用户名: 密码: 验证码:
重金属与细菌—土壤活性颗粒微界面互作的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属在土壤中的活性和生物有效性受到多种因素的制约,特别是各种有机胶体、无机矿物以及有机无机复合体对重金属离子的吸附、络合、氧化还原等。因此,重金属与土壤中各种固相组分的相互作用一直是土壤学和环境化学等众多领域科学工作者研究的热点。本文以自然界中常见的细菌、细菌胞外聚合物及粘土矿物为材料、以宏观吸附实验为基础,结合现代仪器分析手段如等温滴定微量热技术(ITC)、傅立叶变换红外光谱(FTIR)、X-射线吸收精细结构(XAFS)技术等系统研究了重金属铜和镉在细菌、胞外聚合物(EPS)、矿物等单一组分和细菌-矿物、胞外聚合物-矿物等二元复合体表面的结合机制。主要结果如下。
     1.阐明了钝顶螺旋藻(Spirulina platensis 439)、苏云金芽孢杆菌(Bacillus thuringiensis)、大肠杆菌(Escherichia coli)等自然界几种常见细菌的细胞壁表面官能团对Cu(Ⅱ)和Cd(Ⅱ)吸附的贡献。三种细菌对Cu(Ⅱ)和Cd(Ⅱ)吸附能力的大小顺序为:钝顶螺旋藻>苏云金芽孢杆菌>大肠杆菌。细菌表面羧基酯化后,蓝细菌、苏云金芽孢杆菌和大肠杆菌对Cu(Ⅱ)和Cd(Ⅱ)吸附能力分别下降45.6%~55.5%、72.3%~75.3%和8.2%~22.3%,表明羧基在蓝细菌和苏云金芽孢杆菌吸附Cu(Ⅱ)和Cd(Ⅱ)的过程中的贡献远大于其在大肠杆菌中的贡献。电位滴定分析进一步证实,Cu(Ⅱ)和Cd(Ⅱ)主要和苏云金芽孢杆菌表面的羧基结合,而大肠杆菌表面的磷酰基团是其吸附金属离子的主要位点。NH4NO3和EDTA对蓝细菌表面吸附态铜的解吸率分别为53.7%和72.7%,吸附态镉的解吸率分别为58.0%和80.7%,这表明离子交换和表面络合是钝顶螺旋藻吸附铜和镉的主要机理。XAFS分析结果阐明羧酸铜的双五元螯合环结构是Cu(Ⅱ)在蓝细菌表面的主要形态。
     2.首次联用ITC和XAFS技术、结合等温吸附和动力学模型拟合,阐明了枯草芽胞杆菌(Bacillus subtilis)表面游离态EPS对Cu(Ⅱ)的吸附机制。结果表明EPS对Cu(Ⅱ)的吸附是个快速过程,在开始10 min内,吸附量可以达到最大吸附量的95%以上,60 min内吸附达到平衡。离子强度的增加显著降低Cu(Ⅱ)在EPS表面的吸附量和吸附速率,准二级动力学方程、Elovich方程和颗粒内扩散方程均能较好拟合不同离子强度下EPS对Cu(Ⅱ)的吸附,拟合结果显示,化学吸附及吸附初期的内部扩散作用对EPS吸附铜有着重要的影响。铜在枯草芽胞杆菌和EPS表面的配位形态非常类似,主要与羧基结合形成内圈络合物。铜在枯草芽胞杆菌表面形成单五元螯合环和双五元螯合环两种结构,而在EPS表面则以单五元螯合环为主。EPS中的高亲和力位点与铜的吸附热比低亲和力位点的更大,是五元螯合铜环形成的主要部位。
     3.查明了细胞表面固定态EPS对细菌吸附铜和镉的影响机制。枯草芽胞杆菌(Bacillus subtilis)和恶臭假单胞菌(Pseudomonas putida)表面官能团总的浓度分别为2.89×10-3和1.85×10-3molg-1。去除EPS后,两种细菌表面官能团的数量分别减少62.3%和38.9%。去除EPS后的枯草芽胞杆菌对Cu(Ⅱ)和Cd(Ⅱ)的最大吸附量分别下降37.8%和51.4%;去除EPS后的恶臭假单胞菌体对Cu(Ⅱ)和Cd(Ⅱ)的吸附量分别下降25.4%和9.7%,表明EPS的去除显著降低细菌表面吸附位点的数量及吸附重金属的能力,EPS对枯草芽胞杆菌吸附重金属的影响更大。去除EPS前后的枯草芽胞杆菌、恶臭假单胞菌对质子的吸附行为,都可以用三位点非静电络合模型进行拟合,且羧基、磷酸基及羟基是细菌表面的三种主要官能团。去除EPS前后的细菌细胞壁的组成和化学特性没有发生改变,铜和镉主要与细菌表面的羧基、磷酸基团配位。去除EPS前后菌体对质子和金属离子吸附行为的相似性暗示,金属离子在细菌和生物膜上的吸附行为可以用相同的模型进行描述。
     4.揭示了细菌和矿物的相互作用对细菌-矿物复合体表面吸附位点及重金属吸附行为的影响机制。结果表明,细菌、矿物等单一组分对Cu(Ⅱ)的吸附能力大小顺序为:苏云金芽孢杆菌(28.15 mgg-1)>恶臭假单胞菌(20.70 mg g-1)>蒙脱石(14.30mg g-1)>高岭石(9.43 mg g-1)>针铁矿(3.78 mg g-1)。苏云金芽孢杆菌,恶臭假单胞菌与蒙脱石形成复合体后,其表面位点浓度升高1.94%-6.20%,吸附能力增加16.4%-30.6%;而与针铁矿形成复合体后,其表面位点浓度和吸附能力分别减少6.26%和19.6%。这表明细菌与矿物的相互作用机制决定细菌-矿物复合体的表面活性位点浓度。蒙脱石-细菌间松散结合的相互作用能增加复合体表面的吸附位点,而针铁矿-细菌间紧密结合的相互作用则掩蔽一些反应位点。苏云金芽孢杆菌(革兰氏阳性)对细菌-矿物复合体吸附行为的影响程度远大于对恶臭假单胞菌(革兰氏阴性)的影响。Cu(Ⅱ)在细菌及细菌-矿物复合体表面的吸附是吸热过程,而在矿物表面的吸附为放热反应。首次获得了金属离子在细菌-矿物复合体表面吸附的热力学参数,Cu(Ⅱ)在复合体表面吸附的焓变和熵变分别为-0.78-6.14kJ mol和32.96-58.89 J mol-1 K-1,意味着Cu(Ⅱ)主要与细菌-矿物复合体表面的羧基和磷酸基形成内圈络合物。
     5.首次探讨了EPS-矿物复合体对铜的吸附行为。EPS与蒙脱石混合后,表面位点浓度增加5.2%,吸附Cu(Ⅱ)的能力提高13.9%;与之相反,EPS-针铁矿复合体的表面位点浓度降低8.5%,铜吸附量下降19.1%。说明EPS与蒙脱石形成复合体的过程可能创造出了一些新的重金属吸附位点,而与针铁矿复合过程中则掩蔽了一些反应位点。ITC分析结果表明,Cu(Ⅱ)在EPS及EPS-矿物复合体表面吸附的焓变(△H)为19.34-24.11 kJ mol-1,熵变为99.53-121.98 J mol-1K-1。EPS表面位点与Cu(Ⅱ)的结合热是复合体吸附Cu(Ⅱ)过程中热量的主要来源。说明Cu(Ⅱ)在EPS-矿物复合体表面主要与羧基和磷酸基团配位形成内圈络合物。
     6.获得了EPS与针铁矿的相互作用的分子机制。结果表明,针铁矿对EPS中各组分的吸附量大小顺序为:EPS-C (27.57 mgg-1)> EPS-N (10.27 mgg-1)>EPS-P (6.32 mg g-1)。EPS各组分与针铁矿吸附的亲和力及分配系数的大小顺序则为:EPS-P>EPS-N>EPS-C,表明EPS中的含P组分与针铁矿的结合最牢固,且被优先吸附。FTIR结果显示,EPS与针铁矿吸附后,>P=O双键振动吸收峰消失,新增了P-O-Fe的伸缩振动特征吸收峰,说明EPS中的磷酸基团与针铁矿表面羟基配位形成内圈络合物,而且这些磷酸基团主要来自EPS蛋白质和核酸中的磷酰基。XAFS结果表明,低pH时(pH 3),磷酸基团仅有一个去质子化的含氧阴离子直接与针铁矿表面的FeOH1/2-基团结合形成单齿络合物;高pH时(pH 9),磷酸盐基团中有2个含氧阴离子与针铁矿表面的2个FeOH1/2-基团结合形成双齿络合物。体系pH由低到高时(3-9),吸附产物构型由单基配位向双基配位过渡。体系pH通过影响溶液中EPS-P中磷酸根质子解离和缔合,是导致吸附产物构型变化的重要原因。
The mobility, speciation, transport and bioavailability of toxic metallic cations in the soil environment depend largely on their interactions (adsorption, complexation and redox) with inorganic and organic surfaces, principally microorganisms, minerals and their composites, respectively. Therefore, the interactions of heavy metals and soil components are always the hot spots studied by environmental chemistry and soil science investigators. In our studies, the common bacteria, extracellular polymeric substances (EPS) and minerals were used as model materials. The binding characteristics of Cu(Ⅱ) and Cd(Ⅱ) by the individual components (bacteria, EPS, minerals) and binary composites (bacteria-mineral composites, EPS-mineral composites) were investigated using a combination of chemical modifications, batch adsorption experiments, isothermal titration calorimetry (ITC), Fourier transform infrared spectroscopy (FTIR), X-ray absorption fine structure (XAFS) spectroscopy. The main results were listed as following:
     1. The effect of functional groups on Cu(Ⅱ) and Cd(Ⅱ) adsorption on bacteria (Bacillus thuringiensis, Escherichia coli, Cyanobacterium Spirulina platensis) were studied. The order of Cu(Ⅱ) and Cd(Ⅱ) adsorption capacity was S. platensis> B. thuringiensis> E. coli. Esterified cells resulted in the reduction in the binding of Cu(Ⅱ) and Cd(Ⅱ) on S. platensis, B. thuringiensisand E. coli by 45.6%-55.5%,72.3%-75.3% and 8.2%-22.3%, respectively, which demonstrated that the carboxyl groups on S. platensis and B. thuringiensis surfaces play a more important role in the binding of metal ions than that on E. coli. Potentiometric titration results provide the further evidences that the carboxyl groups on B. thuringiensis surfaces was the major ligands responsible for the binding of Cu(Ⅱ) and Cd(Ⅱ). As for E. coli, it is likely that the phosphate groups were important for the binding of metal ions. A percentage of 53.7% and 72.7% of adsorbed Cu(Ⅱ) on S. platensis surfaces was desorbed by NH4NO3 and EDTA, respectively. The percent desorption of Cd(Ⅱ) by NH4NO3 and EDTA was 58.0% and 80.7%. This results indicated that Ion exchange and complexation are the dominating mechanisms for Cu(Ⅱ) and Cd(Ⅱ) adsorption on S. platensis surfaces. XAFS analysis provided further evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu was complexed by two 5-membered chelate rings on S. platensis surface.
     2. The binding characteristics of Cu(Ⅱ) by the soluble EPS of Bacillus subtilis were investigated using a combination of XAFS, ITC and batch adsorption experiments. The results showed that the adsorption kinetics was rapid and 95% of biosorption capacity was achieved in the first 10 min of contact and then attained adsorption equilibrium in 60 min. The adsorption capacity and rate decreased with the increase of ion strength. The kinetics experiments demonstrated that Second-order equation, Intra-particle diffusion and Elovich equation all provide the good fit to the experimental data. The fitting results indicated that a chemical reaction mechanism and intra-particle diffusion in the first time play an important role in Cu(Ⅱ) adsorption. Furthermore, XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands for the adsorption of Cu(II) on EPS (B. subtilis) and B. subtilis surface. Cu(Ⅱ) is complexed by one or two 5-membered chelate rings on B. subtilis surface and is complexed by one 5-membered chelate on EPS (B. subtilis). The larger adsorption heat was observed for the incteraction between Cu(Ⅱ) and the high-affinity sites on the EPS. Moreover, the high-affinity sites on the EPS were the major place for the formation of 5-membered chelate rings.
     3. The role of bound EPS in Cu(Ⅱ) and Cd(Ⅱ) adsorption by Bacillus subtilis and Pseudomonas putida was investigated. The total site concentrations on untreated B. subtilis and P. putida surface were 2.89×10-3 and 1.85×10-3mol g-1 and decreased by 62.3%and 38.9%, respectively, after EPS molecules were removed by CER, suggesting that the removing of EPS from bacterial cells can significantly reduce the site concentrations on bacterial surfaces. As compared with untreated bacteria, Cd(Ⅱ) adsorption decreased by 51.4% and 9.7%, respectively on EPS-free B. subtilis and P. putida. Cu(Ⅱ) adsorption decreased by 37.8% and 25.4%, respectively on EPS-free B. subtilis and P. putida. These results indicated that the absence of EPS on bacteria may significantly reduce the concentration of binding sites and Cu(Ⅱ) adsorption capacity, especially for Gram-positive B. subtilis. Surface complexation modeling of titration data showed the similar pKa values of functional groups (carboxyl, phosphate and hydroxyl) between untreated and EPS-free bacteria. A three site non-electrostatic surface complexation modeling of titration data showed the similar pKa values of functional groups (carboxyl, phosphate and hydroxyl) between untreated and EPS-free bacteria. FTIR spectra also showed that no significant difference in peak positions was observed between untreated and EPS-free bacteria and carboxyl and phosphate groups were responsible for Cd adsorption on bacterial cells. Our study suggested that generalized model could be used to quantify the bacteria-metal adsorption behavior in geologic systems.
     4. Impact of bacteria and mineral types on the surface sites and adsorption behaviors were revealed in this study. As for individual components, the order of Cu(Ⅱ) adsorption capacity was B. thuringiensis (28.15 mg g-1)> P. putida (20.70 mg g-1) montmorillonite (14.30 mg g-1)> goethite (9.43 mg g-1)> kaolinite (3.78 mg g-1). The B. thuringiensis- and P. putida-montmorillonite mixture have more adsorption sites (1.94%~6.20%) and bound 16.4%-30.6%% larger amount of Cu(Ⅱ) than that predicted by their individual components. However, the bacteria-goethite composites have less adsorption sites (6.26%) and bound 19.6% less amount of Cu(Ⅱ) than that predicted by their individual components that predicted by their individual components. The different changes in the concentration of surface sites between montmorillonite- and goethite-bacteria composites suggest that the strength of interaction between bacteria and minerals affects the concentration of reactive sites on their composite surfaces. Our results demonstrated that the interaction of montmorillonite with bacteria increased the reactive sites and resulted in greater adsorption of Cu(Ⅱ) on their composites, while goethite-bacteria composite decreased surface sites and adsorption capacity for Cu(Ⅱ). XAFS analysis showed that the adsorption of Cu(Ⅱ) on bacteria and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The enthalpy changes (△Hads) from endothermic (6.14 kJ mol-1) to slightly exothermic (-0.78 kJ mol-1) suggested that Cu(Ⅱ) is complexed with the anionic oxygen ligands on the surface of bacteria-mineral composites. Large entropies (32.96-58.89 J mol-1 K-1) of Cu(Ⅱ) adsorption onto bacteria-mineral composites demonstrated the formation of inner-sphere complexes in the presence of bacteria. The thermodynamic data obtained in this study are the first to investigate the binding mechanism in terms of calorimetric determinations, which implied that Cu(Ⅱ) mainly bound to the carboxyl and phosphoryl groups as inner-sphere complexes on bacteria and mineral-bacteria composites.
     5. The adsorption of Cu(Ⅱ) by EPS extracted from Pseudomonas putida, minerals and their composites were investigated. The EPS-montmorillonite mixture have 5.2% more adsorption sites and bound 13.9% larger amount of Cu(Ⅱ) than that predicted by their individual components, However, the bacteria-goethite composites have 8.5% less adsorption sites and bound 19.1% less amount of Cu(Ⅱ) than that predicted by their individual components that predicted by their individual components. Our results presented that the interaction of montmorillonite with EPS increased the reactive sites and resulted in greater adsorption of Cu(Ⅱ) on their composites, while goethite-EPS composite decreased surface sites and adsorption capacity for Cu(Ⅱ). The△Hads values of the adsorption of Cu(Ⅱ) on EPS and mineral-EPS composites were in the range of 19.34~24.11 kJ mol-1. The measured△Sads values for Cu(Ⅱ) adsorption on EPS and mineral-EPS composites (99.53~121.98 J mol-1 K-1) indicated that Cu(Ⅱ) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules or their composites with minerals. The thermodynamic data obtained in this study are the first to investigate the binding mechanism in terms of calorimetric determinations, which implied that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules or their composites with minerals.
     6. The interactive molecular of goethite with extracellular polymeric substances (EPS) isolated from P. putida was investigated. The adsorption isotherms of EPS on goethite conformed to the Langmuir equation and the amount of EPS-C,-N and-P adsorbed followed the order:EPS-C (27.57 mg g-1)> EPS-N (10.27 mg g-1)> EPS-P (6.32 mg g-1). However, the adsorption energy constant (K) and distribution coefficient (Kd) of EPS on goethite were in the sequence of EPS-P> EPS-N> EPS-C, indicating that P-containing moieties was adsorbed strongly and preferentially than EPS-N and EPS-C. Emergence of the new band and the disappearance stretching vibration of PO2 are consistent with inner-sphere complexation of EPS phosphate groups (deriving principally from phosphodiesters of nucleic acids and proteins) at goethite surface hydroxyls. XAFS studies demonstrated that phosphate can form monodentate or bidentate inner-sphere complexes with goethite surface sites and the structure of complexes is sensitive to changes in pH. The two different inner-sphere structure may occur for the adhesion of EPS to a-FeOOH surface.1) The phosphate groups of EPS can form a monodentate inner-sphere complex, where one oxygen of the anion binds directly the Fe atom of a FeOH1/2-group, releasing the attached OH-.2) A bidentate inner-sphere complex, where two oxygens of the anion bind two Fe atoms of two adjacent FeOH1/2-groups. The phosphate groups of EPS. Solution pH is an important factor affecting the complexes structures due to the influence of pH on the deprotonation or protonation of the phosphate groups of EPS.
引文
1.陈同斌.我国土壤污染的现状.金属世界,1999,3:11-12.
    2.陈新才.重金属在土壤-微生物界面相互作用的分子机制.[博士学位论文].浙江:浙江大学图书馆,2006.
    3.陈志良,仇荣亮.重金属污染土壤的修复技术.环境保护,2002,29:21-23.
    4.戴军,刘腾辉.广州菜地生态环境的污染特征.土壤通报,1995,26:102-104.
    5.何宏平,郭九皋,谢先德,彭金莲.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,1999,19:231-235.
    6.何宏平,郭九皋.蒙脱石,高岭石,伊利石对重金属离子吸附容量的实验研究.岩石矿物学杂志,2001,20:573-578.
    7.李学垣.土壤化学.北京:高等教育出版社,2001,251-268.
    8.李学垣.土壤化学及实验指导.中国农业出版社,1995
    9.刘凡,介晓磊,贺纪正,周代华,徐凤琳,李学垣.不同pH条件下针铁矿表面磷的配位形式及转化特点.土壤学报.1997.34:367-374.
    10.刘瑞霞,汤鸿霄.重金属的生物吸附机理及吸附平衡模式研究.化学进展,2002,14:87-92.
    11.骆永明,滕应.我国土壤污染退化状况及防治对策.土壤,2006,38:505-508.
    12.潘纲,李贤良,秦延文,胡天斗,吴自玉,谢亚宁.EXAFS研究Zn在δ-MnO2上的吸附-解吸机理.环境科学,2003,24:54-59.
    13.潘响亮,王建龙,张道勇,王凡.硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理.环境科学研究,2005,18:53-55.
    14.彭明生,胥焕岩.同步辐射X射线吸收光谱在环境矿物学中的应用.矿物岩石地球化学通报,2005,24:217-221.
    15.沈萍等.微生物学.北京:高等教育出版社,2000.
    16.孙胜龙,龙保永,蔡保丰.非金属矿物修复环境机理研究现状.地球科学进展,1999,144:75-481.
    17.王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复.环境污染治理技术与设备,2004,5:1-4.
    18.韦世强,谢亚宁,徐法强,胡天斗,刘文汉,刘涛.同步辐射XAFS试验站及其应用.物理,2002,31:40-44.
    19.吴宏海,吴大清,彭金莲.重金属离子与石英表面反应实验研究.地球化学,1998,27:523-531.
    20.吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究.环境科学学报,2001,21:291-295.
    21.熊毅等.土壤胶体(第一册).北京:科学出版社,1983.
    22.许光辉,李振高.微生物生态学.南京:东南大学出版社,1991.
    23.杨敏,豆小敏,张昱.固液界面吸附机制与模型.环境科学学报,2006,26:1581-1585.
    24.张祖德,胡振波,刘清亮.EXAFS谱在生物无机化学中的应用.化学进展,1996,8:213-219.
    25.钟文杰,贺博,李征,韦世强.USTCXAFS 2.0软件包.中国科学技术大学学报,2001,31:328.
    26.周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004.
    27. Ams DA, Fein JB, Dong H, Maurice PA. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains. Geomicrobiol J,2004,21: 511-519.
    28. Anna JW, Gadd GM. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere,2003,52:541-547.
    29. Antelo J, Avena M, Fiol S, Lopez R, Arce F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. J Colloid Interface Sci,2005,285:476-486.
    30. Atkinson RJ, Posner AM, Quirk JP. Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. J Phys Chem,1967,71:550-558.
    31. Baker MG, Lalonde SV, Konhauser KO, Foght JM. Role of extracellular polymeric substances in the surface chemical reactivity of hymenobacter aerophilus, a psychrotolerant bacterium. Appl Environ Microbiol,2010,76:102-109.
    32. Barja BC, Tejedor-Tejedor MI, Anderson MA. Complexation of methylphosphonic acid with the surface of goethite particles in aqueous solution. Langmuir,1999,15: 2316-2321.
    33. Beech IB, Cheung CWS. Interactions of exopolymers produced by sulphate reducing bacteria with metal ions. Int Biodeterior Biodegrad,1995,35:59-72.
    34. Bencheikh-Latmani R, Leckie JO. Association of uranyl with the cell wall of Pseudomonas fluorescens inhibits metabolism. Geochim Cosmochim Acta,2003,67: 4057-4066.
    35. Beveridge TJ, Koval SF. Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol,1981,42:325-335.
    36. Beveridge TJ. Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. Washington:American Society for Microbiology,1984,601-607.
    37. Beveridge TJ. Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol,1989,43:147-171.
    38. Beveridge TJ. The response of cell walls of Bacillus subtilis to metals and electron microscopic strains. Can J Microbiol,1978,24:89-104.
    39. Bochatay L, Persson P. Metal ion coordination at the water-manganite (γ-MnOOH) interface Ⅱ. An EXAFS study of Zinc(Ⅱ). J Colloid Interface Sci,2000,229: 593-599.
    40. Borrok D, Aumend K, Fein JB. Significance of ternary bacteria-metal-natural organic matter complexes determined through experimentation and chemical equilibrium modeling. Chem Geol,2007,238:44-62.
    41. Borrok D, Fein JB, Kulpa CF. Proton and Cd adsorption onto natural bacterial consortia:testing universal adsorption behavior. Geochim Cosmochim Acta,2004,15: 3231-3238.
    42. Borrok D, Fein JB. Distribution of protons and Cd between bacterial surfaces and dissolved humic substances determined through chemical equilibrium modeling. Geochim Cosmochim Acta,2004,68:3043-3052.
    43. Borrok D, Turner BF, Fein JB. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. The American Journal of Science,2005,305:826-853.
    44. Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA. Adsorption of cadmium to Bacillus subtilis bacterial cell walls:a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta,2003,67:3299-3311.
    45. Boyanov MI, Kmetko J, Shibata T, Datta A, Dutta P, Bunker BA. Mechanism of Pb adsorption to fatty acid langmuir monolayers studied by X-ray absorption fine structure spectroscopy. J Phys Chem B,2003,107:9780-9788.
    46. Brady JM, Tobin JM. Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb Technol,1995,17:791-798.
    47. Brown GE, Catalano JG, Templeton AS, Trainor TP, Farges F, Bostick BC, Kendelewicz T, Doyle CS, Spormann AM, Revill K, Morin G, Juillot F, Calas G. Environmental interfaces, heavy metals, microbes, and plants:applications of XAFS spectroscopy and related synchrotron radiation methods to environmental science. Phys Scr,2005,115:80-87.
    48. Brown GE, Foster AL, Ostergren JD. Mineral surfaces and bioavailability of heavy metals:A molecular-scale perspective. Proc Natl Acad Sci USA,1999,96: 3388-3395.
    49. Cagnasso M, Boero V, Franchini MA, Chorover J. ATR-FTIR studies of phospholipid vesicle interactions with a-FeOOH and a-Fe2O3 surfaces. Colloids Surf B,2010,76:456-467.
    50. Cai P, Huang QY. Zhang XW. Microcalorimetric studies of the effects of MgCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Appl Clay Sci,2006,32:147-152.
    51. Cain A, Vannela R, Woo LK. Cyanobacteria as a biosorbent for mercuric ion. Bioresour Technol,2008,99:6578-6586.
    52. Chang D, Fukushi K, Ghosh S. Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ Res,1995,67:822-827.
    53. Chang TW, Wang MKT, Jang LY. An extended X-ray absorption spectroscopy study of Copper(Ⅱ) sorption by oxides. Geoderma,2005,129:211-218.
    54. Chen JH, Lion LW, Ghiorse WC, Shuler M.L. Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Water Res,1995,29: 421-430.
    55. Chen WY, Liu ZC, Lin PH, Fang CI, Yamamotob S. The hydrophobic interactions of the ion-exchanger resin ligands with proteins at high salt concentrations by adsorption isotherms and isothermal titration calorimetry. Sep Purif Technol,2007, 54:212-219.
    56. Chen XC, Chen LT, Shi JY, Wu WX, Chen YX. Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf B,2008, 61:170-175.
    57. Chen XC, Hu SP, Shen CF, Dou CM, Shi JY, Chen YX. Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour Technol,2009,100:330-337.
    58. Chen XC, Shi JY, Chen Y X, Xu XH, Chen LT, Wang H, Hu TD. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl Environ Microbiol,2007,74:881-889.
    59. Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX. Biosorption of copper(II) and zinc(Ⅱ) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B, 2005,46:101-107.
    60. Chenu C. Clay-or sand-polysaccharides associations as models for the interface between microorganisms and soil:Water-related properties and microstructure. Geoderma,1993,56:143-156.
    61. Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+and Cu2+ions by blue-green algae Spirulina sp.:kinetics, equilibrium and the mechanism of the process. Chemosphere,2005,59:75-84.
    62. Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater, 2008,151:185-193.
    63. Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol,2006,38(1-2):237-245.
    64. Cox JS, Smith DS, Warren LA, Ferris FG. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ Sci Technol,1999,33:4514-4521.
    65. da Costa ACA, De Franca F. Cadmium uptake by Spirulina maxima:toxicity and mechanism. World J Microbiol Biotechnol,1998,14:579-581.
    66. Dalang F, Buffle J, Haerdi W. Study of the influence of fulvic substanceson the adsorption of copper(Ⅱ) ions at the kaolinite surface. Environ. Sci. Technol,1984,18: 135-41.
    67. Deo N, Natarajan K, Somasundaran P. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int J Miner Process,2001,62:27-39.
    68. Ding X, Henrichs SM.2002. Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Mar Chem,77:225-237.
    69. Drake LR, Lin S, Rayson GD, Jackson PJ. Chemical modification and metal binding studies of Datura innoxia. Environ Sci Technol,1995,30:110-114.
    70. Ehrlich HL. How microbes influence mineral growth and dissolution. Chem Geol, 1996,132:5-9.
    71. Fein JB, Boily JF, Yee N, Gorman-Lewis D, Turner BF. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim Cosmochim Acta,2005,69:1123-1132.
    72. Fein JB, Daughney CJ, Yee N, Davis T. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta,1997,61:3319-3328.
    73. Fein JB. Thermodynamic modeling of metal adsorption onto bacterial cell walls: current challenges. Adv Agron,2006,90:179-202.
    74. Fendorf S, Eick MJ, Grossl P, Sparks DL. Arsenate and chromate retention mechanisms on goethite.1. Surface structure. Environ Sci Technol,1997,31: 315-320.
    75. Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, van Riemsdijk WH. Adsorption of fulvic acid on goethite. Geochim Cosmochim Acta,2000,64:51-60.
    76. Flemming C, Ferris F, Beveridge T, Bailey G. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol,199056:3191.
    77. Foster AL, Brown GEJ, Parks GA. X-ray absorption fine-structure spectroscopy study of photocatalyzed, heterogeneous As(Ⅲ) oxidation on kaolin and anatase. Environ Sci Technol,1998,32:1444-1452.
    78. Fourest E, Roux JC.1992. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol,37:399-403.
    79. Frolund B, Palmgren R, Keiding K, Nielsen P H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res,1996,30: 1749-1758.
    80. Fu YJ, Chen WL, Huang QY. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Appl Microbiol Biotechnol,2008, 79:363-370.
    81. Gadd GM, Fry JC. Microbial control of pollution. In:Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA eds. UK:Cambridge University Press,1992,59-84.
    82. Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol,1990,24:1372-1378.
    83. Garidel P. The thermotropic phase behaviour of phyto-ceramide 1 as investigated by ATR-FTIR and DSC. Phys Chem Chem Phys,2002,4:2714-2720.
    84. Gong R, Ding Y, Liu H, Chen Q, Liu Z. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere,2005,58:125-130.
    85. Gorman-Lewis D, Shvareva T, Kubatko KA, Burns PC, Wellman DM, McNamara B, Szymanowski JES, Navrotsky A, Fein JB. Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements. Environ Sci Technol,2009,43:7416-7422.
    86. Gorman-Lewis D, Fein JB, Jensen MP. Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim Cosmochim Acta,2006,70:4862-4873.
    87. Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW. Interaction of gold(Ⅰ) and gold(Ⅲ) complexes with algal biomass. Environ Sci Technol,1986,20:627-632.
    88. Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC. Arsenate and chromate retention mechanisms on goethite.2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol,1997,31:321-326.
    89. Gu XY, Evans LJ. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto Fithian illite. J Colloid Interface Sci,2007,307:317-325.
    90. Guibal E, Roulph C, Le Cloirec P. Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanisms and performances of uptake. Water Res, 1992,26:1139-1145.
    91. Guibaud G, Bordas F, Saaid A, D'abzac P, Hullebusch EV. Effect of pH on cadium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids Surf B,2008,63:48-54.
    92. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and producted by pure bacterial strains, for cadmium, lead and nickel. Chemosphere,2005,59:629-638.
    93. Guibaud G, Hullebusch EV, Bordas F, d'Abzac P, Joussein E. Sorption of Cd(Ⅱ) and Pb(Ⅱ) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains:Modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresour Technol,2009,100:2959-2968.
    94. Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JM. Zinc sorption to three gram-negative bacteria:combined titration, modeling and EXAFS study. Environ Sci Technol,2006,40:1806-1813.
    95. Ha J, Gelabert A, Spormann AM, Brown Jr GE. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis:batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta,2010,74:1-15.
    96. Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA. In situ X-ray absorption study of surface complexes:selenium oxyanions on α-FeOOH. Science, 1987,238:783-786.
    97. Herbelin AL, Westall JC. FITEQL 4.0:a computer program for determination of chemical equilibrium constants from experimental data,1999, report 99-01. Department of Chemistry Oregon State University, Corvallis.
    98. Higashi M, Takahashi Y. Detection of S(Ⅳ) species in aerosol particles using XANES spectroscopy. Environ Sci Technol,2009,43:7357-7363.
    99. Hosea M, Greene B, McPherson R. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta,1986,123:161-169.
    100.Hsieh KM, Lion LW, Shuler ML. Production of extracellular and cell associated biopolymers by Pseudomonas atlantica. Biotechnol Lett,1990,12:449-454.
    101.Huang PM, Bollag JM, Senesi N. Interactions between Soil Particles and Microorganisms:Impact on the Terrestrial Ecosystem. John Wiley and Sons, Chichester,2002,4-29.
    102.Huang PM, Wang MK, Chiu CY. Soil mineral-organic matter-microbe ineractions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia,2005, 49:609-635.
    103.Huang QY, Chen WL, Xu LH. Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J,2005,22:227-236.
    104.Iyer A, Mody K, Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull,2004, 49:974-977.
    105.Jiang DH, Huang QY, Cai P, Rong XM, Chen WL. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids Surf B,2007,54:217-221.
    106.Jiang W, Saxena A, Song B, Ward B, Beveridge TJ, Myneni SCB. Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir,2004,20:11433-11442.
    107. Johnes PJ, Heathwaite AL. A procedure for the simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulphate microwave digestion. Water Res,1992,26:1281-1287.
    108.Jucker B, Harms H, Hug S, Zehnder A. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds, Colloids Surf B, 1997,9:331-343.
    109.Karlsson T, Persson P, Skyllberg U. Complexation of copper(Ⅱ) in organic soils and in dissolved organic matter-EXAFS evidence for chelate ring structures. Environ Sci Technol,2006,40:2623-2628.
    110.Kazy SK, Sar P, Singh SP, Sen AK, D Souza SF. Extracellular polysaccharides of a copper-sensitive and copper-resistant Pseudomonas aeruginosa strain:synthesis, chemical nature and copper binding. World J Microbiol Biotechnol,2002,18: 583-588.
    111.Keizer, MG, van Riemsdijk, WH. "ECOSAT":Technical report of the Department of Soil Science and Plant Nutrition.1994. Wageningen Agricultural University, Wageningen, The Netherlands.
    112.Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N. X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta,2002,66:3855-3871.
    113.Khandal R, Chenu C, Lamy I, Terc M. Adsorption of different polymers on kaolinite and their effect on flumequine adsorption. Appl Clay Sci,1992,6:343-357.
    114.Kim SY, Kim JH, Kim CJ, Oh DK. Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnol Lett,1996,18:1161-1164.
    115.Koelmans AA, Gillissen F, Lijklema L. Influence of salinity and mineralization on trace metal sorption to cyanobacteria in natural waters. Water Res,1996,30: 853-864.
    116.Koopal LK, Van Riemsdijk WH, De Wit JCM, Benedetti MF. Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci,1994,166:51-60.
    117.Korshin GV, Frenkel AI, Stern EA. EXAFS study of the inner shell structure in copper(Ⅱ) complexes with humic substances. Environ Sci Technol,1998,32: 2699-2705.
    118.Kulczycki E, Ferris FG, Fortin D. Impact of cell wall structure on the behavior of bacterial cells as sorbents of cadmium and lead. Geomicrobiol J,2002,19:553-565.
    119.Kurek E, Czaban J, Bollag JM. Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol,1982,43(5): 1011-1015.
    120.Kwon KD, Vadillo-Rodriguez V, Logan BE, Kubicki JD. Interactions of biopolymers with silica surfaces:Force measurements and electronic structure calculation studies. Geochim Cosmochim Acta,2006,70:3803-3819.
    121.La Force MJ, Hansel CM, Fendorf S. Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced palustrine emergent wetland. Environ Sci Technol,2000,34:3937-3943.
    122.Langley S, Beveridge TJ. Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol,1999,65:489-498.
    123.Lee YJ, Elzinga EJ, Reeder RJ. Cu(Ⅱ) adsorption at the calcite-water interface in the presence of natural organic matter:kinetic studies and molecular-scale characterization. Geochim Cosmochim Acta,2005,69:49-61.
    124.Li XL, Pan G, Qin YW, Hu TD, Wu ZY, Xie YN. EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces Ⅱ. Reversible adsorption of Zinc onδ-MnO2. J Colloid Interface Sci,2004,271:35-40.
    125.Lin FY, Chen WY, Sang LC. Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions:Effects of ion, pH value, and salt concentration. J Colloid Interface Sci,1999,214:373-379.
    126.Lin S, Rayson GD. Impact of surface modification on binding affinity distributions of Datura innoxia biomass to metal ions. Environ Sci Technol,1998,32:1488-1493.
    127.Liu H, Fang HH. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng,2002, 80:806-811.
    128.Liu Y, Lam M, Fang H, Adsorption of heavy metals by EPS of activated sludge. Water Sci technol,2001,43:59.
    129.Loaec M, Olier R, Guezennec J. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res,1997,31:1171-1179.
    130.Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol,2007,189:4944-4952.
    131.Lower SK, Hochella Jr MF, Beveridge TJ. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science,2001,292: 1360-1363.
    132.Manceau A, Charlet L. The Mchanism of Selenate adsorption on goethite and hydrous ferric oxide. J Colloid Interface Sci,1994,168:87-93.
    133.Manceau A, Matynia A. The nature of Cu bonding to natural organic matter. Geochim Cosmochim Acta,2010,74:2556-2580.
    134.Manceau A. The mechanism of anion adsorption on iron oxides:Evidence for the bonding of arsenate tetrahedra on free Fe (O, OH) 6 edges. Geochim Cosmochim Acta,1995,59:3647-3653.
    135.Martell AE, Smith RM, Motekaitis RJ. Critically Selected Stability Constants of Metal Complexes Database Version 5.0. In NIST Standard Reference Database,1998, NIST Standard Reference Data.
    136.Matocha CJ, Elzinga Ej, Sparks DL. Reactivity of Pb(Ⅱ) at the Mn(Ⅲ, Ⅳ) (Oxyhydr)oxide-water interface. Environ Sci Technol,2001,35:2967-2972.
    137.Miretzky P, Mu oz C, Carrillo-Chavez A. Cd (Ⅱ) removal from aqueous solution by Eleocharis acicularis biomass, equilibrium and kinetic studies. BioresourTechnol, 2010,101:2637-2642.
    138.Morillo JA, Aguilera M, Ramoz-Cormenzana A, Monteoliva Sanchez M. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol,2006,53:189-193.
    139.Nannipieri P, Ascher J, Ceccherini MT, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci,2003,54:655-670.
    140.Ohnuki T, Yoshida T, Ozaki T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Francis AJ. Interactions of uranium with bacteria and kaolinite clay. Chem Geol,2005,220:237-243.
    141.Oliver BG, Cosgrove EG. The efficiency of heavy metal removal by a conventional activated sludge treatment plant. Water Res,1974,8:869-874.
    142.Omoike A, Chorover J, Kwon KD, Kubicki JD. Adhesion of bacterial exopolymers to a-FeOOH:inner-sphere complexation of phosphodiester groups. Langmuir,2004, 20:11108-11114.
    143.Omoike A, Chorover J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim Cosmochim Acta,2006,70:827-838.
    144.O'Reilly S, Strawn D, Sparks D. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J,2001,65:61-11.
    145.Ozdemir G, Ceyhan N, Manav E. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium andcobalt ions. Bioresour technol,2005,96:1677-1682.
    146.Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio F. Biosorption of metal ions on Arthrobacter sp.:biomass characterization and biosorption modeling. Environ Sci Technol,2000,34:2773-2778.
    147.Pal A, Paul AK. Microbial extracellular polymeric substances:central elements in heavy metal bioremediation. Indian J Microbiol,2008,48:49-64.
    148.Pan G, Qin Y, Li X, Hu T, Wu Z, Xie Y. EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces I. Irreversible adsorption of Zinc on manganite (y-MnOOH). J Colloid Interface Sci,2004,71:28-34.
    149.Panicker G, Aislabie J, Bej AK. Analysis of aggregative behavior of Pseudomonas sp.30-3 isolated from Antarctic soil. Soil Biol Biochem,2006,38:3152-3157.
    150.Parikh SJ, Chorover J. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir,2006,22:8492-8500.
    151.Paul EA, Clark FE. Soil Microbiology and Biochemistry. New York:Academic Press, 1990.
    152.Peterson ML, White AF, Brown G, Parks EJ. Surface passivation of magnetite by reaction with aqueous Cr(Ⅵ):XAFS and TEM results. Environ Sci Technol,1997, 31:1573-1576.
    153.Pradhan S, Sarita S, Lal CR. Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr. Bioresour Technol,2007,98:595-601.
    154.Prado AM, Valdman E, Leite SGF, Battaglini F, Ruzal SM. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J Microbiol Biotechnol,2005,21:1157-1163.
    155.Pulsawat W, Leksawasdi N, Rogers PL, Foster L J R. Anions effects on biosorption of Mn(Ⅱ) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett,2003,25:1267-1270.
    156.Puranik P, Paknikar K. Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM B-181:Characterization Studies. Biotechnol prog,1999,15:228-237.
    157.Quigley MS, Santschi PH, Hung CC, Guo L, Honeyman BD. Importance of acid polysaccharides for 234Th complexation to marine organic matter. Limnol Oceanogr, 2002,47:367-377.
    158.Rangsayatorn N, Upatham E, Kruatrachue M, Pokethitiyook P, Lanza G. Phytoremediation potential of Spirulina (Arthrospira) platensis:biosorption and toxicity studies of cadmium. Environ Pollut,2002,119:45-53.
    159.Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW. Removal of lead (Pb2+) by the cyanobacterium Gloeocapsa sp. Bioresour Technol,2008,99: 5650-5658.
    160.Riou-Cavellec M, Serre C, Robino J, Nogues M, Greneche J, Ferey G. Hydrothermal Synthesis, Powder Structural Determination, and Magnetic Study of the Novel Hydrated Iron Diphosphonate [Fe2(H2O)2(O3P-CH2-PO3H)2](H2O) 2 or MIL-13. J Solid State Chem,1999,147:122-131.
    161.Ross PD, Subramanian S. Thermodynamics of protein association reactions:Forces contributing to stability. Biochemistry,1981,20:3096-3102.
    162.Rudd T, Sterritt R, Lester J. Complexation of heavy metals by extracellular polymers in the activated sludge process. Water Pollut Control Federation,1984,56: 1260-1268.
    163.Russell JD, Parfitt RL, Farmer VC. Surface Structures of Gibbsite, Goethite and Phosphated Goethite. Nature,1975,24:200-221
    164.Santoro TS. Influence of Cations on Flocculation of Clay Minerals by Microbial Metabolites as Determined by the Electrical Sensing Zone Particle Analyzed. Soil Sci Soc Am J,1967,31:761.
    165.Sarret G, Balesdent J, Bouziri L, Gamier JM, Marcus MA, Geoffroy N, Panfili F, Manceau A. Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro-and powder-EXAFS spectroscopy, and isotopic dilution. Environ Sci Technol,2004,38:2792-2801.
    166.Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex J J. Structural determination of Zn and Pb binding sites in Pencillium chrysogenum cell wall by EXAFS spectroscopy. Environ Sci Technol,1998,32: 1648-1655.
    167.Sayer J, Gadd GM. Solubilization and transformation of insoluble inorganic metal compounds to insoluble met al oxalates by Aspergillus niger. Mycol Res,1997,101: 653-661.
    168.Sheals J, Persson P, Hedman B. IR and EXAFS spectroscopic studies of glyphosate protonation and copper(Ⅱ) complexes of glyphosate in aqueous solution. Inorg Chem, 2001,40:4302-4309.
    169.Sheals J, Sjoberg S, Persson P. Adsorption of glyphosate on goethite:molecular characterization of surface complexes. Environ Sci Technol,2002,36:3090-3095.
    170.Small TD, Warren LA, Roden EE, Ferris FG. Sorption of strontium by bacteria, Fe(Ⅲ) oxide, and bacteria-Fe(Ⅲ) oxide composites. Environ Sci Technol,1999,33: 4465-4470.
    171.Sparks DL. Advances in elucidating biogeochemical processes in soils:It is about scale and interfaces. J Geochem Explor,2006,88:243-245.
    172.Sposito G. The chemical forms of trace metals in soil. In:Thornton L ed. Applied Environmental Geochemistry. London:Academic Press,1983.123-131.
    173.Strawn DG, Baker LL. Speciation of Cu in a Contaminated Agricultural Soil Measured by XAFS,μ-XAFS, andμ-XRF. Environ Sci Technol,2008,42:37-42.
    174.Strawn DG, Sparks DL. The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci, 1999,216:257-269.
    175.Sun XH, Harvey ED. An Investigation of Arsenate and Arsenite Bonding Structures on Goethite by FTIR. Soil Sci,1996,161:865-872.
    176.Szytuta A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W. Neutron diffraction studies of a-FeOOH. Phys Status Solidi,1968,26: 429-434.
    177.Templeton AS, Spormann AM, Brown GE. Speciation of Pb(Ⅱ) sorbed by Burkholderia cepacial/goethite composites. Environ Sci Technol,2003,37: 2166-2172.
    178.Templeton AS, Trainor TP, Spormann AM, Traina SJ, Brown Jr GE. Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci USA,2001,98: 11897-11902.
    179.Tian Y, Zheng L, Sun D. Functions and behaviors of activated sludge extracellular polymeric substances (EPS):a promising environmental interest. J Environ Sci,2006, 18:420-427.
    180.Tiemann KJ, Gardea-Torresdey JL, Gamez G, Dokken K, Sias S, Renner MW, Furenlid LR. Use of X-ray absorption spectroscopy and esterification to investigate Cr(Ⅲ) and Ni(Ⅱ) ligands in alfalfa biomass. Environ Sci Technol,1999,33: 150-154.
    181.Toner B, Manceau A, Marcus MA, Millet DB, Sposito G. Zinc adsorption by a bacterial biofilm. Environ Sci Technol,2005,39:8288-8294.
    182.Tourney J, Ngwenya BT, Fred Mosselmans JW, Magennis M. Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J Colloid Interface Sci,2009,337:381-389.
    183.Tourney J, Ngwenya BT, Fred Mosselmans JW, Tetley L, Cowie GL. The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86. Chem Geol,2008,247:1-15.
    184.Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett,2003,223:287-292.
    185.Ueshima M, Ginn BR, Haack EA, Szymanowski ES, Fein JB. Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta,2008,72:5885-5895.
    186.van Schaik JWJ, Persson I, Kleja DB, Gustafsson JP. EXAFS study on the reactions between iron and fulvic acid in acid aqueous solutions. Environ Sci Technol,2008, 42:2367-2373.
    187.Vilar VJP, Botelho C, Boaventura RAR. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem,2005,40:3267-3275.
    188.Volesky B, Holan Z. Biosorption of heavy metals. Biotechnol Prog,1995,11: 235-250.
    189.Walker S, Flemming C, Ferris F, Beveridge T, Bailey G. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol,1989,55:2976-2984.
    190.Waychunas G, Rea B, Fuller C, Davis J. Surface chemistry of ferrihydrite:Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta,1993,57:2251-2269.
    191.Wei JF, Wu DQ. Surface ionization and surface complexation models at mineral/water interface. Adv Earth Sci,2000,15:90-96.
    192.Weppen P, Hornburg A. Calorimetric studies on interactions of divalent cations and microorganisms or microbial envelopes. Thermochimica Acta,1995,269/270: 393-404.
    193.Westall JC. FITEQL, a program for the determination of chemical equilibrium from experimental data. Version 2.0. Report 82-02. Department of Chemistry Oregon State University, Corvallis,1982.
    194.Williams A, Wimpenny JWT. Exopolysaccharide production by Pseudomonas NCIB 11264 grown in batch culture. Journal of General Microbiology,1977,21:657-661.
    195.Wingender J, Neu TR, Flemming HC. Microbial extracellular polymeric substances. Springer-Verlag, Heidelberg, New York,1999,21-47.
    196.Woitzik D, Weckesser J, Juergens UJ. Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp, PCC 6307. Journal of General Microbiology,1988,134:619-627.
    197.Wolfaardt G, Lawrence J, Korber D. Function of EPS. Microbial extracellular polymeric substances. Springer, Berlin,1999,170-200.
    198.Yee N, Benning LG, Phoenix VR, Ferris FG. Characterization of metal-cyanobacteria sorption reactions:A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol,2004,38:775-782.
    199.Yee N, Fein JB. Cd adsorption onto bacterial surfaces:A universal adsorption edge? Geochim Cosmochim Acta,2001,65:2037-2042.
    200.Yee N, Fein JB. Quantifying metal adsorption onto bacteria mixtures:a test and application of the surface complexation model. Geomicrobiol J,2003,20:43-60.
    201.Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science,2004,304:1634.
    202.Zabinsky SI, Rehr JJ, Ankoudinov AL, Albers RC, Eller MJ. Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B,1995,52:2995-3009.
    203.Zachara JM, Resch CT, Smith SC. Influence of humic substances on Co2+sorption by a subsurface mineral separate and its mineralogic components. Geochim Cosmochim Acta,1994,58:553-566.
    204.Zhang GY, Wang TZ, Dong YY, Li XY. Study on mechanisms of Cd2+sorption on goethite by microcalorimetry. Pedosphere,1999,9:357-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700