用户名: 密码: 验证码:
虚拟膝关节内窥镜手术仿真训练系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节内窥镜手术是一种微创外科技术,主要是应用微型摄像头的光学传导系统在人体的关节腔内游走,实现对关节疾病的诊断和治疗。由于关节镜手术创口小,病人术后康复迅速,在国内外广泛用于骨关节疾病的临床诊断和治疗。但这种手术方式的技术难度很大,初学者难以在短时间内学会。临床实际经验不足的医生,往往难以辨认操作方向;在不熟练掌握操作技术的情况下,也容易损伤关节腔内部的重要结构,从而延长了手术时间,加重了病人的痛苦,增加手术的费用,浪费医疗资源。因此,研发关节内镜的手术培训系统,具有极其重要的意义。传统的内窥镜训练课程仅限于模型操作和动物实验,其中单纯模型训练过于简单且很容易损坏模型和器械,而以动物实验训练为主的模式又因各种条件的限制难以广泛应用。
     近几年来,虚拟现实技术在内窥镜检查培训方面得到了应用。采用虚拟现实技术实现内窥镜手术仿真的方法可以模拟临床上各种关节内窥镜的手术操作,使得初学者能在短时间内得到大量的训练,掌握关键的操作技术。虽然目前已有少数成形的仿真关节内窥镜用于关节外科医师的培训,然而这些设备都存在昂贵,实用性差的缺点,并且几乎所有仿真内镜设备都依靠进口。目前国内的培训系统还停留在模拟手术的认识和探讨阶段,往往只是提供仿真界面来模拟显示真实关节内窥镜手术中可能遇到的情景,虽然现有的这些系统能较好地培训初学者的认知能力和理论知识,但根本无法训练初学者的手眼协调能力。因此研发的具有自主知识产权的,能训练眼手操作的仿真设备,并且大规模地应用于培训,将有助于解决这些问题。而从长远的角度来看,可以进一步促进关节内镜手术的普及和发展。
     本文介绍一种应用虚拟现实技术实现关节内窥镜手术训练的仿真系统。由于膝部的关节镜手术最为常见,本课题主要以膝关节为主,讨论了通过计算机三维可视技术,建立软件系统来支持膝关节腔的三维模型,配合自主研发的球杆式外部输入设备和硬件,最终实现了通过计算机三维可视技术来仿真关节内窥镜手术过程;本系统采用类似真实关节内窥镜的操作杆和剪刀,让受训者体验临床手术时的真实手感和方向感;又与此同时,本课题又设计不同的关节疾病模型仿真场景,让受训者体验训练的过程;同时制订科学的训练计划,使学员能在这一具有虚拟场景和操作杆相结合的训练环境中得到充分的训练。实验结果充分验证了本虚拟系统在关节镜培训方面的效果。现将本课题的方法和结果介绍如下:
     一、人体膝关节腔及相关场景的三维静态及动态模型建立
     在本章中我们对应用3Ds max2010建立的关节腔模型进行剖析,详细描述其相关场景的建模方式与流程。该应用软件为我们提供的许多高效的工具。使我们可以直接用建模的方法来建立关节腔的正常模型,设计动态模型,建立相关的疾病模型。在疾病模型中,我们主要涉及两种典型的疾病:游离体和半月板损伤,通过对这两种疾病的建立,我们可以依此推知其它关节腔病变的建模,为日后开发大量疾病模型打下坚实的基础。
     方法:选择了国产与正常人体大小相当的关节模型,以及中国人正常人体的关节腔示意图。通过应用3D max建立关节腔的正常模型和疾病模型,应用关键帧技术设计相关的动态模型,形成上位软件系统的场景;在制作关节股骨和胫骨的过程中,我们首先勾画出一个大致的外形,经过修改后形成准确的轮廓,接着不断添加细节,修改成更复杂的形状,最后经过平滑和赋予材质,形成相应的骨关节面;在制作韧带、半月板和剪刀等结构时我们应用另一种建模的方法:首先创建一个原始的类似几何体,再将这个几何体塌陷成可编辑网格或是可编辑多边形,然后不断修改,不断细分最后得到我们想要的模型效果;在完成了关节的建模后,我们结合关键帧技术建立动态模型来体现剪刀开合和第2场景中的疾病模型;在半月板损伤的模型中,我们采用布尔运算来制作缺口,形成第3场景。
     结果:应用3D max建模技术制作了关节腔的模型,两科疾病模型和剪刀开合,主要内容包括:(1)剪刀的开合动态模型制作技术;(2)游离体的动态破碎模型;(3)半月板损伤的成形术。
     结论:实验结果证明,3D max建立各种场景的优势非常明显,它操作简单,非常适合业务人员的学习和应用,更为关键的是比较容易理解,可以在建模的过程中留给应用者更多的想象空间和修改余地。其中的多边形建模的效率相当高,可以在短时间内建立大量的模型,而进行一些细节的修改之后,很容易做出相关的疾病模型。在未来的建模中,我们将进一步细致划分更多的细节,使用更多的材质来体现模型的真实感。
     二、虚拟关节软件系统的研发和实现
     本章描述了三维模型装配软件的系统运行环境、软件的总体结构、工作流程和软件的功能描述。
     方法:软件开发所采用的语言是标准C++语言,渲染模块采用目前流行的开源渲染引擎OGRE。软件整体构架分为三个状态机和一个状态机管理类,每一个状态机负责一个场景的管理,包括场景资源的加载、更新和销毁。状态机管理负责管理每个状态机,包括每帧驱动当前活动的状态机,添加或者删除一个状态机。输入系统采用的是OIS(DirectInput的封装),输入系统的功能是每帧捕获用户的输入,这样就可以将用户的请求反馈给系统。加载资源系统是采用的Dotscene,在资源加载的时候用此系统来解析scene文件,然后加载场景中所有的mesh,light,camera animate等等,将加载结果返回给当前状态机。
     结果:设计出三个场景的软件界面:(1)剪刀的开合动画模型软件界面;(2)剪刀钳夹后游离体的动态破碎的界面;(3)模拟半月板成形术用剪刀对已破碎的半月板边缘进行修整。与此同时形成和硬件的接口。
     结论:软件各个功能实现了模块化,同时加入了状态机控制,为硬件提供了便利的功能接口,软件调试过程高度流畅,充分证明了此设计方法简单可行。
     三、内窥镜训练系统外设以及相关硬件系统的制作
     本章内容包括内窥镜训练操作杆的制作、训练操作杆控制器的硬件构成、底层软件的总体流程、控制器与上位机的通讯协议。
     方法:首先分析整套系统需要处理哪些信号,将训练系统需要采集的信号进行分类如下:模拟信号有剪刀的开合程度(转换为电压值);数字信号有按键信息(开关信号),光电传感器的脉冲值(脉冲信号)。采用USB接口同上位机进行通信,所有决定采用STM32F103C8芯片作为主控制器。将整个控制器硬件分为电源部分,脉冲电位器、光电传感器信号处理部分、按键处理、AD转换和USB接口等几个部分,编写相应的驱动程序,并在设计时充分考虑硬件和软件的抗干扰能力,提高系统的可靠性和稳定性。为增强控制器和上位机数据传输的可靠性,在控制板和PC机通信时有个通信协议,每次上传时都将数据进行打包处理,上位机接收数据时也按照通信协议进行拆包处理数据。
     结果:(1)设计并装配好内窥镜训练系统的整套硬件和外部设备。在实际操作中约定左手操作模拟摄像机,右手操作模拟剪刀。外部设备接收到的手的方位和动作通过感应器传输给硬件系统,并顺利地输出。(2)控制器同上位机通过USB接口交换数据。这样,操作训练操作杆,可以看到在上位机有相应的动作,实现了膝关节内窥镜手术的模拟。
     结论:球杆式的训练手柄有助于双手操作信号的感应,硬件系统对信号的传递和识别灵敏,抗干扰能力强。整个运转过程流畅,说明机械设备和硬件的配置协调一致。
     四、膝关节内窥镜手术仿真训练系统的初步实践研究
     在本章中,我们应用虚拟系统中的单手浏览模式,双手操作下游离体摘除、半月板切除模式,对实习医师进行培训。通过对培训后的医师与专业的关节外科医师对比,来评估虚拟关节内镜系统训练效果,由此明确虚拟训练系统在培训关节镜技术中的实用性。
     方法:受试者为来3所不同大学的实习医生和不同医院的医师,实验时间从2009年3月1日至2010年3月30日。在实验1中,我们通过真实临床操作对培训后的医生、未培训的医生和专家作对比;在实验2中,我们通过把上述三组成员在系统操作中的成绩作对比。记录各组的成绩,而后专家组和实习组的感受用有关训练系统的28个问题来评估。问卷的第一部分包含关于模拟系统的初步印象、设计和用户界面等问题。通过从1(非常差)至10(非常有用)的等级量表上作标记来评价虚拟系统。第二部分包含关于模拟系统的培训能力和效果问题。问卷的第三部分提问用户对该系统的培训意愿;第四部分主要是有关系统价格的问题。记录结果并应用SPSS 13.0进行数据分析。
     结果:在综合印象中,大多数数值趋向于好(7分以上)。系统总体培训能力和内镜操作任务的培训能力在总体上评定为好,评分均值大约为8,其中81.6%认为系统对于培训住院医师的内镜技术总体上有用,72%同意模拟系统对于培训手眼协作能力有用。在所有受试者中,75%认为其对于医院内的培训有用,也有62.5%认为模拟系统可以在家中进行自我培训。约一半的医师(50%)指出模拟系统可用于检测内镜操作技术。在现实临床手术操作测试中,专家取得的成绩较未经培训的医师好,差异有显著统计学意义。而培训过的医师的成绩明显优于未培训的医师,差异有显著统计学意义。在虚拟系统操作的测试中,专家取得的成绩与未经培训的医师差异无显著统计学意义;而培训过的医师的成绩明显优于未培训的医师,差异有显著统计学意义。
     结论:本仿真训练系统将类似真实内窥镜器械和计算机的硬软件相结合,为初学者提供一个具有视觉、触觉的较真实的内窥镜手术训练环境。有助于初学者熟悉关节腔的内部结构,掌握关节镜的操作技能,提高手术水平,在关节镜的临床培训方面值得推广应用。在未来的开发研究中,我们可以在此基础上建立更多的疾病模型,来模拟各种各样的关节镜手术。同时也可将培训系统进一步跨专业发展,应用到腹腔、胸腔、宫腔等腔镜手术的培训中。
     主要创新点
     1.自主创新了关节内窥镜的仿真系统,应用球杆式的外部设备,更好的响应操作者的动作,能够真实的模拟关节镜的手术操作过程。同时为将来的力反馈模型开发提供了思路。
     2.运用3D max建模技术来建立人体膝关节腔的模型、疾病模型及相关场景的三维静态及动态模型。有助于真实的显示解剖结构,逼真的模拟病变结构,为将来系统的不断开发奠定基础。
     3.在国内首次将自行研制的虚拟手术设备用于临床实践,取得满意的实验结果,验证了仿真训练系统的实用性。
Arthroscope technology is a minimally invasive surgery, i.e. transmigrating inside the joint cavity with optical transmission system of miniature camera, and a medical treatment to realize diagnosis of the joint disease and surgical treatment. It has been widely used for clinical diagnosis and treatment of osteal joint disease at china and abroad because of the minimally invasive procedure and fast postoperative rehabilitation for the patients. However, its operation manner is difficult, thus learner is hard to master this technology within a short time. The inexperienced physicians are often difficult to recognize the operating direction, leading to the operation time increased. In the case of not mastering the handling technique, the important structure inside the joint cavity is easy to be damaged, which makes the patients painful, increases the cost of surgery and wastes medical resources. Therefore, research and development of the training system of virtual arthro-endoscope operation is extremely important. The traditional endoscope training courses only limit in operation of simulator and experimentation on animals. However, the former mode is excessively simple and the other mode is so hard to utilize for the restricted human and material resources.
     In recent years, Virtual Reality (VR) technology has been used widely on splanchnoscopy training. Implement of virtual endoscopy using VR technology can simulate different kinds of arthroscope operative procedures in the clinical, and make the learner get a lot of training and master key handling techniques in a short time. Although there have been lots of virtual arthroscope used in the training for doctors of joint surgery, all the equipments have defects in expensive cost and poor practicability. In addition, almost all the simulation endoscope devices are depended on import. Now there is no independently developed simulation equipment and technology in our country, so the formed training system remains in recognition of surgical simulation and exploratory stage, it often only provides simulation interface so as to simulate and display the condition that maybe occur during the actual arthroscope operation. This kind of system trains the learners'cognitive ability and theoretical knowledge well. However, it can not do any help in the training of the co-ordination of eyes and hands. Therefore, it benefits solving these problems by research and development of simulation equipment with intellectual property rights, training eye-hand operation and used in large-scale training. Besides, from the long-term perspective, this kind of simulation equipment can promote the popularization and development of arthroscope operation.
     This paper introduces a system achieving the function of training arthroscope using VR technology. It briefly discusses how to establish 3-dimensional (3D) training model of joint cavity from using the computer 3D visualization technology, and explains the work principle of the system and the production method of this software. Finally, simulation of arthroscope surgical procedure is implemented with computer 3D visualization technology. The trainees can experience actual hand feeling during the clinical operation with the similar optical fiber training handle and operating arm. At the same time, this research designs the experiment to validate the effects of this system on arthroscope training, let the trainees experience the training progress, at the same time, and formulates scientific training program, which will make the trainees fully obtain adequate training in the training environment combined with virtual scene and operating arm. These experimental results fully verify the effects of this virtual system on arthroscopic training. The methods and results of this research are introduced as followed:
     I Establishment of 3D static and dynamic model of human knee joint cavity and related scene
     This paper analyzes the establishment of knee joint cavity model in 3Ds max2010, and elaborates modeling methods and process of related scene.. Many efficient tools and direct modeling approach provided by this application software can be used in establishing joint cavity model, designing dynamic model and constructing relevant disease models. In this chapter, two typical disease are involved, i.e. corpus liberum and meniscus injury. Based on establishment of the two diseases model, we can extrapolate modeling other joint cavity disease, thus which lays a solid foundation for development of modeling a large number of diseases in the; future.
     Method:it is chosen joint model of domestic production.1:1 with normal body size, and schematic diagram of joint cavity of Chinese normal human. Normal model and disease model of joint cavity are established with 3D max. The related dynamic model is designed with keyframe, and the scene in upper computer software is formed. During the progress of making joint thigh bone and shin bone, we firstly sketch out a rough shape, change constantly to form an accurate contour, and then continue to add details forming a complex shape, finally the corresponding facies articularis ossium is formed after smoothed and endued with materials. During preparing the structure of ligament, meniscus and shears, we use another modeling method:firstly, create an initial geometry similar with the joint, and then this geometry is sunk to editable grid or polygon, continuously changing and subdividing, finally the model result we want is obtained. After finishing modeling the joint, we establish cartoon model combined with keyframe to express shears opening-closing and the disease model in the second scene. As for meniscal model, we make emargination with Boolean calculation; finally the third scene is formed.
     Results:joint cavity model, two kinds of disease models and shears opening-closing with 3D max modeling technology, and the contents mainly conclude:(1) cartoon modeling technology of shears opening-closing; (2) dynamic breaking model of corpus liberum; (3) plasty of meniscus injury.
     Conclusion:the results show that 3D scene established with 3D max has obvious advantages. Particularly, it is easier to understand and operate, so it is very suitable for learning and application by business personnel. In addition, more space for imagination and being modified are remained for the user during the modeling progress. The efficiency of polygon modeling is very high, and a large number of models can be established in a short time. After some revision in details, it is easy to construct the relevant disease models. In the further modeling, we will carefully divide more details, and make more materials express the realization of the model.
     II Development and implementation of virtual joint system software
     This chapter describes operating environment of 3D Model assembly software, gross structure of the software, functional description of work flow and software.
     Methods:language used for software development is standard C++, rendering block uses the open-source rendering engine OGRE which is most popular now. The overall structure of the software is divided into three state machines and a management class of state machine. Every state machine is in charge of managing a scene, including loading, updating and destruction of scene resource. Management class of state machine is in charge of managing every state machine, including driving state machines active currently every frame, and adding or deleting a state machine. Input system uses OIS (DirectInput capsulation), the function of input system is to capture the user's input every frame. In this way, users'requests can be fed back to the system. Loading resources system uses Dotscene, and scene document can be analyzed with this system while loading the resources. And then, all the mesh, light, camera animate, and so on are loaded during the scene. The loading results are fed back to the current state machine.
     Results:three scenes are designed, (1) cartoon modeling technology of shears opening-closing; (2) dynamic breaking model of corpus liberum; (3) plasty of meniscus injury. At the same time, interface with hardware is formed.
     Conclusion:each function of the software implements modulatity, meanwhile state machine control is added, which supplies convenient function interface for hardware and a high degree of fluency in software debugging, fully proving that this design is simple and feasible.
     ⅢPrepare endoscope training handle and operating arm as well as related hardware systems
     This chapter concludes transformation and production of endoscope training handle, hardware constitution of the controller of training handls, the overall process of bottom software, and the communication protocol between controller and the upper machine.
     Method:firstly this article analyzes which signals need to be processed in the whole system, and the signals need to be collected in the training system are divided as followed:analog signals with shears opening-closing (changed into voltage value); digital signal with keying value (switching signal), and pulse value of photoelectric sensor (impulse signal). Universal Serial Bus (USB) interface is used to communicate with the upper machine. All the STM32F103C8 chips are considered as the principal controller. Controller hardware is divided into power pack, pulse potentiometer, photoelectric sensor signal processing, keystroke handling, AD transformation, USB interface, and other parts. Prepare the corresponding drivers, and fully consider anti-jamming capability of hardware and software so as to improve the reliability and stability of the system. In order to strengthen the reliability of data transmission for controller and the upper machine, there is a communication protocols between the control panel and PC. The data are packaged while being sent and the upper machine perform unpacking treatment of the data also based on communication protocol, while receiving the data.
     Results:(1) A complete hardware system of endoscope training handle is designed. The left hand simulate operating camera, and the right hand simulate operating shears. (2) Data are exchanged for controller by USB interface similar to the upper machine. In this way, when you operate the training handle, the appropriate action can be seen in the upper machine, which realizes the simulation progress of knee joint-endoscope operating.
     Conclusion:the training handle with the type of ball arm benefits operating the sensor signals with both hands, and the hardware system is sensitive with transduction and reorganization of the signal with strong capacity of resisting disturbance. The entire transforming progress is smooth, suggesting the mechanical equipment is coordinated with hardware configuration.
     ⅣInitial practice of simulation training system of knee joint endoscope operation
     In this chapter, we use browse mode with one hand in the virtual systemscan, removal the corpus liberum and perform meniscectomy with both hands. The training effect of virtual joint endoscope system is evaluated by the training for interne compared with the professional joint doctor so as to determine its practicability in arthroscope training. Method:subjects are interne from 3 different kinds of university and joint surgeons from different hospitals. The experimental period is from Mar.1,2009 to Mar.30,2010. In experiment 1, the trained doctors and non-training doctors are compared with the experts with actual clinical operations. In experiment 2, the results of the members in the above three groups are compared, and record the results of each group. The thoughts in the expert group and intern group are evaluated by 28 questions about training system. The first part of the questionnaire concludes first impression for simulation system, design, user interface, and other questions. The subjects answer in a rating scale from 1 (Very poor) to 10 (very useful). The second part of the questionnaire concludes the problems of training capacity about simulation system. The third part of the questionnaire concludes the questions about the willing to accept the system training and the system price. The data are analyzed by SPSS 13.0.
     Results:during general impression, most numerical value inclines to good (above 7). There is no significant difference between the expert surgeons group and surgical intern group. Training capacity and responsibility:the overall training capacity and a majority of responsibility are evaluated as good, and the mean score is about 8. As for the reaction to representation,81.6% of the subjects consider the system is generally useful in training endoscopic technique for resident physician,72% of the subjects agree simulation system benefits training cooperation ability between hands and eyes.70.8% of all the subjects believe that it is useful for the training inside the hospital, and 62.5% of all the subjects consider simulation system benefits the training at home. About half of the surgeons (50%) point that simulation system can be used in detecting endoscopic technique. In the real clinical operations, the performance obtained by the experts is much better than that received by untrained physician, which has a significant difference. In addition, the performance obtained by trained physician is obviously better than that received by untrained physician, which has a significant difference. During virtual system operation, the results obtained by the experts are not better than that received by untrained physician, which has no significant difference. In addition, the performance obtained by trained physician is obviously better than that received by untrained physician, which also has a significant difference.
     Conclusion:this training system combines the real endoscope instrument with the software, which provides a more realistic training environment of endoscopic surgery with sense of sight and touch for the learner. It benefits in being familiar with internal structure of the joint cavity, mastering the arthroscopic operation skill, and improving operation level for the learner. Therefore, it should be widely applied in arthroscopic clinical training. In the future development research, we can establish more disease models based on the existing grounding to simulate different kinds of arthroscope surgery. At the same time, this training system can be further developed cross-specialty and applied in the training of the surgery of belly cavity, thoracic cavity, and uterine cavity.
引文
1. Tsai MD, Hsieh MS, Jou SB. Virtual reality orthopedic surgery simulator. Comput Biol Med 2001,31(5):333-51
    2. 魏欣,谢晓东,王朝华,应用三维造型软件建立脑动脉瘤虚拟三维模型的研究,实用放射学杂志,2007,23(10):1399-1402
    3. Deschamps T, Cohen LD.Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med Image Anal 2001 Dec;5(4):281-99
    4. 李明勇,李斌,马轩祥,等.模型转化法构建牙齿的三维有限元模型.实用口腔医学杂志,2003,19(2):151-153
    5. Rajapakse JC,Kruggel F.Segmentation of MR images with intensity inhomogeneities.Image Vision Computing,1998(16):165
    6. Notaris M, Cavallo LM, Prats-Galino A, et al. Cappabianca P. Endoscopic endonasal transclival approach and retrosigmoid approach to the clival and petroclival regions. Neurosurgery. 2009,65(6 Suppl):42-50
    7. 方驰华,李晓锋。医学三维可视化仿真系统研究进展,中国数字医学,2009,4(07):25-29
    8. 荀欢欢.虚拟软件Creator与3D MAX结合制作虚拟三维场景,科技情报开发与经济,2009,19,(08):123-125
    9. 钟信群,夏剑武.箱包设计中3D MAX材质表现浅探,电脑知识与技术,2009,5(27):7777-7778
    10.黄文州.基于3D Max9插件技术的虚拟自然场景,电脑知识与技术,2009,5(27):7755-7757
    11.朱世昕,陈立潮,Zhu, Shixin.虚拟现实中的场景建模及模型优化技术,电脑开发与应用.2005,18(11):11
    12.罗庆生,韩宝玲,陈文,3D MAX软件摄像机技术的应用研究,计算机应用与软件,2003,20(10):29-30
    13.李晓玉,万玉凤.浅谈3D max的模块化教学方法.中国科技信息,2006,1(4):244
    14.李鉴轶,刘登均,李奇,等。可视化虚拟手术在全髋关节表面置换中的应用,重庆医学,2010,39(07):787-788,791
    15.步金梅,范林华,肖毅。计算机仿真技术在临床教学中的应用研究,中国医疗设备,2009,24(11):62-63,47
    16. Gil-Sang Yoon, Young-Moo Hoo. Reverse Engineering for Rapid Pretetyping of 3D Compound Surfaces using Edge Detection and Delaunay Triangulation Method. METALS AND MATERIALS International,2006.11(4):263-271
    17.石俊飞,陈鑫,李通.动感3D形象仿真设计,电脑知识与技术,2008,2(12):116—118
    18.李明勇,李斌,马轩祥,等,模型转化法构建牙齿的三维有限元模型.实用口腔医学杂志,2003,19(2):151-153
    19.陈立南,徐群渊.人及大鼠基底神经节的三维重构及形态比较,神经解剖学杂志,2000,16(03):217-219
    20.吴玉香,王萍,移动机器人虚拟仿真平台设计与实现,计算机测量与控制,2008,16(2):233-235,241
    21.张晓宇,李文秀,在VC++6.0中实现对3D, Max构造OpenGL模型的控制电脑学习,2001,1(03):30
    22.谭珂,郭光友,潘新华,等.膝关节镜手术仿真训练系统设计,计算机仿真2009,26(12):290-293,324
    23. Verdaasdonk EG, Dankelman J, Lange JF, et al. Transfer validity of laparoscopic knot-tying training on a VR simulator to a realistic environment:a randomized controlled trial. Surg Endosc. 2008 Jul;22(7):1636-42
    24. Cruz JA, Sandy NS, Passerotti CC, et al.Dall'Oglio MF, Duarte RJ, Srougi M. Does training laparoscopic skills in a virtual reality simulator improve surgical performance? J Endourol.2010 Nov;24(11):1845-9
    25. Pape-Koehler C, Chmelik C, Aslund AM, et al. An interactive and multimedia-based manual of surgical procedures:Webop--an approach to improve surgical education. Zentralbl Chir.2010 Oct;135(5):467-71
    1. Deschamps T, Cohen LD.Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med Image Anal 2001 Dec;5(4):281-99
    2.李明勇,李斌,马轩祥,李玉龙,等,模型转化法构建牙齿的三维有限元模型.实用口腔医学杂志,2003,19(2):151-153
    3.软件工程:实践者的研究方法(原书第6版),(美)普雷斯曼著,郑人杰等译,机械工业出版社,2007年1月
    4.算法导论(原书第2版),(美)科曼(Cormen,T.H.)等著,潘金贵等译,机械工业出版社,2006年09月
    5. Gil-Sang Yoon, Young-Moo Hoo. Reverse Engineering for Rapid Pretetyping of 3D Compound Surfaces using Edge Detection and Delaunay Triangulation Method. METALS AND MATERIALS International,2006.11(4):263-271
    6.戴唐云.基于3DSMAX/OGRE的火箭视景仿真系统的研究与实现.中国优秀硕士学位论文全文数据库,2007,(03)
    7. Mabrey JD, Gillogly SD, Kasser JR,et al. Virtual reality simulation of arthroscopy of the knee. Arthroscopy,2002,18:E28
    8.潘家辉,鲍苏苏,一种胆道虚拟手术仿真系统,计算机应用研究,2010,27(02):566-568
    9.谭珂,郭光友,潘新华,王勇军,等.一种鼻内窥镜虚拟手术仿真系统,计算机工程2006,32(16):243-244,276
    10.方驰华,李晓锋.医学三维可视化仿真系统研究进展,中国数字医学,2009,4(07):25-29
    11. Simon S, Rilliard F, Berdal A, et al. The use of mineral trioxide aggregate in one-visit apexification treatment:a prospective study. Int Endod J.2007,40(3):186-97
    12. Verdaasdonk EG, Stassen LP, van Wijk RP,et al. The influence of different training schedules on the learning of psychomotor skills for endoscopic surgery. Surg Endosc.2007,21(2):214-9
    13. Greco EF, Regehr G, Okrainec A. Identifying and classifying problem areas in laparoscopic skills acquisition:can simulators help? Acad Med.2010,85(10 Suppl):S5-8
    14. Miskovic D, Wyles SM, Ni M, et al. Systematic review on mentoring and simulation in laparoscopic colorectal surgery. Ann Surg.2010 Dec;252(6):943-51
    15. Pape-Koehler C, Chmelik C, Aslund AM, et al. An interactive and multimedia-based manual of surgical procedures:Webop--an approach to improve surgical education. Zentralbl Chir.2010, 135(5):467-71
    16.张媛,刘国通,张志华。消化内镜模拟训练系统在医师培训中的应用[R],中国医疗设备,2010,25(06)):69-71,74
    17.王利,姜红,张兆臣。虚拟现实技术在手术方面的应用,中国医学装备,2008,5(2):23-27
    18. Rosen JM,Soltanian H,Redett R,et al.Evolution of virtural reality. IEEE Engineering in Medical and Biology,1996,15(2); 16-22
    19. Tsai MD, Hsieh MS, Jou SB.Virtual reality orthopedic surgery simulator. Comput Biol Med 2001,31(5):333-51
    20. Deschamps T, Cohen LD.Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med Image Anal 2001,5(4):281-99
    21. Unalan PC, Akan K, Orhun H, et al, Topsakal N, Akman M, Karahan M. A basic arthroscopy course based on motor skill training. Knee Surg Sports Traumatol Arthrosc.2010,18(10):1395-9.
    22. Simon S, Rilliard F, Berdal A, et al. The use of mineral trioxide aggregate in one-visit apexification treatment:a prospective study. Int Endod J.2007,40(3):186-97
    23. Verdaasdonk EG, Stassen LP, van Wijk RP, et al. The influence of different training schedules on the learning of psychomotor skills for endoscopic surgery. Surg Endosc.2007,21(2):214-9
    24.王永坤,朱江帆。虚拟内镜技术在消化系统疾病诊断中的应用,中国微创外科杂志,2010,10(03):278-280
    25.郭红,柏健鹰,吕伟,凌贤龙,等.虚拟手术系统对外科学实践教学的作用探讨,西北医学教育,2009,17(04):822-823
    26.谢文,刘胜林,孔维佳,等.虚拟现实技术在微创外科手术学的应用,中国医疗设备,2010,25(07):76-77,73
    27. Pedowitz RA, Esch J,Snyder S.Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy,2002,18:E29
    1. 王利,姜红,张兆臣。虚拟现实技术在手术方面的应用,中国医学装备,2008,5(2):23-27
    2. 谭珂,郭光友,潘新华,熊岳山。膝关节镜手术仿真训练系统设计,计算机仿真,2009,26(12):290-293,324
    3. 徐凯.基于力反馈的虚拟膝关节镜手术系统的研究与实现.国防科技大学计算机学院,2006.
    4. 步金梅,范林华,肖毅。计算机仿真技术在临床教学中的应用研究,中国医疗设备,2009,24(11):62-63,47
    5. 罗伟,李珊珊。仿真手术刀在虚拟外科手术系统中的应用与研究,生物医学工程学进展,2010,31(03):149-152
    6. Marescaux J,Lerory J,Gagner M,et al.Transatlantic robot-asisted telesergerry.Natrue,2001, 413:379-380
    7. Deschamps T, Cohen LD.Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med Image Anal 2001,5(4):281-99
    8. Gu Y, Lee DY. A design of hardware haptic interface for gastrointestinal endoscopy simulation. Stud Health Technol Inform.2011,163:199-201
    9. 郭红,柏健鹰,吕伟,凌贤龙,李宜辉,赵晓晏。虚拟手术系统对外科学实践教学的作用探讨,西北医学教育,2009,17(04):822-823
    10. Verdaasdonk EG, Stassen LP, van Wijk RP, Dankelman J. The influence of different training schedules on the learning of psychomotor skills for endoscopic surgery. Surg Endosc.2007, 21(2):214-9
    11.谢文,刘胜林,孔维佳,张佳华,虚拟现实技术在微创外科手术学的应用,中国医疗设备,2010,25(07):76-77,73
    12.张晗,虚拟现实技术在医学教育中的应用探讨,西北医学教育,2010,18(01):48-51
    13. Tsin DA, Davila F, Dominguez G, Manolas P. Secured independent tools in peritoneoscopy. JSLS.2010,14(2):256-8
    14. Unalan PC, Akan K, Orhun H, Akgun U, Poyanli O, Baykan A, Yavuz Y, Beyzadeoglu T, Nuran R, Kocaoglu B, Topsakal N, Akman M, Karahan M. A basic arthroscopy course based on motor skill training. Knee Surg Sports Traumatol Arthrosc.2010,18(10):1395-9
    15. Pape-Koehler C, Chmelik C, Aslund AM, et al. An interactive and multimedia-based manual of surgical procedures:Webop--an approach to improve surgical education. Zentralbl Chir.2010 Oct;135(5):467-71
    16.吴玉香,王萍,移动机器人虚拟仿真平台设计与实现,计算机测量与控制,2008,16(2):233-235,241
    17.魏欣,谢晓东,王朝华,应用三维造型软件建立脑动脉瘤虚拟三维模型的研究,实用放射学杂志,2007,23(10):1399-1402
    18. Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment:a prospective study. Int Endod J.2007,40(3):186-97
    19. Verdaasdonk EG, Dankelman J, Lange JF, Stassen LP. Transfer validity of laparoscopic knot-tying training on a VR simulator to a realistic environment:a randomized controlled trial. Surg Endosc.2008,22(7):1636-42
    20. Andersen C, Winding TN, Vesterby MS. Development of simulated arthroscopic skills. Acta Orthop.2011,82(1):90-5
    21. Unalan PC, Akan K, Orhun H, Akgun U, Poyanli O, Baykan A, Yavuz Y, Beyzadeoglu T, Nuran R, Kocaoglu B, Topsakal N, Akman M, Karahan M. A basic arthroscopy course based on motor skill training. Knee Surg Sports Traumatol Arthrosc.2010,18(10):1395-9
    22. Ishman SL, Brown DJ, Boss EF, Skinner ML, Tunkel DE, Stavinoha R, Lin SY. Development and pilot testing of an operative competency assessment tool for pediatric direct laryngoscopy and rigid bronchoscopy. Laryngoscope.2010,120(11):2294-300
    23. Greco EF, Regehr G, Okrainec A. Identifying and classifying problem areas in laparoscopic skills acquisition:can simulators help? Acad Med.2010,85(10 Suppl):S5-8
    24. Gras F, Marintschev I, Muller M, Klos K, et al. Arthroscopic--controlled navigation for retrograde drilling of osteochondral lesions of the talus. Foot Ankle Int.2010,31(10):897-904
    25. Gil-Sang Yoon, Young-Moo Hoo. Reverse Engineering for Rapid Pretetyping of 3D Compound Surfaces using Edge Detection and Delaunay Triangulation Method. (S0302-9743). METALS AND MATERIALS International,2006.11(4):263-271
    26. Mauro Figueiredo,Terrence Femando. An Efficient Parallel Collision Detection Algorithm for Virtual Prototype Environments. Tenth International Conference on Parallel and Distributed Systems(ICPADS'04),2004.249-256
    27. A Nealen, M Muller, Keiser. Physically based dedormable models in eomputer graphics. (S0167-7055). Computer Graphics Forum,2006,25(4):809-836
    1. Heshmat Shahriaree. O'connor关节镜外科学[M].第2版.上海:复旦大学出版社、上海医科大学出版社.2001.213-644
    2. 李百川,张明.关节镜技术的历史与新进展,华夏医学,2003,16(4):597-598
    3. Bigony,L. Arthroscopic surgery:a historical perspective. Orthopaedic Nursing,2008, 27(6):P.349-354;quiz 355-356
    4. 王立德.我国膝关节镜外科发展的历史进程,中国矫形外科杂志,2009,17(19):1447-1448
    5. Marsh A,Simistira F,Robb R.VR in medicine:virtual colonoscopy.Future Generation Computer Systems,1998,14:253-264
    6. Tsai MD, Hsieh MS, Jou SB.Virtual reality orthopedic surgery simulator. Comput Biol Med, 2001,31(5):333-51
    7. 张晗,虚拟现实技术在医学教育中的应用探讨,西北医学教育,2010,18(01):48-51
    8. Rosen JM, Soltanian H, Redett R, et al.Evolution of virtural reality. IEEE Engineering in Medical and Biology,1996,15(2); 16-22
    9. Pedowitz RA, Esch J, Snyder S. Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy 2002,18:E2
    10. Verdaasdonk EG, Stassen LP, Schijven MP, Dankelman J. Construct validity and assessment of the learning curve for the SIMENDO endoscopic simulator. Surg Endosc.2007,21(8):1406-12
    11. Scanzello CR, McKeon B, Swaim BH, et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy:molecular characterization and relationship to symptoms. Arthritis Rheum.2011,63(2):391-400
    12. Thein R, Haviv B, Kidron A, et al. Intra-articular injection of hyaluronic acid following arthroscopic partial meniscectomy of the knee. Orthopedics.2010,33(10):724.4
    13. Han SB, Shetty GM, Lee DH, et al. Unfavorable results of partial meniscectomy for complete posterior medial meniscus root tear with early osteoarthritis:a 5-to 8-year follow-up study. Arthroscopy.2010,26(10):1326-32
    14. Maher SA, Rodeo SA, Doty SB, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy.2010,26(11):1510-9
    15. Richmond J, Hunter D, Irrgang J, et al. Treatment of osteoarthritis of the knee (nonarthroplasty). J Am Acad Orthop Surg.2009,17(9):591-600
    16. Osti L, Papalia R, Del Buono A, et al.Recurrence of synovial chondromatosis of the Hoffa's body. Knee Surg Sports Traumatol Arthrosc.2009 Dec; 17(12):1421-4
    17. Sturnieks DL, Besier TF, Mills PM, et al. Knee joint biomechanics following arthroscopic partial meniscectomy. J Orthop Res.2008,26(8):1075-80
    18. Barber FA, Coons DA. Midterm results of meniscal repair using the BioStinger meniscal repair device. Arthroscopy.2006,22(4):400-5
    19. Cossey AJ, Paterson RS. Loose intra-articular body following anterior cruciate ligament reconstruction. Arthroscopy.2005,21(3):348-50
    20. Sanchez M, Azofra J, Anitua E, et al. Plasma rich in growth factors to treat an articular cartilage avulsion:a case report. Med Sci Sports Exerc.2003,35(10):1648-52
    21.7. Deneke J, Luckow V, Guserle R, et al.Transsynovial kinetics of lonazolac and its hydroxy metabolite in synovitis patients. Int J Clin Pharmacol Then 1998,36(8):418-24
    22. Mintz L, Tsao AK, McCrae CR, et al.The arthroscopic evaluation and characteristics of severe polyethylene wear in total knee arthroplasty. Clin Orthop Relat Res.1991, (273):215-22
    23. Lopez-Vazquez E, Juan JA, Vila E, et al.Reconstruction of the anterior cruciate ligament with a Dacron prosthesis. J Bone Joint Surg Am.1991,73(9):1294-300
    24. Howell SM. The role of arthroscopy in treating osteoarthritis of the knee in the older patient. Orthopedics.2010,33(9):652
    25. Spahn G, Klinger HM, Muckley T, et al. Four-year results from a randomized controlled study of knee chondroplasty with concomitant medial meniscectomy:mechanical debridement versus radiofrequency chondroplasty. Arthroscopy.2010,26(9 Suppl):S73-80
    26. Netravali NA, Giori NJ, Andriacchi TP. Partial medial meniscectomy and rotational differences at the knee during walking. J Biomech.2010,43(15):2948-53
    27. Stein T, Mehling AP, Welsch F, et al. Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med.2010, 38(8):1542-8
    28. Weh L, Korn U, Dahmen G. Free bodies in the knee joint. Etiology, clinical course and therapeutic plan.Fortschr Med.1982, 11;100(42):1939-43
    29. Marshall RL, et al. Practical training for postgraduate year 1 surgery residents. Am J Surg, 2000,179:194-196
    30. Pearson AM, et al. Evaluation of structured and quantitative training methods for teaching intracorporeal knot tying. Surg Endosc,2002,16:130-137
    31. Schijven M, Jakimowicz JFace-, expert, and referent validity of the Xitact LS500 laparoscopy simulator. Surg Endosc,2002,16:1764-1770
    32.李鉴轶,刘登均,李奇,等。可视化虚拟手术在全髋关节表面置换中的应用,重庆医学,2010,39(07):787-788,791
    33.步金梅,范林华,肖毅。计算机仿真技术在临床教学中的应用研究,中国医疗设备,2009,24(11):62-63,47
    34. Andersen C, Winding TN, Vesterby MS. Development of simulated arthroscopic skills. Acta Orthop.2011,82(1):90-5
    35. Nikolic D, Popovic D, Popovic Z, et al. Pseudoblock of the knee. Clinical arthroscopic analysis. Vojnosanit Pregl.1990,47(l):13-6
    36..谭珂,郭光友,潘新华,等。膝关节镜手术仿真训练系统设计,计算机仿真,2009,26(12):290-293,324
    37.徐凯.基于力反馈的虚拟膝关节镜手术系统的研究与实现.国防科技大学计算机学院,
    2006
    38.曾妍文,许天春.岳龙旺,等.带有力感觉的显微外科手术血管的仿真研究.计算机仿真,2006,23(7):214—218
    39.王彦臻,熊岳山.虚拟手术中软组织形变的有限元半隐式模型.系统仿真学报,2003.15(S):216—218
    40. Courteille O, Fellander-Tsai L, Hedman L, et al. Mixed virtual reality simulation-taking endoscopic simulation one step further. Stud Health Technol Inform.2011; 163:144-6
    41.罗伟,李珊珊。仿真手术刀在虚拟外科手术系统中的应用与研究,生物医学工程学进展,2010,31(03):149-152
    42. Gketsis ZE, Tzagkas D, Hatzilias PV, et al. Laparoscopic image analysis for robotic arm guidance. Conf Proc IEEE Eng Med Biol Soc.2006,1:148-51
    43. Vlaovic PD, McDougall EM. New age teaching:beyond didactics. ScientificWorldJournal. 2006 Mar 8;6:2370-80
    44. Devarajan V, Wang X, Shen Y, et al. A novel laparoscopic mesh placement part task trainer. Int J Med Robot.2006,2(4):312-20
    45. Nakajima N, Wada J, Miki T, et al. Surface rendering-based virtual intraventricular endoscopy:retrospective feasibility study and comparison to volume rendering-based approach. Neuroimage.2007,37 Suppl 1:S89-99
    46.张媛,刘国通,张志华。消化内镜模拟训练系统在医师培训中的应用,中国医疗设备,2010,25(06):69-71,74
    47. Hayashibe M, Suzuki N, Hashizume M, et al. Preoperative planning system for surgical robotics setup with kinematics and haptics. Int J Med Robot.2005,1(2):76-85
    48. Justo-Janeiro JM, Pedroza-Melendez A, et al A new laparoscopic simulator. Cir Cir.2007, 75(1):19-23
    49. Vosburgh KG, San Jose Estepar R. et al. Natural Orifice Transluminal Endoscopic Surgery (NOTES):an opportunity for augmented reality guidance. Stud Health Technol Inform.2007, 125:485-90
    50. Tuchschmid S, Bajka M, Bachofen D, et al. Objective surgical performance assessment for virtual hysteroscopy. Stud Health Technol Inform.2007,125:473-8
    51.王永坤,朱江帆。虚拟内镜技术在消化系统疾病诊断中的应用,中国微创外科杂志,2010,10(03):278-280
    52. Heard LA, Fredette ME, Atmadja ML, et. al. Perceptions of simulation--based training in crisis resource management in the endoscopy unit. Gastroenterol Nurs.2011,34(1):42-8
    53. Poole CD, Connolly MP, Nielsen SK, et al. comparison of physician--rated disease severity and patient reported outcomes in mild to moderately active ulcerative colitis. J Crohns Colitis. 2010,4(3):275-82
    54. Fisher L, Ormonde DG, Riley RH, et al. Endoscopic skills training in a simulated clinical setting. Simul Healthc.2010,5(4):232-7
    55. Choi C, Han H, An B, Kim J. Development of a surgical simulator for laparoscopic esophageal procedures. Conf Proc IEEE Eng Med Biol Soc.2006; 1:819-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700