用户名: 密码: 验证码:
神经信息传导的电路模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统是由大量神经元耦合形成的复杂网络,各神经元之间主要通过膜电压和突触电流实现神经信息的传导。由于通用计算机计算性能的限制,软件仿真无法满足研究复杂的生物神经元网络的要求;数字专用集成电路芯片无需读写程序即可并行完成多个数学运算,将其应用于神经系统的电路建模中可显著提高计算效率。因此建立神经信息传导的电路模型是研究神经系统电生理特性的有效方法之一。本文研究了基于现场可编程门阵列(FPGA)技术的神经电信息传导电路模型,并通过对神经元及神经网络的分析证明了模型的有效性。
     本文基于流水线思想,实现了在FPGA上同时求解多个常微分方程的流水线数据通路方法。首先利用流水线算子的概念实现了从常微分方程到流水线数据通路的严格映射关系,建立了在FPGA上求解常微分方程的多进程流水线模型;然后通过分析多进程流水线模型上各状态变量在时间和空间上的分布关系,推导出了保持所模拟的神经元模型与真实的生物神经元模型在时间尺度上一致的条件,给出了利用流水线数据通路求解耦合的多个常微分方程的方法。
     本文还设计了基于FPGA技术的神经元网络电路实验平台,该平台由FPGA的计算核心,USB数据上传系统以及AD,DA转换电路组成。根据AD和DA转换过程中的延时对系统实时性的影响问题,提出了两种时序控制方案,保证了模型在神经元数学模型的一个迭代步内完成AD和DA的数据转换,维持了系统的实时性。
     本文根据Morris-Lecar神经元以及由该神经元通过化学突触组成的神经元网络的电生理特性,利用多进程流水实现了Morris-Lecar神经元及网络的FPGA模型,并利用FPGA电路模型分析了Morris-Lecar神经元的放电模式、耦合神经元同步等动力学特性,证明了方法的正确性和可行性。
     海马是大脑决定认知、情感等重要脑功能的主要神经组织,本文法实现了海马CA3区椎体神经元及网络的FPGA电路模型,分析了海马CA3区椎体神经元的动力学特性,模拟了两个海马神经元同步放电现象。
     本文的工作是研究神经元模型的重要手段,通过数字电路准确、快速的再现生物神经系统丰富的动力学现象,可以为针刺电信息传导的规律研究提供可重复的模拟实验对象。
Nervous system is a complex network composed by a large number of neurons which conduct the neural information mainly through the membrane voltage and synaptic current. Constrained by the performance of general-purpose computer, software simulation can not satisfy the biological neural network research requirements. Instead of reading the program, digital ASIC devices can complete the computation in parallel mathematics. Implementing the electrical model of nervous system with digital ASIC can improve the computational efficiency significantly. It is an effective method to study the electrophysiological properties of the nervous system. Based on field programmable gate array (FPGA) technology, the electrical model of neural information conduction was built in this paper, and the experimental results show the validity of the model.
     Based on the pipeline idea, the data path in the FPGA can solve multiple ordinary differential equations simultaneously. Firstly, in this paper, the strict mapping between the pipeline data path and the ordinary differential equation was established by the method of pipeline operator, and the Multi-Process Pipeline Model of ordinary differential equation was built. Secondly, the necessary condition to maintain the neural model and biological neurons in the same time scale was deduced by analyzing the time and space distribution relationship of the state variables in the Multi-Process Pipeline Model. Finally, the solution to implement the coupling ordinary differential equations with pipeline data path was given.
     In this paper, an experimental platform based on FPGA technology was designed. It was composed of FPGA computing core; USB data upload system and the AD, DA conversion circuit. The delay of the AD and DA conversion process will impact the real-time nature of the platform. Two sequential control methods were proposed to ensure that the AD and DA processes can be completed in one iterative step.
     According to the electrophysiological properties of Morris-Lecar neurons and the neural network, the electrical model of Morris-Lecar neurons and the network was implemented with the Multi-Process Pipeline Model. The firing patterns and synchronization phenomena were analyzed through the electrical model, indcating the correctness and feasibility of the method.
     Hippocampus is an important brain tissue to cognitive, emotional and other important brain functions. The electrical model of hippocampus neurons in CA3 area was built by the Multi-Process Pipeline Model mehtod in this paper. The electrophysiological properties of the hippocampus neuron were analyzed by the electrical and the results show that the synchronization phenomenon exists in the hippocampus neural network.
     An effective means to research the production and conduction process of neural information was proposed in this paper. The dynamics of biological nervous system can be implemented quickly and accurately with the electrical model. It supplies a recoverable experimental subject for the research of acupuncture information conduction.
引文
[1] J.G. Nicholls,从神经元到脑(杨雄里译),北京:科学出版社,2005.
    [2]唐孝威,脑科学导论,浙江:浙江大学出版社,2006.
    [3] R. Brette, M. Rudolph, T. Carnevale et al., Simulation of networks of spiking neurons: a review of tools and strategies, Journal of Computational Neuroscience, 23:349–398, 2007.
    [4] B. Kernighan, R. Pike, The Unix Programming Environment Englewood Cliffs, NJ, Prentice Hall, 1984.
    [5] K. Aihara, G. Matsumoto, Two stable steady states in the Hodgkin-Huxley axons, Biophysical Journal, 41:87-89, 1983.
    [6] B. Hassard, Bifurcation of periodic solutions of Hodgkin-Huxley model for the squid giant axon, Journal of Theoretical Biology, 71:401-420, 1978.
    [7]车艳秋,外电场下神经元的分岔研究, [博士学位论文],天津:天津大学,2008.
    [8] W.C. Troy, The bifurcation in the Hodgkin-Huxley equation, Quarterly of Applied Mathematics, 36:73-83, 1978.
    [9] T.J. Lewis, Phase locking in electrically-coupled non-leaky integrate-and-fire neurons, Discrete and Continuous Dynamical Systems Supplementary, 554-562, 2003.
    [10] T.J. Lewis, J. Rinzel, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, Journal of Computational Neuroscience, 14: 283-309, 2003.
    [11] E.H. Park, E. Barreto, B.J. Gluckman et al., A Model of Effects of Applied Electric Fields on Neuronal Synchronization, The Journal of Computational Neuroscience, 19:53-70, 2005.
    [12] S. Chillemi, A. Panarese, M. Barbi et al., Gap-junctions promote synchrony in a network of inhibitory interneurons in the presence of heterogeneities and noise,Lecture Notes in Computer Science, 3561: 77-85, 2005.
    [13] Shunsuke Sato, Shinji Doi. Response Characteristics of the BVP neuronal model driver by periodic pulse train, Mathematical Biosciensees, 125:229-250, 1995.
    [14] Deng Bin, Wang Jiang, Fei Xinagyang, Chaotic synchronization with gap junction of multi-neurons in external electrical simulation, Chaos, Solitons and Fractals, 25:1185-1192, 2005.
    [15] C. Ebeling, L. McMurchie, S.A. Hauck, et al., Placement and routing tools for the Triptych FPGA, IEEE Transaction on VLSI Systems, 3(4):473-482, 1995. [ 16 ] D. Peter, R. David, VSLI Singal Processing: A Bit-Serial Approach, Addison-Wesley, 1985.
    [17] V. Betz, J. Rose, Circuit design, transistor sizig and wire layout of FPGA interconnect, Proceedings IEEE 1999 Custom Integrated Circuits Conference. 171-174.
    [18] T. W. Berger, M. Baudry, R. D. Brinton et al., Restoring lost cognitive function,”IEEE Eng. Med. Biol. Mag., 24(5):30-44, 2005.
    [19] T. W. Berger, M. Baudry, R. D. Brinton et al., Brain-implantable biomimetic electronics as the next era in neural prosthetics, Proc. IEEE, 89(7)993-1012, 2001.
    [20] L. Lapique. Sur l’excitation electrique des nerfs. Journal of Physiology, 620-635, 1907.
    [21] A.L. Hodgkin, A.F. Huxley, Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo, Journal of Physiology, 116:449-472, 1952.
    [22] A.L. Hodgkin, A.F. Huxley, The components of membrane conductance in the giant axon of Loligo, Journal of Physiology, 116:473-496, 1952.
    [23] A.L. Hodgkin, A.F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, Journal of Physiology, 116:497-506, 1952.
    [24] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane and itsapplication to conduction and excitation in nerve, Journal of Physiology, 117:500-544, 1952.
    [25] R. Fitzhugh, Impulses and physiological states in models of nerve membrane, Biophysical Journa, 1: 445-467 l, 1961.
    [26] C. Morris, H. Lecar., Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, 35: 193-213, 1981.
    [27] E.R. Lewis. An electronic model of the neuroelectric point process. Kybernetik, 5:30-46, 1968.
    [28] R.H. Johnson and G.R. Hanna. Membrane model: a single transistoranalog of excitable membrane. Journal of Theoretical Biology, 22:401-411, 1969.
    [29] G. Roy. A simple electronic analog of the squid axonmembrane: the neuroFET, IEEE Transactions on Biomedical Engineering, 18:60-63, 1972.
    [30] W.H. Brockman. A simple electronic neuron model incorporating both active and passive responses. IEEE Transactions on Biomedical Engineering, BME-26:635– 639, 1979.
    [31] R.G. Runge, M. Uemura, and S.S. Viglione. Electronic synthesis of the avian retina. IEEE Transactions on Biomedical Engineering, BME-15:138-151, 1968.
    [32] W.J. Karplus and W.W. Soroka. Analog Methods: Computation and Simulation. McGraw-Hill, 1959.
    [33]Liu, S.-C., Kramer, J., Indiveri, G., Delbr¨uck, T., and Douglas, R., Analog VLSI: Circuits and principles. Cambridge, MA: The MIT Press, 2002.
    [34] Mahowald, M. A. and Mead, C., The silicon retina, Scientific American, 264, (5):76-82, 1991.
    [35] Lyon, R. F. and Mead, C. A.,“An analog electronic cochlea,”IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7):1119-1134, 1988.
    [36] Patel, G., Brown, E., and DeWeerth, S. P., A neuromorphic VLSI system for modeling the neural control of axial locomotion, Advances in Neural Information Processing Systems 12: Proceedings of the 1999 Conference (Solla, S. A., Leen, T. K., and M¨uller, K.-R., eds.), 724-730, The MIT Press, 2000.
    [37] Patel, G. N., Holleman, J. H., and DeWeerth, S. P., Analog VLSI model of intersegmental coordination with nearest-neighbor coupling, Advances in Neural Information Processing Systems 10: Proceedings of the 1997 Conference (Jordan, M. I., Kearns, M. J., and Solla, S. A., eds.), 719-725, The MIT Press, 1998.
    [38] Simoni, M. F., Patel, G. N., and DeWeerth, S. P., Analog VLSI model of the leech heartbeat elemental oscillator, Sixth Annual Computational Neuroscience Meeting, (Big Sky, MT), 1997.
    [39] DeWeerth, S. P., VLSI chip modeled after a leech, IEEE Computational Science & Engineering, 2(4): 83, 1995. [ 40 ] Horiuchi, T. K., Morris, and T. G., Koch, Analog VLSI circuits for attention-based, visual tracking, Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference (Mozer, M. C., Jordan, M. I., and Petsche, T., eds.), 706-712, The MIT Press, 1997.
    [41] Hahnloser, R., Sarpeshkar, R., Mahowald, M., et al., Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, 405( 6789):947-951, 2000.
    [42] Hudson, T. and DeWeerth, S., Implementation of motoneuronal behavior using analog VLSI circuits, 42nd Midwest Symposium on Circuits and Systems, (Piscataway, NJ), IEEE Press, 1999.
    [43] DeWeerth, S. P., Nielsen, L., Mead, C. A., A simple neuron servo, IEEE Transactions on Neural Networks, 2(2):248-251, 1991.
    [44] Douglas, R. and Mahowald, M., Design and fabrication of analog VLSI neurons, Methods in neuronal modeling: From ions to networks (Koch, C. and Segev, I., eds.), 8:293-312, Cambridge, MA: The MIT Press, 1998.
    [45] Rasche, C. and Douglas, R., An improved silicon neuron, Analog Integrated circuits and Signal Processing, 23(3):227-236, 2000.
    [46] Dupeyron, D., Le Masson, S., Deval, Y., et al., A BiCMOS implementation of the Hodgkin–Huxley formalism, Proceedings of the 5th International conference of Microelectronics for Neural Networks and Fuzzy Systems, 311-316, IEEEComputer Society Press, 1996.
    [47] Nadim, F., ?lsen, O., Schutter, E. D., Calabrese, R., Modeling the leech heartbeat elemental oscillator: I. Interactions of intrinsic and synaptic currents, Journal of Computational Neuroscience, 2(3):215-235, 1995.
    [48] Simoni, M. F., Synthesis and analysis of a physical model of biological rhythmic motor control with sensorimotor feedback. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2002.
    [49] Gabbiani, F. and Koch, C., Principles of spike train analysis, Methods in neuronal modeling: From ions to networks (Koch, C. and Segev, I., eds.), 9:313–360, Cambridge, MA: The MIT Press, 1998.
    [50] Gerstner, W., Spiking neurons, Pulsed Neural Networks (Maass, W. and Bishop, C., eds.), Cambridge, MA: The MIT Press, 1999.
    [51] Selverston, A., Rabinovich, M., Arbanel, H., et al. Reliable circuits from irregular neurons: A dynamical approach to understanding central pattern generators, Journal of Physiology , 94(5-6):357-374, 2000.
    [52] Patel, G. and DeWeerth, S., Analogue VLSI Morris-Lecar neuron, Electronics Letters, 33(12):997-998, 1997.
    [53] Cymbalyuk, G. S., Patel, G. N., Calabrese, R. L., et al., Modeling alternation to synchrony with inhibitory coupling: A neuromorphic VLSI approach, Neural Computation, 12(10):2259-2278, 2000.
    [54] Farquhar, E., A biologically inspired silicon neuron, Master’s thesis, Georgia Institute of Technology, Atlanta, GA, 2003.
    [55] Farquhar, E. and Hasler, P., A bio-physically inspired silicon neuron, IEEE Transactions on Circuits and Systems—I: Regular Papers, 52:477-488, 2005.
    [56] Pradeep R, Vinay S, Burman S, et al., FPGA based agile algorithm-on-demand coprocessor Proc. Design, Automation and Test in Europe 82, 2005.
    [57] Kamalizad A H, Pan C and Bagherzadeh N 2003 Fast parallel FFT on a reconfigurable computation platform Proc. 15th Symp, On ComputerArchitecture and High Performance Computing 254.
    [58] Krishnamurthy R, Yalamanchill S, Schwan K and West R Architecture and hardware for scheduling gigabit packet streams Proc. 10th Symp. on High Performance Interconnects p 52, 2002.
    [59] Lee D. C., Harper S. J., Athanas P. M. et al., A stream-based reconfigurable router prototype IEEE International Conf. on Communications: ICC’99 1:581, 1999.
    [60]Oliver T., Schmidt B., Maskell D. L. and Vinod A. P., A reconfigurable architecture for scanning biosequence databases, IEEE Int. Symp. on Circuits and Systems: ISCAS, 4799, 2005.
    [61] Brown B. O., Yin M. L. and Cheng Y., 2004 DNA sequence matching processor using FPGA and JAVA interface Conf. Proc.: 26th Annual International Conf. of the Engineering in Medicine and Biology Society, EMBC ,2:3043 ,2004
    [62] Sund Su Kim, Seul Jung, Hardware Implementation of Real Time Neural Network Controller with a DSP and an FPGA, IEEE International Conference on Robotics and Automation, 5:3161-3165, 2004.
    [63] X. Yu and D. Dent, Implementing neural networks in FPGAs, IEE Colloquium on Hardware Implementation of Neural Networks and Fuzzy Logic, 61:1-5, 1994.
    [64] S. L. Bade,B. L. Hutchings, FPGA-based stochastic neural networks-implementation, Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, 189-198, Napa Valley, Calif, USA, April 1994.
    [65] Y.J.Chen, Du Plessis, Neural Network Implementation on a FPGA , Proceedings of IEEE Africon, 1:337-342, 2002.
    [66] Graas, E., Brown, E., and Lee, R. H., An FPGA-based approach to high-speed simulation of conductance-based neuron models, Neuroinformatics, 2(4):.417–436, 2004.
    [67] Weinstein, R. and Lee, R., Design of high performance physiologically-complex motoneuron models in FPGAs, Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, (Washington,DC), :526–528, 2005.
    [68] Johnston, D., Wu, S. M., Foundations of cellular neurophysiology. Cambridge, MA: The MIT Press, 1997.
    [69] Hines, M., Carnevale, N., The NEURON simulation environment, Neural Computation, 9(6):1179-1209, 1997.
    [70] Segev, I., Fleshman, Jr., J., Burke, R., Computer simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons, Journal of Neurophysiology, 64(2):648–660, 1990.
    [71] Vetter, P., Roth, A., Hausser, M., Propagation of action potentials in dendrites depends on dendritic morphology, Journal of Neurophysiology, 85(2):926-937, 2001.
    [72] Weinstein, R. K. and Lee, R. H., Architectures for high-performance FPGA implementations of neural models, Journal of Neural Engineering, 3:21–34, 2006.
    [73] Weinstein, R. K., Reid, M. S., and Lee, R. H., Methodology and design flow for assisted neural model implementations in FPGAs, IEEE Transactions on Neural Systems and Rehabilitation Engineering, p1, 2007.
    [74] Weinstein, R. and Lee, R., Computationally intensive motoneuron modeling in FPGAs, 2004 Abstract Viewer/Itinerary Planner, (Washington, DC), Society for Neuroscience, 2004. Program No. 921.5.
    [75] Richard A Normann, Bradley A Greger, Paul House et al., Toward the development of a cortically based visual neuroprosthesis, Journal of Neural Engineering, 2009.
    [76] Christian A. Morillas, Samuel F. Romero, Antonio Martnez, et al.,A design framework to model retinas, BioSystems , 2007,87:156–163.
    [77]Christian Morillas, Samuel Romero, Antonio Martnez et al., A neuroengineering suite of computational tools for visual prostheses, Neurocomputing, 2007, 70:2817–2827.
    [78] Francisco Pelayo, Antonio Martinez, Christian A. Morillas et al., Retina-like processing and coding platform for cortical neuro-stimulation Proceedings of the25th Annual International Conference of the IEEE EMBS 17-2 1,2003.
    [79] C. Mead, M.A. Mahowald, A silicon model of early visual processing. Neural networks, 1(1):91–97, 1988.
    [80] T. Delbruck , and C.A. Mead, Analog VLSI transduction. Technical Report CNS Memo 30, California Institute of Technology Computation and neural Systems Program, Pasadena California, USA, April 1996.
    [81] C. Diorio, P. Hasler, B.A. Minch, and C.A.Mead. A single-transistor silicon synapse. IEEE Transactions on Electron Devices, 43(11):1982-1980, 1996.
    [82] G. Indiveri and R. Douglas, Neuromorphic vision sensors, Science, 288:1189– 1190, 2000.
    [83] S. Kameda and T. Yagi, An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina, IEEE Trans. on Neural Networks 14 (5):1405-1412, 2003.
    [84] K. Shimonomura and T. Yagi, A multi-chip aVLSI system emulating orientation selectivity of primary visual cortical cell, IEEE Trans. on Neural Networks 16 (4):972–979, 2005.
    [85] T. G. Constandinou, T. S. Lande, and C. Toumazou, Bio-pulsating architecture for object-basedprocessing in next generation vision systems, IEE Electronics Lett. 39 (16):1169–1170, 2003.
    [86] T. G. Constandinou, J. Georgiou, and C. Toumazou, Nano-power mixed-signal tunable edge-detection circuit for pixel-level processing in next generation vision systems, IEE Electronics Lett. 39 (25):1774-1775, 2003.
    [87] E. Grenet, Embedded High Dynamic Vision System For Real-Time Driving Assistance, TRANSFAC’06, p. 120, San Sebastian, Spain, October 2006.
    [88]William B. Dickson, Andrew D. Straw, Christian Poelma, et al., An Integrative Model of Insect Flight Control, American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, 2006.
    [89] Steven N. Fry, Rosalyn Sayaman, and Michael H. Dickinson, The Aerodynamics of Free-Flight Maneuvers in Drosophila, Science 300:495-498,2003.
    [ 90 ] Michael Epstein, Stephen Waydo, Sawyer Fuller, et al., Biologically InspiredFeedback Design for Drosophila Flight, American Control Conference, 2007.
    [91] W. Reichardt, Autocorrelation, A principle for the evaluation of sensory information by the central nervous system., Principles of Sensory Communication, pp. 303–317, 1961.
    [92] R.R. Harrison and C. Koch. An analog VLSI model of the fly elementary motion detector, Adcanves in Neural Information Processing Systems, 10:880–886, 1998.
    [93] Z. Yang, A.F. Murray, F. Woergoetter, et al., A neuromorphic depth-from-motion vision model with stdp adaptation, IEEE Transactions on Neural Networks, 17(2):482–495, 2006.
    [94] G. Indiveri, Analogue VLSI model of locust DCMD neuron response for computation of object aproach, Neuromorphic Systems: engineering silicon from neurobiology, p:47-60, 1998.
    [95] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120db 15ths latency asynchronous temporal contrast vision detector, IEEE Journal of Solid-state Circuits, 43(2):566–576, 2008.
    [96] P. Furth and A.G. Andreou, A design framework for low power analog filter banks, IEEE Transactions on Circuits and Systems, 42(11):966–971, 1995.
    [97] R.F. Lyon and C.Mead, An analog electronic cochlea, IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7):1119–1134, 1988.
    [98] W. Liu, A.G. Andreou, and M.H. Goldstein Jr, Voiced speech representation by an analog silicon model of the auditory periphery. IEEE Trans. Neural Networks, 3(3):477-487, 1993.
    [99] J. Lazzaro and J. Wawrzynek, Speech recognition experiments with silicon auditory models. Analog Integrated Circuits and Signal Processing, 13:37-51, 1997.
    [100] W. Liu, A.G. Andreou, and M.H. Goldstein J, Analog cochlear model for multiresolution speech analysis, Advances in Neural Information ProcessingSytems 5:666–673, 1993.
    [101] E. Fragniere, A. van Schaik, and E.A. Vittoz, Design of an analogue VLSI model of an active cochlea, Analog Integrated Circuits and Signal Processing, 12:19-35, 1997.
    [102] T.J. Hamilton, C. Jin, A. van Schaik, and J. Tapson. An active 2-d silicon cochlea. IEEE Transactions on biomedical circuits and systems, 2(1):30–43, 2008.
    [103] Andr Van Schaik, Eric Fragniere, and Eric Vittoz, An analogue electronic model of ventral cochlear nucleus neurons, 5th International Conference on Microelectronics for Neural Networks and Fuzzy Systems (MicroNeuro’96), 1996.
    [104] Andre Van Schaik and Eric Vittoz, A silicon model of amplitude modulation detection in the auditory brainstem, Advances in NIPS, 9:741-747, 1997. [ 105 ] M. Glover, A. Hamilton, and L.S. Smith, Analogue VLSI leaky integrated-and-fire neurons and their use in a sound analysis system, Analog Integrated Circuits and Signal Processing, 30(2):91–100, 2002.
    [106] S. Brown, R. Francis, J. Rose et al., Field Programmable Gate Arrays, Boston, Kluwer Academic Publishers, 1992.
    [107] Wayne Wolf, FPGA-Based System Design, Princeton, Prentice Hall, 2004.
    [108] Rross H. Freeman, Configurable electrical circuit having configurable logic elements and configurable interconnect, U.S. Patent 4870-302,1989.
    [109] O.Spaniol, Computer Arithmetic, Logic and Design. John Wiley & Sons, 1981, New York.
    [110] Darren C. Cronquist, Chris Fisher, Miguel Figueroa et al., Architecture design of reconfigurable pipelined datapath, Advanced Research in VLSI, 20th Anniversary conference on, MIT Press, 23-40, 1999.
    [111] Stephen Brown, Muhammad Kellah, Zvonko Vranesic, Minimizing FPGA interconnect delays, IEEE Design & Test of Computer, 16-23, 1996.
    [112]常微分方程及其应用,周义仓,靳祯,秦军林,背景,科学出版社,2010
    [113] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, 2005.
    [114] A. Destexhe, Z.F. Mainen, T.J. Sejnowski, Neural Computation 6:14,1994.
    [115] S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion, New York, 2003.
    [116]E.R. Kandel, J.H. Schwartz, T.M. Jessel, Principles of Neural Science, 4th ed., Elsevier, New York, 2000.
    [117] N. Kopell, G.B. Ermentrout, Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks, Proceedings of the National Academy of Sciences 101:15482-15487, 2004.
    [118] C.C. Chow, N. Kopell, Dynamics of spiking neurons with electrical coupling, Neural Computation, 12:1643-1678, 2000.
    [119] T.J. Lewis, Phase locking in electrically-coupled non-leaky integrate-and-fire neurons, Discrete and Continuous Dynamical Systems Supplementary volume, 554-562, 2003.
    [120] T.J. Lewis, J. Rinzel, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, Journal of Computational Neuroscience, 14:283-309, 2003.
    [121] E.-H. Park, E. Barreto, B.J. Gluckman, S.J. Schiff, P. So A Model of Effects of Applied Electric Fields on Neuronal Synchronization, The Journal of Computational Neuroscience 19, 2005, 53~70.
    [122] S. Chillemi, A. Panarese, M. Barbi, G.A. Di Gap-junctions promote synchrony in a network of inhibitory interneurons in the presence of heterogeneities and noise, Lecture Notes in Computer Science, 3561: 77-85,2005.
    [123] B. Pfeuty, G. Mato, D. Golomb, D. Hansel, The combined effects of inhibitory and electrical synapses on synchrony, Neural Computation, 17: 633-670, 2005.
    [124] B. Pfeuty, G. Mato, D. Golomb, D. Hansel, The combined effects of inhibitory and electrical synapses on synchrony, Neural Computation, 17: 633~670 ,2005.
    [125] J. Gao, P. Holmes, On the dynamics of electrically-coupled neurons withinhibitory synapses, Journal of Computational Neuroscience, 22: 39-61, 2006.
    [126]刘青,吴俊芳,汪胜,胡玲,覃星奎,王文挺,刁芳明,韩丹.急性大鼠癫痫模型海马神经元原发性单位后放电脉冲间隔特征.生物物理学报, 21 (6): 409-417, 2005.
    [127]黄秉宪.海马记忆功能的神经网络模型.生物物理学报, 9 (4): 599-604, 1993.
    [128] Pinsky PF, Rinzel J. Intrinsic and Network Rhythmogenesis in a Reduced Traub Model for CA3 Neurons, Journal of Computational Neuroscience, 1: 39-60, 1994
    [129] Zeldenrust F, Wadman WJ, Two forms of feedback inhibition determine the dynamical state of a small hippocampal network. Neural Networks, 22: 1139-1158, 2009.
    [130] D. Fricker, R. Miles Interneurons, spike timing, and perception, Neuroscience 32, 771-774, 2001.
    [131] P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.-J. Freund, Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography, Physical Review Letters, 81:3291~3294, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700