure monitoring of epoxy resins using optical fibre sensors [J]. Smart Materials and Structures,1996,5 (4):415-428.
    [27]Crosby P A, Powell G R, Fernando G F,et.al.A comparative study of optical fibre cure monitoring methods [J]. SPIE,1997,3042:141-153.
    [28]Powell G R, Crosby P A, Fernando G F. In-situ cure monitoring of advanced fibre reinforced composites [J]. SPIE,1995,2444:386-395.
    [29]张博明,王殿富,杜善义,等.多功能光纤智能复合材料研究[J].复合材料学报,2000,17(1):37-41.
    [30]Du W, Tao X M, Tam H Y,et al.Fundamentals and applications of optical fiber bragg grating sensors to textile structural composites [J]. Composite Structures,1998,42 (3):217-229.
    [31]Kalamkarov A L, Fitzgerald S B, Macdonald D O. On the processing and evaluation of pultruded smart composites [J]. Composites: Part B,1999,30 (7):753-763.
    [32]Murukesshan V M, Chan P Y, Ong L S,et al.Cure monitoring of smart composites using fiber bragg grating based embedded sensors [J]. Sensors and Actuators,2000,79 (2): 153-161.
    [33]艾宝勤,胡其图,郭奕玲.法布里-珀罗干涉仪的发明[J].物理,1994,23(9):573-577.
    [34]Lawrence C M, Nelson D V, Fuchs E A,et al.Fiber optic sensors at sandia national laboratories[J]. SPIE,1996,2872:72-78.
    [35]Lawrence C M, Nelson D V, Spinggarn L,et al.Measurement of process-induced strains in composite materials using embedded fiber optic sensors [J].SPIE,1996,2718:60-68.
    [36]Kalamkarov A L, Fitzgerald S B, Macdonald D O. The use of Fabry-Perot fiber sensors to monitor residual strains during pultrution of FRP composites [J]. Composites:Part B,1999, 30(2):167-175.
    [37]Afromowitz, M. A. Fiber optic polymer cure sensor.Journal of Lightwave Technology[J], 2002,6(10):1591-1594.
    [38]Afromowitz, M. A., Lam, K. Y. The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor[J].Sensors and Actuators A:Physical,1990,23,(1-3): 1107-1110.
    [39]Dunphy, J. R.,Meltz, G., Lamm, F. P.,et al. Multifunction, distributed optical fiber sensor for composite cure and response monitoring[C].Proceedings of Fiber Optic Smart Structures and Skins Ⅲ, USA, San Jose,1990.
    [40]Dewynter-Marty, V., Ferdinand, P., Bocherens, E., et al. Embedded Fiber Bragg Grating Sensors for Industrial Composite Cure Monitoring [J]. Journal of Intelligent Material Systems and Structures,1998,9(10):785-787.
    [41]Okabe, Y., Yashiro, S., Tsuji, R., et al... Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates [J]. Composites Part A: Applied Science and Manufacturing,2002,33(7):991-999.
    [42]Kuang, K. S. C., Kenny, R., Whelan, M. P.,et al.Embedded fibre Bragg grating sensors in advanced composite materials[J].Composites Science and Technology,2001,61(10): 1379-1387.
    [43]Okabe, Y., Mizutani, T., Yashiro, S.,et al. Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors[J].Composites Science and Technology,2002,62(7-8):951-958.
    [44]Giordano, M.,Laudati, A.,Nasser, J.,et al.Monitoring by a single fiber Bragg grating of the process induced chemo-physical transformations of a model thermoset[J], Sensors and Actuators A: Physical,2004,113(2):166-173.
    [45]Wang, Y.,Han, B., Bar-Cohen, A.,et al. Fiber Bragg Grating Sensor to Characterize Curing Process-dependent Mechanical Properties of Polymeric Materials. Proceedings of Electronic Components and Technology Conference,2007 [C].
    [46]Kuang, K. S. C., Kenny, R.,Whelan, M. P.,et al. Residual strain measurement and impact response of optical fibre Bragg grating sensors in fibre metal laminates [J]. Smart Materials & Structures,2001,10(2):338-346.
    [47]Hill, K. O., Meltz, G. Fiber Bragg grating technology fundamentals and overview[J].Journal of Lightwave Technology,2002,15(8):1263-1276.
    [48]Lin, C.L.Opto-Mechanical Applications of Microstructured Materials (D).France: Joseph Fourier University/National Taiwan University,2004.
    [49]Menendez, J. M., Guemes, J. A.Proceedings of Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach, CA, USA, March 2000[C]. [s.n.].
    [50]Murukeshan, V. M.,Chan, P. Y.,Ong, L. S.,et al. Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors[J].Sensors and Actuators A: Physical, 2000,79(2):153-161.
    [51]Leng, J. S., Asundi, A. Real-time cure monitoring of smart composite materials using extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors [J].Smart Materials & Structures,2002,11(2):249-255.
    [52]杨爱玉,于泽钧.高级复合材料最新固化监控[J].宇航材料工艺,1996,2:59-62.
    [53]任鹏刚,丘哲明,杨建奎.光纤嵌入法监测复合材料固化的研究[J].固体火箭技术,1997,20(2):73-78.
    [54]杨春,骆飞,沈超,李宏运,等.用光纤进行树脂基复合材料的成型过程监测[J].材料工程,1997,7:36-39.
    [55]杨春,骆飞,马乃兵,等.用于环氧树脂固化过程实时监测的光纤折射率传感器[J].复合材料学报,1999,16(2):1-5.
    [56]杨春,骆飞,于盛林,等.一种监测环氧树脂固化的光纤传感器[J].光纤与电缆及其应用技术,1998,2(2):41-45.
    [57]杨春,骆飞.一种用于环氧树脂固化监测的自参考型光纤折射率传感器[J]..Journal of Southeast University(English Edition),2000,16(1):28-33.
    [58]杨春.用于环氧树脂固化监测的自参考型光纤固化传感器[J].复合材料学报,2001,5,18(2):27-31.
    [59]张博明,杜善义,王殿富.光纤模斑谱传感器复合材料固化监测研究[J].实验力学,1998,12,13,(4):560-564.
    [60]邱浩,温卫东,梁大开,等.一种用于复合材料固化监测的传感器的研究[J].光纤与电缆及其应用技术,2000,6(6):22-25.
    [61]邱浩,梁大开,张焕春,等.光纤表面等离子体波传感器用于固化监测的研究[J].Transactions of Nanjing University of Aeronautics & Astronatics,2001,18(2):182-187.
    [62]万里冰,武湛君,张博明,等.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,21(3):1-5.
    [63]王昌,赵阳,姜德生,等.LPG在复合材料实时监测中的应用研究[J].材料工程,2006,增刊1:349-354.
    [64]常新龙,何相勇,周家丹,等.FBG传感器在复合材料固化监测中的应用[J].传感技术学报,2010,23(5):748-752.
    [65]常新龙,何相勇,周家单,等.基于FBG传感器的复合材料固化监测[J].宇航材料工艺,2010,4:80-83.
    [66]S Minakuchil, YOkabe, T Mizutani, et al. Barely visible impact damage detection for composite sandwich structures by optical-fiber-based distributed strain measurement [J]. Smart Materials & Structures,2009,18(8).
    [67]Noritsugu Nakamura, Toshimichi Ogisu, Hiroshi Yoneda, et al.10th Japan International SAMPE Symposium and Exhibition., Japan,2007[C].[s.n.]
    [68]Hiroaki Tsutsui, Noriyoshi Hirano, Junichi Kimoto, et al.10th Japan International SAMPE Symposium and Exhibition, Japan,2007[C].[s.n.]
    [69]Hiroaki Tsutsui, Noriyoshi Hirano, Junichi Kimoto, et al. Research and development of impact damage detection system for airframe structures using optical fiber sensors.
    [70]Noriyoshi Hirano, Hiroaki Tsutsui, Junichi Kimoto, et al. Smart Sensor Phenomena.Technology, Networks, and Systems,2009, Vol.7293,72930Q.
    [71]S. Takeda, S. Minakuchi, Y. Okabe, et al. Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors [J]. Composites Part A, 2005,36:903-908.
    [72]Noritsugu Nakamura, Toshimichi Ogisu, Hiroshi Yoneda, et al.. Impact monitoring of the aircraft composite structure using FBG sensor/PZT actuator hybrid sensor system. Industrial and Commercial Applications of Smart Structures Technologies,2007,6527.
    [73]C.C. Foo, G.B. Chai, L.K. Seah. A model to predict low-velocity impact response and damage in sandwich composites [J]. Composites Science and Technology,2008,68: 1348-1356.
    [74]Mehmet Aktas, Cesim Atas, Bulent Murat Icten, et al. An experimental investigation of the impact response of composite laminates [J]. Composite Structures,2009,87:307-313.
    [75]Toshimichi Ogisu, Masakazu Shimanuki, Hiroshi Yoneda, et al. Damage growth monitoring for a bonding layer of the aircraft bonding structure. Smart Structures and Materials,2006, 6171..
    [76]Daniel Delfosse, Anoush Poursartip. Energy-based approach to impact damage in CFRP laminates [J]. Composites Part A,1997,28A:647-655.
    [77]Ashish Mishra, N.K. Naik. Failure initiation in composite structures under low-velocity impact:Analytical studies [J]. Composite Structures,2010,92:436-444.
    [78]A.R. Chambers, M.C. Mowlem, L. Dokos. Evaluating impact damage in CFRP using fibre optic sensors [J]. Composites Science and Technology,2007,67:1235-1242.
    [79]程家林.层压复合材料连接接头设计及其在大飞机中的应用研究.航空学报2008:29(3):640-644.
    [80]福田武人.光纤传感器在监测RTM固化过程及复合材料健康状况中的应用.纤维复合材料2002,3(56).
    [81]黄亚建,向清.复合材料中埋置光纤传感系统的实验研究.传感器技术1992,16(2).
    [82]梁大开,黄明双,陶宝祺.光纤埋人碳纤维复合材料结构的实验研究.材料工程2000,2.
    [83]舒云星,张永胜,郁可.光纤传感阵列用于智能复合材料状态监测的研究.光学技术1999,5.
    [84]孙良新,徐宁光,任吉,杨道文,孙滢.复合材料结构内埋光纤网络测试其内部损伤试验研究.实验力学1996,11(3).
    [85]王帮峰,李迎,施益峰.复合材料结构健康主动监测中激励信号的优化.南京航空航天大学学报2006:38(5)
    [86]武湛君,万里冰,张博明,赵海涛.光纤光栅应变传感器监测复合材料层板疲劳过程.复合材料学报2004,21(6).
    [87]杨建良.复合材料层板中内埋光纤传感器布局的研究.纤维复合材料2000,2.
    [88]张博明,王殿富,杜善义,李辰砂,王淑芳.多功能光纤智能复合材料研究.复合材料学报2000.17(1).
    [89]张力,张恒,李雯.复合材料损伤与断裂力学研究.北京工商大学学报(自然科学版)2004,22(1).
    [90]赵海涛,张博明,武湛君,王殿富,戴福洪.光纤光栅智能复合材料基础问题研究.传感器与微系统2007,26(12).
    [91]郭林峰,赵志敏,高明娟.新型光纤智能监控系统设计.光电工程2006,33(3).
    [92]周晚林,王鑫伟.Lamb波理论及层合板冲击损伤的实验研究.实验力学2004,19(2).
    [93]杨建良,查开德,郭照南.复合材料内传感光纤的埋置技术关.宇航材料工艺1998,6.
    [94]杨建良,郭照华,向清,黄德修.智能复合材料内光纤的埋置技术.纤维复合材料1998,1.
    [95]Ilcew icz L B, Dost E F, Coggeshall R L. A model for compression after impact strength evaluation [C].Proc of 21st International SAMPE Technical Conference. Covina, CA: SAMPE,1989:130-140.
    [96]National Research Council. New materials for next-generation commercial transport [M]. Washington, DC:National Academy Press,1996:38-39.
    [97]罗靓,张佐光,李敏,沈真,杨胜春.复合材料层合板准静态压痕实验研究[J].复合材料学报,2007,24(3):154-159.
    [98]高峰,矫桂琼,高艳秋,宁荣昌,卢智先.层间颗粒增韧HT3/QY8911的损伤阻抗和损伤容限[J].复合材料学报.2006.23(1):167-172.
    [99]高峰,矫桂琼,宁荣吕,卢智先.层间颗粒增韧复合材料层压板的损伤阻抗特性[J].复合材料学报.2005,22(2):116-120.
    [100]沈真,张子龙,王进,杨胜春,叶林.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报.2004.21(5):140-145.
    [101]ASTM D 6264-98 (04) Standard test method for measuringdamage resistance of fiber-reinforced polymer-matrix composite to concentrated quasi-static indentation force [S]. Philadelphia:ASTM,1998.
    [102]Sun C T, Potti S V.A simple model to predict residual veloci-ties of thick composite laminates subjected to high velocity impact [J].International Journal of Impact Engineering,1996,18(3):339-353.
    [103]M.Chun-Yung Niu, Composite airframe structures, Practical Design Information and Data, (1992), Conmilit Press Ltd.
    [104]M.Chun-Yung Niu, Airframe, Stress Analysis and Sizing, (1997), Hongkong Conmilit Press Ltd.
    [105]B.Sadasivam, P.K.Mallick, Impact damage resistance of random fiber reinforced automotive composites [J].Thermoplastic Composite Materials,2002,15:181-191.
    [106]Sun C. T., Jih, C. J. On strain-energy release rates for interfacial cracks in bi-material media. Engineering fracture mechanics,1987,28(1):12-20.
    [107]M. F. S. F. de Moura, J. P. M. Goncalves. Modeling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact. Composites science and technology.2004,64:1021-1027.
    [108]Kim R. Y. and Soni S. R. Experimental and analytical studies on the onset of delamination in laminated composites. Journal of composite materials.1984; 18:70-80.
    [109]Krugger, R. and O'Brien, T. K. A shell/3D modeling technique for the analysis of delaminated composite laminates. Composites:Part A.2001,32:25-44.
    [110]G Caprino, V Lopresto, C Scarponi, G Briotti, Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact [J].Composites Science and Technology,1999,59(15):2279-2286.
    [111]M.V. Hosur, M. Adbullah, S. Jeelani, Studies on the low-velocity impact response of woven hybrid composites [J]. Composite Structures,2005,67(3):253-262.
    [112]Supratik Datta, A.Vamsee Krishna, R.M.V.G.K.Rao, Low velocity impact damage tolerance studies on glass-epoxy laminates-effects of material, process and test parameters [J].Reinforced Plastics and Composites,2004,23(3):327-345.
    [113]J.N.Baucoma, M.A.Zikry, Low-velocity impact damage progression in woven E-glass composite systems [J].Composites Part A:Applied Science and Manufacturing,2005, 36(5):658-664.
    [114]Edgar Fuoss, Paul V. Straznicky, Cheung Poon, Effects of stacking sequence on the impact resistance in composites-Part 1:Parametric study [J].Composite Structures,1998, 41(1):67-77.
    [115]Edgar Fuoss, Paul V. Straznicky, Cheung Poon, Effects of stacking sequence on the impact resistance in composites-Part 2:Prediction method [J].Composite Structures,1998,41(1): 77-86.
    [116]Hsi-Yung T Wu, Fu-Kuo Chang, Transient dynamic analysis of laminated composite plates subjected to transverse impact [J].Computer&Structures,1989,31 (3):453-466.
    [117]R.Tiberkak, M.Bachene, S.Rechak, B.Necib, Damage prediction in composite plates subjected to low velocity impact [J].Composite Structures,2008,83 (1):73-82.
    [118]Chongdu Cho,Guiping Zhao, Effects of geometric and material factors on mechanical respo nse of laminated composites due to low velocity impact [J].Journal of Composite Merials,2 002,36(12):1403-1428.
    [119]Jerome Pailhes, Gerald Camus, Jacques Lamon. A constitutive model for the mechanical behavior of a 3D C/C composite. Mechanics of materials.2002,34:161-177.
    [120]Zou, Z., Reid S. R., Li S., Seden, P. D. modeling interlaminar and intralaminar damage in filament wound pipes under quasi-static indentation. Journal of composite materials.2002, 36:477-499.
    [121]Collombet, F., Bonini, J., Lataillade, J. L. Three-dimensional modeling of low velocity impact damage in composite laminates. International journal for numerical methods in engineering.1996,39(9):1491-1516.
    [122]Schoeppner, G. A. and Pagano, N. J. Stress, fields and energy release rates in cross-ply laminates. International journal of solids and structures,1998,11:1025-1055.
    [123]Zuleyha Aslan, Ramazan Karakuzu, Buket Okutan, The response of laminated composite plates under low-velocity impact loading [J].Composite Structures,2003,119-127.
    [124]Zuleyha Asian, Ramazan Karakuzu, Onur Sayman, Dynamic characteristics of laminated woven e-glass-epoxy composite plate's subjiected to low velocity heavy mass impact [J]. Journal of Composite Materials,2002,36(21):2421-2442.
    [125]S. Ganapathy, K. P. Rao. Failure analysis of laminated composite cylindrical/spherical shell panels subjected to low-velocity impact. Computers and structures.1998,68:627-641.
    [126]T.Mitrevski, IH.Marshall, R.Thomson, R.Jones, B.Whittingham, The effect of impactor shape on the impact response of composite laminates [J]. Composite Structures,2005,67(2): 139-148.
    [127]T.Mitrevski, IH. Marshall, R.Thomson, The influence of impactor shape on the damage to composite laminates [J].Composite Structures,2006,76(1-2):116-122.
    [128]B.Whittingham, IH.Marshall, T.Mitrevski, R.Jones, The response of composite structures with pre-stress subject to low velocity impact damage [J].Composite Structures,2004,66 (1-4):685-698.
    [129]Volnei Tita, Jonas de Carvalho, Dirk Vandepitte, Failure analysis of low velocity impact on thin composite laminates:Experimental and numerical approaches [J]. Composite Structures,2008,83:413-428.
    [130]Dahsin Liu, Characterization of impact properties and damage process of glass/epoxy composite laminates [J]. Journal of Composite Materials,2004,38(16):1425-1442.
    [131]Cesim Atas, Dahsin Liu, Impact response of woven composites with small weaving angles [J]. International Journal of Impact Engineering,2008,35(2):80-97.
    [132]P. Robinson, G. A. O. Davies. Impactor mass and specimen geometry effects in low velocity impact of laminated composites [J]. International journal of impact engineering.1992, 12(2):189-207.
    [133]J. P. Hou, N. Petrinic, C. Ruiz, S. R. Hallett. Prediction of impact damage in composite plates [J]. Composites science and technology.2000,60:273-281.
    [134]J. P. Hou, N. Petrinic, C. Ruiz. A delamination criterion for laminated composites under low-velocity impact [J]. Composites science and technology.2001; 61:2069-2074.
    [135]R. K. Luo. The evaluation of impact damage in a composite plate with a hole [J]. Composites science and technology.2000,60:49-58.
    [136]N. K. Naik, Y. Chandra Sekher, Sailendra Meduri. Damage in woven-fabric composites subjected to low-velocity impact [J]. Composites science and technology.2000,60: 731-744.
    [137]N. K. Naik, Sailendra Meduri. Polymer-matrix composites subjected to low-velocity impact: effect of laminate configuration [J]. Composites science and technology.2001,61: 1429-1436.
    [138]M. de Freitas, A. Silva, L. Reis. Numerical evaluation of failure mechanisms on composite specimens subjected to impact loading [J]. Composites:Part B.2000,31:199-207.
    [139]M. Meo, A. J. Morris, R. Vignjevic, G. Marengo. Numerical simulations of low-velocity impact on an aircraft sandwich panel [J]. Composite structures.2003,62:353-360.
    [140]G. Belingardi, A. Gugliotta and R. Vadori. Numerical simulation of fragmentation of composite material plates due to impact [J]. International journal of engineering.1998,21: 335-347.
    [141]A. N. Palazotto, E. J. Herup, L. N. B. Gummadi. Finite element analysis of low-velocity impact on composite sandwich plates [J]. Composite structures.2000,49:209-227.
    [142]L. Iannucci. Progressive failure modeling of woven carbon composite under impact [J]. International journal of impact engineering.2006,32:1013-1043.
    [143]Kevin V. Williams, Reza Vaziri. Application of a damage mechanics model for predicting the impact response of composite materials [J]. Computers and structures.2001,79: 997-1011.
    [144]Kevin V. Williams, Reza Vaziri, Anoush Poursartip. A physically based continuum damage mechanics model for thin laminated composite structures [J]. International journal of solids and structures.2003,40:2267-2300.
    [145]Cui W, Wisnom M. R. A. A combined stress-based and fracture- mechanics- based model for predicting delamination in composites [J]. Composites,1993,24(6):467-474.
    [146]Lammerant L, Verpoest I. Modeling of the interaction between matrix cracks and delaminations during impact of composite plates [J]. Composites science and technology. 1996,56(10):1171-1178.
    [147]S. Mohammadi, S. Forouzan-sepehr, A. Asadollahi. Contact based delamination and fracture analysis of composites [J]. Thin-walled structures.2002,40:595-609.
    [148]Wisheart M, Richardson M. O. W. The finite element analysis of impact induced delamination in composite materials using novel interface element [J]. Composites Part A. 1998,29(A):301-303.
    [149]Philippe, H. Geubelle and Jeffrey S. Baylor. Impact-induced delamination of composites:a 2D simulation [J]. Composites:Part B.1998,29B:589-602
    [150]The study of impacted composite laminates [J]. Composites science and technology.1998, 58(5):679-686.
    [151]Laws, N., Dvorak, G. J. and Hejazi, M. Stiffness changes in unidirectional composites caused by crack systems [J]. Mechanics of materials.1983,2:123-137.
    [152]S. Zheng & C. T. Sun. A double-plate finite-element model for the impact-induced delamination problem [J]. Composites science and technology.1995,53:111-118.
    [153]C. F. Li, N. Hu, Y. J. Yin, H. Sekine, H. Fukunaga. Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I:An FEM numerical model [J]. Composites:Part A.2002,33:1055-1062.
    [154]Hashin, Z. Analysis of stiffness reduction of cracked cross-ply laminates [J]. Engineering Fracture mechanics.1986,25(5/6):771-778.
    [155]Wang, A. S. D. Initiation and growth of transverse crack and edge delamination in composite laminates [J]. Journal of composite materials.1980, supplemental volume: 71-196.
    [156]Whitney J. M. and Nuismer R. J. Stress fracture criteria for laminated composites containing stress concentrations [J]. Journal of composite materials.1974,8:253-265.
    [157]Camanh P. P., Matthews F. L. Delamination onset prediction in mechanically fastened joints in composite laminates [J]. Journal of composite materials.1999,33:906-927.
    [158]Davila C. G., Johnson E. R. Analysis of delamination initiation in postbuckled dropped-ply laminates [J]. AIAA journal.1993,31(4):721-727.
    [159]Hwang W. C., Sun C. T. Failure analysis of laminated composites by using iterative three-dimensional finite element method [J]. Computers and structures.1989,33:41-47.
    [160]Lou R. K., Green E. R., Morrison C. J. impact damage analysis of composite plates [J]. International journal of impact engineering.1999,22:435-447.
    [161]Sun C. T. and Manoharan, M. G. Strain energy release rates of an interfacial crack between two orthotropic solids [J]. Journal of composite materials.1989,23:460-478.
    [162]Domenico Bruno, Fabrizio Greco, Paolo Lonetti. A 3D delamination modeling technique based on plate and interface theories for laminated structures [J]. European journal of mechanics A/Solids.2005,24:127-149.
    [163]Zou, Z., Reid, S. R., Soden, P. D., Li S. Mode separation of energy release rate for delamination in composite laminates using sublaminates [J]. International journal of solids and structures.2001,38:2597-2613.
    [164]Liu S. Quasi-impact damage initiation and growth of thick-section and toughened composite material [J]. International journal of solids and structures.1994,31:3079-3098.
    [165]Allix O., Ladeveze P. Interlaminar interface modeling for the prediction of delamination [J]. Composite structures.1992,22:235-242.
    [166]Allix O., Ladeveze P., Corigliano A. Damage analysis of interlaminar fracture specimens [J]. Composite structures.1995,31:61-74.
    [167]Corigliano A. Formulation, identification and use of interface models in numerical analysis of composite delamination [J]. International journal of solids and structures.1993,30: 2779-2811.
    [168]Corigliano A., Ricci M. Rate-dependent interface models:formulation and numerical applications [J]. International journal of solids and structures.2001,38:547-576.
    [169]Corigliano Alberto, Mariani Stefano, Pandolfi Anna. Numerical modeling of rate-dependent debonding processes in composites [J]. Composite structures.2003,61:39-50.
    [170]Goyal-Singhal V., Johnson E. R., Jaunky N. An irreversible constitutive law for modeling the delamination process using interface elements.43rd AIAA/ASME/ASCE/AHS/ASC structures. Structural dynamics and materials conference. Colorado, USA.2002.
    [171]Ulf Edlund, Pieter Volgers. A composite ply failure model based on continuum damage mechanics [J]. Composite structures.2004,65:347-355.
    [172]崔海坡,温卫东.复合材料层合板冲击损伤影响因素分析[J].中国机械工程,2008,19(5):613-617.
    [173]程起有,童小燕,姚磊江等.复合材料层合板低速冲击响应的有限元分析[J].飞机设计,2008,28(1):33-36.
    [174]徐颖,温卫东,崔海坡.复合材料层合板低速冲击逐渐累积损伤预测方法[J].材料科学与工程学报,2006,24(1):77-81.
    [175]沈真,杨胜春,陈普会.复合材料层压板抗冲击行为及表征方法的实验研究[J].复合材料学报,2008,25(5):125-133.
    [176]Serge Abrate, Impact on composite materials [J]. Applied Mechanics Reviews,1991,44 (4): 155-190.
    [177]Serge Abrate, Impact on laminated composites:Recent advances [J]. Applied Mechanics Reviews,1994,47 (11):517-544.
    [178]Serge Abrate, Modeling of impact on composite structures [J].Composite Structure,2001, 51 (2):129-138.
    [179]李晨锋,程建钢,胡宁等,带脱层复合材料层板的低速冲击响应[J].复合材料学报,2003,20(1):38-44.
    [180]彭俊,刘元镛,低速冲击下复合材料层合板的响应过程模拟[J].力学季刊,2001,22(1):138-142.
    [181]张振瀛.复合材料力学基础.北京:航空工业出版社,1989.59-62.
    [182]T.P.Philippidis and D.J.Lekou. Probabilistic failure prediction for FRP composites. Composites Science and Technology,1998,58:1973-1982.
    [183]Mateust H.C, Mota Soares C.M. Buckling sensitivity analysis and optimal design of thin laminated structures [J]. Computer&Structures, Vol.64, No.14,1997.
    [184]H.K.Jeong and R.A.Shenoi. Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Computers and Structures,2000,76:219-235.
    [185]H.K.Jeong and R.A.Shenoi. Reliability analysis of mid-plane symmetric laminated plates using direct simulation method. Composite Structures,1998,43:1-13.
    [186]Hsuan-The Hu, Chin-Deng Juang. Influence of geometry and end conditions on optimal fundamental frequency of laminated curved Panels. AIAA-96-1585-CP,1996.
    [187]J.H.Park et al,. Stacking sequence design of composite laminates for maximum strength using genetic algorithms[J], Composite Structure,2001,52:217-231.
    [188]Ji-Ho Kang et al.,Minimum- weight design of compressively loaded composite plates and stiffened Panels for Post buckling strength by genetic algorithm Composite Structures, 2005,69:239-246.
    [189]Akira Todoroki et al., Design of experiments for satcking sequence optimizations with genetic algorithm using response surface approximation, Composite Structures [J],2004, 64:349-357.
    [190]C.A.Coello et al,. Multi-objective optimization of trusses using genetic algorithms[J], Computers and Structures,2000,75:647-660.
    [191]A Mac, Genetic algorithms and finite element analysis in optimization of composite structures, Composite Structures,2001,54:275-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700