用户名: 密码: 验证码:
链霉菌JK-1的鉴定及其防病潜能和防病机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链霉菌一类具有广泛实际用途和巨大经济价值的微生物类群,它广泛的存在于不同的自然生态环境中,种类繁多,代谢功能各异。在目前发现的数万种微生物来源的活性物质中,有近50%的都是来自于链霉菌。链霉菌可以产生种类繁多的农用抗生素,而且大多数已在农业生产中广泛应用,可防治真菌、细菌、线虫病害以及一些重要的害虫,有的还具有除草活性。本试验室在2007年7月发现了一株对稻瘟病菌有很强拮抗作用的链霉菌菌株JK-1,通过形态学,生理生化鉴定以及16SrDNA序列分析,将其鉴定为球孢链霉菌(Streptomyces golobisporus)。在此基础之上进一步对球孢链霉菌JK-1的防病潜能和防病机制进行了系统研究。主要研究结果如下:
     1.采用传统的形态学观察、生理生化测定以及16S rDNA分析,将菌株JK-1鉴定
     为球孢链霉菌(Streptomyces golobisporus)。
     2.研究了不同培养条件对链霉菌JK-1生长及其产生抗菌物质的影响。结果表明,在供试的7种培养基中,LB最有利于菌体生长,PSB最有利于产生抗菌物质。该菌在10-35℃范围内均可以生长并产生抗菌物质,25℃为菌体生长和产生抗菌物质的最适温度。链霉菌JK-1在PSB中培养6d菌体干重和抑菌活性均可达到最大值;适宜于JK-1生长及其产生抗菌物质的pH值范围为5-11,最适为pH6-8。该菌能够有效的利用多种碳源和氮源进行生长和产生抗菌物质。其中分别以甘油为碳源和酪氨酸为氮源时生长最好;以麦芽糖为碳源和硫酸铵为氮源时产生抗菌物质最多。
     3.研究了链霉菌JK-1产生的抗菌物质的稳定性。结果表明,链霉菌JK-1产生的抗菌物质在高温下和蛋白酶K处理的情况下活性显著降低,在酸性条件比较稳定,而pH≥12的碱性条件容易失活。硫酸铵可以将发酵液中的抗菌物质沉淀下来,超滤发现其分子量大于10 KD。
     4.研究了球孢链霉菌JK-1对稻瘟病菌的抑制作用及其防病效果,发现球孢链霉菌的发酵液能够抑制稻瘟菌菌丝生长、孢子萌发以及附着胞形成。分别将链霉菌JK-1的菌体悬浮液、发酵液、发酵滤液与稻瘟菌分生孢子液混合接种,发现浓度为108 CFU/mL的菌体悬浮液、浓度为10%的发酵液和发酵液滤液均能完全抑制稻瘟病的发生。温室盆栽试验结果表明,在喷雾接种稻瘟菌前12h和接种后2 h喷雾发酵滤液,其防病效果分别为89.1%和88.3%。利用组织学和扫描电镜观察了球孢链霉菌发酵滤液对稻瘟病菌在水稻叶片上侵染过程的影响,结果表明,在接种后3h前喷雾JK-1发酵滤液能抑制稻瘟病菌分生孢子的萌发以及附着胞的形成,从而控制稻瘟病的发生。
     5.研究了链霉菌JK-1产生的挥发性物质对番茄灰霉病的防病效果及其作用机制,结果表明挥发性物质可以抑制灰霉病菌菌丝生长、孢子萌发以及孢子形成,且随JK-1麦粒培养物量的增加其抑菌活性逐渐增强。在接种后不同时间对番茄进行熏蒸处理,发现接种后立即用120 g/L的链霉菌麦粒培养物熏蒸可以完全抑制灰霉病的发生。扫描电镜结果表明,挥发性物质能够抑制灰霉菌分生孢子在番茄果实上的萌发以及侵染菌丝形成,并且导致分生孢子和侵染菌丝畸形,从而达到防治灰霉病的目的。利用二乙酸荧光素(FDA)和碘化丙啶(PI)染色结果表明,经过30 g/L,60 g/L和120 g/L的球孢链霉菌麦粒培养物熏蒸处理6d后分别有59.4%,76.7%和85.3%的分生孢子不能存活。透射电镜观察结果表明,经过挥发性物质处理的分生孢子和菌丝细胞内的液泡数量明显增多,部分孢子细胞壁增厚,菌丝细胞出现质壁分离,细胞的完整性被破坏。
     6.研究了链霉菌JK-1产生的挥发性物质对柑橘青霉菌的抑制作用及其防病效果。结果表明,挥发性物质可以抑制柑橘青霉菌菌丝生长、孢子萌发以及孢子形成,并且可有效控制柑橘青霉病的发生。采用气相色谱/质谱联用(GC/MS)分析,从链霉菌麦粒培养物产生的挥发性物质中鉴定出41种挥发性有机化合物,这些物质分别属于烃类、酯类、醇类、酮类、醚类、有机酸等。从中选择了8种特殊的化合物进行了抑菌活性及防病效果测定,结果发现二甲基二硫醚、二甲基三硫醚和苯乙酮能抑制柑橘青霉菌菌丝生长、分生孢子的萌发及形成,可有效的防治柑桔青霉病。
Streptomyces are among the most widely distributed group of microorganisms with extensive practical use and enormous economic value in nature. About 50% antibiotics are the secondary metabolites of Streptomyces in ten thousands activity substances that have been found in microbiology. Streptomyces have been evaluated as biocontrol agents against various plant pathogens since they produce an array of secondary metabolites such as enzyme inhibitors, herbicides and large number of antibiotics. In July 2007, a small contaminant colony appeared in a PDA plate of Magnaporthe grisea in a plant pathology laboratory at Huazhong Agricultural University, and it showed strong inhibition of the fungus. The colony was transferred onto a fresh plate, grown for identification using morphological and molecular methods, and named Streptomyces globisporus JK-1. And then, biocontrol potential and mode of action of S. globisporus JK-1 were also studied in the present paper. The main results are listed as follows:
     1. Based on morphological, cultural, biochemical and physiological characteristics, strain JK-1 was identified as Streptomyces globisporus JK-1.
     2. The effect of medium components (i.e. carbon and nitrogen sources) and other culture conditions on production of antifungal substances of S. globisporus JK-1 was investigated. The results showed that among the seven tested medium, the best medium for growth and antifungal substances production were LB and potato sucrose broth (PSB), respectively; for the growth of S. globisporus JK-1 on medium PSB, the temperature range was 10 to 35℃, with optimum of 25℃; the dry weight and the antifungal substances production reached the highest level after incubation at 25℃for 6 days; the favorable pH value for growth and antifungal substance production was 5-11, with the optimum of pH 6-8. Among the 12 tested carbon and nitrogen sources in basal mineral salts medium, glycerol and tyrosine were the most favorable for its growth; maltose and ammonium sulfate were the most favorable for its antifungal substances production.
     3. To determine the property of the antifungal substances, the culture filtrates and the crude antifungal substances were treated in various ways. Antifungal activity was stable after incubation at 120℃for 30 min or treated with Proteinase K at 37℃for 60 min. The antifungal activity of the antifungal substances was stable at acid conditions while inactive in strong alkalinity (pH≥12). No antifungal activity was tested in the supernate of the culture filtrates, and the most antifungal activity was tested in the precipitate after adding the ammonium sulfate. The results of ultrafiltration of crude antifungal substances showed that the molecular weight was above 10 KD.
     4. Culture filtrates of JK-1 inhibited mycelial growth of M. oryzae, and histological investigations showed that conidial germination and appressorial formation of M. oryzae were suppressed on detached rice leaves. When applied at 15μl per 5-cm-long detached leaf, washed cells of JK-1 at 108 CFU/ml could suppress disease incidence of rice blast caused by M. oryzae co-inoculated at 5×105 spores/ml, but disease incidence was not reduced when washed cells of JK-1 were used at 106 or 107 CFU/ml. Applying the culture filtrate on rice seedlings in the greenhouse at 2 hours post inoculation (HPI) with M. oryzae showed 88.3% disease reduction of rice blast, while culture filtrate application before pathogen inoculation showed even higher rates of disease reduction. Suppression of the infection process of M. oryzae on detached rice leaves was observed by light and scanning electron microscopy, showing inhibited conidial germination and reduced appressorial formation on rice leaves sprayed with culture filtrate before 3 HPI. Application of JK-1 as undiluted culture broth or filtrates to plant tissues did not cause any noticeable negative effects. These results indicate that the antifungal substance(s) in the culture filtrate of S. globisporus JK-1 can exhibit an inhibitory effect on M. oryzae and a suppressive effect on rice blast disease.
     5. Antifungal activity against Botrytis cinerea of volatile substances from S. globisporus JK-1 grown on autoclaved wheat seed was studied in vitro and in vivo. The volatiles suppressed mycelial growth of various plant pathogens in vitro, especially that of B. cinerea and Sclerotinia sclerotiorum. Conidial germination and sporulation of B. cinerea were suppressed in the presence of volatiles. Disease incidence and severity on fungal-inoculated tomato fruit (Lycopersicon esculentum) were inhibited when fumigated with 120 g/L wheat seed culture of S. globisporus JK-1. Suppression of the infection process of B. cinerea on tomato fruit was observed via scanning microscopy, showing inhibition of conidial germination and of infection hyphae formation on tomato fruit, as well as abnormal morphology of infection hyphae and conidia exposed to the volatiles. The viability of the conidia obtained from the volatile-treated and non-treated disease lesions was tested with the vital stains fluorescein diacetate (FDA) and propidium iodide (PI). Conidia fumigated with 30 g/L,60 g/L or 120 g/L wheat seed culture of S. globisporus JK-1 at 20℃for 6 days showed 59.4%,76.7%, or 85.3% reduction in viability, respectively. Transmission electron microscopy of fumigated and untreated B. cinerea showed excessive vesiculation or thickened cell walls in exposed conidia and increased vesiculation or strong retraction of plasma membrane in exposed hyphae. The results of present study provide a better understanding of the mode of action of volatiles from JK-1 on B. cinerea. The inhibition growth of B. cinerea both in vitro and in vivo studies showed that volatiles from S. globisporus JK-1 have potential for control of postharvest grey mold of tomato fruits through fumigant action.
     6. Antifungal activity against Penicillium italicum of volatile substances from S. globisporus JK-1 grown on autoclaved wheat seed was studied in vitro and in planta. Fungal spore germination and mycelial growth of P. italicum cultures as well as sporulation and disease incidence on fungal-inoculated fruit were suppressed in the presence of the volatiles. For naturally infected fruit, disease incidence was reduced from 25% to 7.5%. Suppression of the infection process of P. italicum on Shatang Mandarin fruits (Citrus microcarpa) was observed via scanning electronic microscopy, showing inhibited spore germination on the Shatang Mandarin, and abnormal morphology for conidiophores and hyphae exposed to the volatiles. Based on gas chromatography/mass spectrophotometric analyses,41 volatile organic compounds were identified from the volatiles of S. globisporus JK-1, and the most abundant compound was trans-1,10-dimethyl-trans-9-decalol (geosmin), an earthy smelling substance. Among these, technical grade formulations of eight were chosen for further study:phenylethyl alcohol, caryophyllene, dimethyl disulfide, dimethyl trisulfide, acetophenone, d-Iimonene, isoledene, and aromadendrene. D-limonene, isoledene and aromadendrene showed no observable antifungal activity in vitro and in planta at tested concentrations. Both phenylethyl alcohol and caryophyllene showed weak inhibitory activity in vitro but no significant efficacy against P. italicum on Shatang Mandarin. Dimethyl disulfide or dimethyl trisulfide showed antifungal activity in vitro and efficacious control on Shatang Mandarin at a concentration of 100μL per liter of airspace in treatment containers. Acetophenone showed antifungal activity in vitro at a concentration of 100μL L-1 and efficacious control on Shatang Mandarin at the highest concentration of 1000μL L-1. Volatiles from S. globisporus JK-1 have potential for control of blue mold of citrus species through fumigant action.
引文
1. 陈乃荣,戴月明,吴泰旭,徐彬.盐酸四环素等药物对柑桔黄龙病治疗效应.1981,8:163-169
    2.邓光兵,万波,胡厚芝,陈家任,余懋群.宁南霉素对烟草花叶病毒的生物活性.应用与环境生物学报.2004,10(6):695-698
    3.方中达.植病研究方法(第三版).北京:中国农业出版社,1998
    4. 冯东岳. 波拉毒素对稻瘟病的防治效果评价及机制初探.[硕士论文].中国农业科学院,2004
    5. 蒋细良,谢德鉴,倪楚芳,朱昌雄,宋培国..中生菌素的抗生作用. 植物病理学报,1997,27:133-138
    6.蒋细良,谢德龄,倪楚芳等.中生菌素对真菌的作用机理的研究.中国生物防治,1997,13:69-71
    7.金章旭,林铃. 武夷霉素——小单孢菌产生的一种氨基糖甙类抗生素.抗生素.1985,10(2):65-71
    8.孔建,张桂芬,申效诚等.农抗120应用技术中的几个问题.中国生物防治,1993,3:56-58
    9.刘志恒,姜成林.放线菌现代生物学与生物技术.科学出版社,北京.2004,2-3
    10.龙厚茹,谢德龄.中生菌素对马铃薯青枯病菌的溶菌作用.中国生物防治,1999,15:95-96
    11.马迪和洪斌.新型烯二炔类抗肿瘤抗生素力达霉素的研究进展.中国抗生素杂志,2007,32::1-16
    12.全赞华,王学士.农抗120中组分A对几种作物病原真菌抑菌活性的研究.中国生物防治,1995,11:106-110
    13.商瑞,曾会才,毛佳.农用抗生素分离纯化的研究进展.广东农业科学,2008,2:124-127
    14.上海农药研究所.井岗霉素.上海:上海科学技术出版社,1979,5
    15.沈演初.农用抗生素研究开发的新进展.国外医药抗生素分册,1998,19:155-160
    16.王学士,任清水,仝赞华,农用抗生素120有效成分的研究.生物防治通报,1994,10:131-134
    17.邬建国,王敏.纳他霉素的分子生物学研究进展.微生物学通报,2003,30:120-123
    18.曾智,孙运军,钱荣华,丁学知,夏立秋.我国微生物农药的研究应用现状与前景,农业现代化研究,2008,29:254-256
    19.张丽萍.微生物农药研究进展.北京农业科学,2000,18:22-24
    20.张穗.井冈霉素诱导水稻防御纹枯病反应机理的研究.植物病理学报,2002,32:95-96
    21.中国科学院微生物研究所放线菌分类组.链霉菌鉴定手册.科学出版社,北京。1975
    22. Agrios G N. Plant Pathology.3rd Ed. Academic Press, inc. San Diego, CA.1988
    23. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acid. Res,1997,25:3389-3402
    24. Bartz J A. Suppression of bacterial soft rot in potato tubers by application of kasugamycin. A MJPotato Res,1999,76:127-136
    25. Beer S V, Rundle J R and Noried J L. Recent progress in the development of biological control for fire blight. Acta Horticulturae,1984,151:195
    26. Bordoloi G N, Kumari A, Guha D, Thakur M, Bordoloi M K, Roy T C. Potential of a novel antibiotic,2-methylheptyl isonicontinate, as a biocontrol agent against fusarial wilt of crucifers. Pest Manage Sci,2002,58:297-302
    27. Bordoloi G N, Kumari B, Guha A, Thakur D, Bordoloi M, Roy M K, Bora, T C. Potential of a novel antibiotic,2-methylheptyl isonicotinate, as a biocontrol agent against fusarial wilt of crucifers. Pest Manag Sci,2002,58:297-302
    28. Bressan W and Figueiredo J E F. Efficacy and dose-response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. Eur J Plant Pathol, 2008,120:311-316
    29. Bressan W. Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol,2003,48:233-240
    30. Bressan, W, Figueiredo J E F. Efficacy and dose-response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. Eur J Plant Pathol,2008,120: 311-316
    31. Bronneke V and Fiedler F. Production of bacteriolytic enzymes by Streptomyces globisporus regulated by exogenous bacterial cell walls. Applied and Environmental Microbiology,1994,3:785-791
    32. Bruce A, Stewart D, Verrall S, Wheatley R E. Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int Biodeter Biodegr,2003, 51:101-108
    33. Bus V G, Bongers A J, Risse L A. Occurrence of Penicillium digitatum and Penicillium italicum resistant to benomyl, thiabendozole, and imazail on citrus fruit from different geographic origins. Plant Dis,1991,75:1098-1100
    34. Cabib, E. Peptide antibiotic production through immobilized biocatalyst technology. Antimicrobial agents and chemotherapy,1991,35:170-173
    35. Cavaleiro C, Pinto E, Goncalves M J & Salgueiro L.. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains.J Appl Microbiol 2006,100:1333-1338
    36. Chang H T, Cheng Y H, Wu C L, Chang S T, Chang T T & Su Y C. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technol,2008,99: 6266-6270
    37. Charpentier E, Tuomanen E. Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae. Microbes and Infect,2000,2(15):1855-1864
    38. Chen H, Xiao X, Wang J, Wu L, Zheng Z, Yu Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett,2008,30:919-923
    39. Cheng S S, Wu C L, Chang H T, Kao Y T, Chang S T. Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J Chem Ecol,2004,30:1957-1967
    40. Chung W C, Huang J W and Huang H C. Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control,2005,32:287-294
    41. Colwell R R. Polyphasic taxonomy of the genus Vibrio:numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. Journal of Bacteriology,1970,104:410-433
    42. Dekker J. Antibiotics in the control of plant diseases. Annual Review of Phytopathology,1963,17:234-262
    43. Deobald L A. Isolation and characterization of Streptomyces strains antagonistic to phytopathogenic fungi and analysis of antibiotics potentially involved in disease control. University of Idaho,2004
    44. Dickschat J S, Martens T, Brinkhoff T, Simon M, Schulz S.2005. Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodiversity,2: 837-865
    45. Doumbou C L, Hamby Salove M K, Crawford D L. Actinomycetes, promising tools to control plant disease and to promote plant growth. Phytoprotection,2002, 82:85-102
    46. Eckert J W & Brown G E. Evaluation of postharvest treatment for citrus fruits: Methods for evaluating pesticides for contract of plant pathogens (In K. D. Hickey, ed., American Phytopathological Society Press St. Paul, MN.) 1986,92-97
    47. Endo A, Kakiki K, Misato T. Mechanisim of action of the antifungal agent polyoxin D. Journal of Bacteriology,1970,104:189-196
    48. Endo A, Misato, T. Polyoxin D. A competitive inhibitor of UDP-N-acetylglucosamine:Chitin N-acetylglucosaminyltransferase in Neurospora crassa.1969,37:718-22
    49. Fang Z D. Research Methodology for Plant Diseases,3rd ed. Chinese Agriculture Press, Beijing,1998
    50. Fiedler H P, Kurth R, Langharig J, Delzer J, Zahner H. Nikkomycins:Microbial inhibitors of chitin synthase. J Chem Technol Biot,1982,32:271-280
    51. Fravel D R.1988. Role of Antibiosis in the Biocontrol of Plant Diseases. Annu Rev Phytopathol,1988,26:75-91
    52. Garabedian S and van Gundy S D. Use of Avermectins for the Control of Meloidogyne incognita on tomatoes. Journal of Nematology,1983,15(4):503-510
    53. Georgiou X and Mila A. Biological control of tobacco pathogens Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium sp. in the greenhouse, by using saponins, Trichoderma viridea and Streptomyces griseoviridis. Phytopathologia Mediterranea, 2009,48:346
    54. Godfrey C R A. Fungicides and Bactericides, In C.R.A. Godfrey(ed.), Ageochemical from natural products. Marcel Dekker, Inc., New York.1995,311-339
    55. Gooday G W. The ecology of chitin decomposition. Adv Microb Ecol,1990,11: 387-430
    56. Goodfellow M, Dickenson C H. Delineation and description of microbial populations using numerical methods. In Computer-assisted Bacterial Systematics, London:Academic Press.1985,165-226
    57. Grimme E, Zidack N K, Sikora R A, Strobel G A, Jacobsen B J. Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis,2007,91:220-225
    58. Hain T, Ward-Rainey N, Kroppenstedt R M. Int J Syst Bacteriol,1997,47:202-206
    59. Hammer K A, Carson C F & Riley T V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. JAppl Mirobiol,2003,95:853-860
    60. Herrington P R, Graig J T, Chea C Y, Sheridan J E. Inhibition of spore germination of volatiles from Streptomyces griseoruber. Soil Biol Biochem,1985,19:509-512
    61. Hocine L, El Kolli M, Soizic P, Nicolas B. An antibacterial and antifungal phenylpropanoid from Carum montanum (Coss. et Dur.) Benth. et Hook. Phytother. Res.2009,23:1726-1730
    62. Holmes G J and Eckert J W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology,1999,89:716-721
    63. Hori M, Eguchi J, Kakiki K, Misato T. Studies on the mode of action of polyoxins.Ⅵ. JAntibiot,1974,27(4):260-266
    64. Hori M and Equchi J. Studies on the mode of action of Polyoxins VI Effects of Polyoxin on chitin synthesis in polyoxin sensitive and resistant strains of alternaria kikuchiana. Journal of antibiotics,1974,27:260-266
    65. Hsu S C and Lockwood J L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol,1975,29:422-426
    66. Huber F M and Gottlieb D. The mechanism of action of griseofulvin. Canadian journal of microbiology,1968,14,111-118
    67. Jeanmougina F, Thompsona J D. Gouyb M, Higginsc D G, Gibson T J. Multiple sequence alignment with Clustal X. Trends Biochem Sci,1998,23:403-405
    68. Ji G H, Wei L F, He Y Q, Wu Y P, Bai X H.2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain13-1. Biol Control 45:288-296
    69. Kai M, Effmert U, Berg G, Piechulla B. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol,2007,187: 351-360
    70. Karthikeyan V and Gnanamanickam S S. Biological control of Setaria blast (Magnaporthe grisea) with bacteria strains. Crop Prot,2008,27:263-267
    71. Katharina M S and Raine W S. Effect of volatiles on mycelium growth of Penicillium digitatum, P. italicum, and P. ulaiense. J Basic Microb,1998,38: 405-413
    72. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G. Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant Microbe Interact,1992,5:4-13
    73. Kim H J, Lee S C, Hwang B K. Streptomyces cheonanensis sp. nov., a novel streptomycete with antifungal activity. Int JSyst Evol Micro,2006,56:471-475
    74. Kirby R and Rybicki E P. Enzyme-linked immunosorbent assay (ELISA) as a means of taxonomic analysis of Streptomyces and related organisms. J Gen Microbiol,1986, 132:1891-1894
    75. Kobayashi H, Namikoshi M, Yoshimoto T. A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae, modification and application to tropical marine fungi. Journal of antibiotics,1996,49:873-879
    76. Koch E and Slusarenko A. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant cell,1990,2:437-445
    77. Korn-Wendisch F and Kutzner H J. The family Streptomycetaceae. In The Prokaryotes, Edited by A. Balows H G, Truper M, Dworkin W, Harder & K. H. Schleifer. New York:Springer.1992,921-995
    78. Krishnamurthy K. and Gnanamanickam S S. Biological control of rice blast by Pseudomonas fluorescens strain pf 7-14:Evaluation of marker gene and formulation. Biol. Control,1998,158-165
    79. Kulakiotu E K, Thanassoulopoulos C C, Sfakiotakis E M. Biological control of Botrytis cinerea by volatiles of'Isabella'Grapes. Phytopathology,2004,94: 924-931
    80. Kumar S, Nei M, Dudley J, Tamura K.2008. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform,9:299-306
    81. Labeda D P. DNA-DNA hybridization in the systematics of Streptomyces. Gene, 1992,115:249-253
    82. Lechevalier M P and Lechevalier, H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol,1970,20:435-443
    83. Liu W, Christenson S D, Standage S, Shen B. Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Science,2002,297:1170-1173
    84. Long C A, Wu Z, Deng B X. Biological control of Penicillium italicum of citurs and Botrytis cinereal of grape by strain 34-9 of Kloeckera apiculata. Eur Food Res Technol,2005,221:197-201
    85. Manandhar H K, Jorgensen H J L, Mathur S B, Smedegaard-Petersen V. Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology,1998,88:735-739
    86. Manfio G P, Zakrzewska-Czerwinska Atalan E, Goodfellow M. Towards minimal standards for the description of Streptomyces species. Biotekhnologia,1995,7-8: 242-253
    87. Mathieu F, Sudirman Suwandhi I, Rekhif N, Milliere J B, Lefebvre G. Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR 52. JAppl Microbiol,1993,74:372-379
    88. Meziane H, Gavriel S. Ismailov Z, Chet I, Chernin L & Hofte M. Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Postharvest Biol Technol,2006,39:125-133
    89. Minuto A, Spadaro D, Garibaldi A, Gullino M L. Control of soilbome pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot,2006,25:468-475
    90. Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology,2003,6:245-252
    91. Montesinos-Herrero C, del Rio M A, Pastor C, Brunetti O, Palou L. Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biol Technol,2009,52:117-125
    92. Moore-Landecker E and Stotzky G. Morphological abnormalities of fungi induced by volatile microbial metabolites. Mycologia,1973,65:519-530
    93. Nawaz M S, Erickson B D, Khan A A, Khan S A, Pothuluri J V, Rafii F, Sutherland J B, Wagner D, Cerniglia C E. Human health impact and regulatory issues involving antimicrobial resistance in the food animal production environment. Regulat Res Persp,2001,1:1-10
    94. Neen-Eckwall E C, Kinkel L L, Schottel J L. Competition and antibiosis in the biological control of potato scab. Can J Microbiol,2001,47:332-340
    95. Neri F, Mari M and Brigati S. Control of Penicillium expansum by plant volatile compounds. Plant Pathol,2006,55:100-105
    96. Neri F, Mari M, Brigati S, Bertolini P. Fungicidal activity of plant volatile compounds for controlling Monilinia laxa in stone fruit. Plant Dis,2007,91:30-35
    97. Obagwu J and Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biol Technol 2003,28:187-194
    98. Ochi K. Heterogeneity of ribosomal proteins among Streptomyces species and its application to identi(R)cation. J Gen Microbiol,1989,135:2635-2642
    99. Ogata K, Yoshida N, Ohstjgi M, Tani Y. Studies on antibiotics produced by psychrophilic microorganisms. I. Production of antibiotics by a psychrophile, Streptomyces sp. No. 81.Agr Biol Chem,1971,35:79-85
    100.Ohtaka N, Kawamata H, Narisawa K. Suppression of rice blast using freeze-killed mycelia of biocontrol fungal candidate MKP5111B. Journal of General Plant Pathology,2008,74:101-108
    101.Omura S. The expanded horizon for microbial metabolites-a review. Gene,1992, 115:157-1578
    102.Ouhdouch Y, Barakate M, Finanse C. Actinomycetes of Moroccan habitats:Isolation and screening for antifungal activities. Eur J Soil Boil,2001,37:69-74
    103.lOxenham S K, Svoboda K P, Walters D R. Antifungal activity of the essential oil of Basil (Ocimum basilicum). J Phytopathol,2005,153:174-180
    104.Palou L, Smilanick J L, Usall J, Vinas I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis,2001, 85:371-376
    105.Palou L, Usall J, Munoz J A, Smilanick J L, Vinas I. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of Clementine Mandarins. Postharvest Biol Technol,2002,24:93-96
    106.Park S and Choi K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology,2008,17:526-538
    107.Porter N G and Wilkins A L. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry, 1999,50:407-415
    108.Pospiech A and Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet,1995,11:217-218
    109.Prabavathy V R, Mathivanan N, Murugesan K. Control of blast and sheath blight disease of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol Control,2006,39:313-319
    110.Pyun M S and Shin S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine,2006,13:394-400
    111.Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez J A, Fedorenko V. Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiology Letters,2003,222:149-153
    112.Reynolds P E,1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol,8:943-950
    113.Ross Z M, Gara E A, Hill D J, Sleightholme H V, Maslin D J. Antimicrobial properties of garlic oil against human enteric bacteria:evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microb, 2001,67:475-480
    114.Roze L V, Beaudry R M, Arthur A E, Calvo A E, Linz A E. Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl Environ Microb,2007,73:7268-7276
    115.Ryu C M, Farag M A, Hu C H, Reddy M S, Kloepper J W, Pare P W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol,2004,134: 1017-1026
    116.Ryu C M, Farag M A, Hu C H, Reddy M S, Wei H X, Pare P W, Kloepper J W, Bacterial volatiles promote growth in Arabidopsis. P Natl Acad Sci USA,2003,100: 4927-4932
    117.Sabaratnam S and James A T. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biological Control, 2002,22:245-253
    118.Sanglier J J, Haag H, Juck T A, Fehr T. Novel bioactive compounds from actinomycetes:a short review (1988-1992). Res Microbiol,1993,144:633-642
    119.Sarmah S S S and Nandini S. Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health Part B,2006,41:1417-1430
    120.Scher F M and Baker R. Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology,1980,70:412-417
    121.Schlegel B, Ihn W, Fleck W F. New anthracycline antibiotics produced by interspecific recombinants of streptomycetes. II. Production of iremycin. Zeitschrift fur allgemeine Mikrobiologie,1980,20:531-534
    122.Seebold K W, Datnoff L E, Correa-Victoria F J, Kucharek T A, Snyder G H. Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Dis,2004,88:253-258
    123.Shekhar N, Bhattacharya D, Kumar D Gupta R K. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Can J Plant Pathol,2006,52:805-808
    124.Shirling E B and Gottlieb D. Cooperative description of type cultures of Streptomyces. Ⅱ. Species descriptions from first study. Int J Syst Bacteriol,1968a, 18:169-189
    125.Shirling E B and Gottlieb D. Cooperative description of type cultures of Streptomyces. Ⅲ. Additional species descriptions from first and second studies. Int J Syst Bacteriol,1968b 18:279-392
    126.Shirling E B and Gottlieb D. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol,1969,19,391-512
    127.Shirling E B and Gottlieb D. Cooperative description of type strains of Streptomyces. V. Additional descriptions. Int J Syst Bacteriol,1972,22,265-394
    128.Shirling E B and Gottlieb D. Methods for characterization of Streptomyces species. IntJ. Syst Evol Micro,1966,16:313-340
    129.Skunjins J J, Potgieter, Alexander M. Dissolution fungal cell walls by a streptomycete chitinase and β-1,3-glucanase. Arch Biochem Biophys,1965, 111:358-364
    130.Smilanick J L, Mansour M F, Gabler F M, Sorenson D. Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol Technol,2008,47:226-238
    131.Smilanick J L, Mansour M F, Margosan D A, Mlikota Gabler F, Goodwine W R. Influence of pH and NaHCO3 on effectiveness of imazalil to inhibit germination of Penicillium digitatum and to control postharvest green mold on citrus fruit. Plant Dis, 2005,89:640-648
    132.Smilanick J L, Margosan D A, Mlikota F, Usall J, Michael I F. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Dis,1999:83:139-145
    133.Stackebrandt E, Liesack W, Webb R, Witt D. Towards a molecular identi(R)ation of Streptomyces species in pure culture and in environmental samples. Actinomycetologia,1991a,5:38-44
    134.Stackebrandt E, Witt D, Kemmerling C, Kroppenstedt R, Liesack W. Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl Environ Microbiol,1991b,57:1468-1477
    135.Stanley M S, Callow M E, Perry R, Alberte R S, Smith R Callow J A. Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology. Phytopathology,2002,92:378-383
    136.Strobel G A, Kluck K, Hess W M, Sears J, Ezra D & Vargas P N. Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics:Isolation, characterization and experimental establishment in the host plant. Microbiology, 2007,153:2613-2620
    137.Takizawa M, Hida T, Horiguchi T, Hiramoto A, Harada S, Tanida S. TAN-1511 A, B and C, microbial lipopeptides with G-CSF and GM-CSF inducing activity. Journal of antibiotics,1995,48:579-588
    138.Tanaka, N, Kinoshita T, Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochemical and Biophysical Research Communications,1968,30:278-283
    139.Tendulkar S R, Saikumari Y K, Patel V, Raghotama S, Munshi T K, Balaram P, and Chattoo B B. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. JAppl Microbiol,2007,103:2331-2339
    140.Tripathi P and Dubey N K. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol, 2004,32:235-245
    141.Tu J C. Hyperparasitism of Streptomyces albus on a Destructive Mycoparasite Nectria inventa. Journal of Phytopathology,1986,117:71-76
    142.Van Loon L C, Bakker PAH, Pieterse CM J. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathology,1998,36:453-483
    143.Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews,1996,60: 407-438
    144.Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings, J. Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics. Microbiol Rev,1996, 407-438
    145.Vespermann A, Kai M and Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microb,2007,73:5639-5641
    146.Vincent M N, Harrison L A, Brackin J M, Kovacevich P A, Mukerji P, Weller D M, Pierson E A. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol,1991,57:2928-2934
    147.Vukovic N, Milosevic T, Sukdolak S, Solujic S. The chemical composition of the essential oil and the antibacterial activities of the essential oil and methanol extract of Teucrium montanum. J Serb Chem Soc 2007,73:299-305
    148.Wan M, Li G, Zhang J, Jiang D, Huang H C. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control,2008, 46:552-559
    149.Warren R A J. Microbial hydrolysis of polysaccharides. Ann Rev Microbiol,1996,50: 183-212
    150. Wellington E M H and Williams S T. Host ranges of phages isolated to Streptomyces and other genera. Zentbl Bakteriol Hyg I Abt Suppl,1981,11:93-98
    151.Wildermuth H and Hopwood D A. Septation during sporulation in Streptomyces coelicolor.JGen Microbiol,1970.60,51-59
    152.Wilkins K. Volatile metabolites from Actinomycetes. Chemosphere,1996,32: 1427-1434
    153.Williams S T, Goodfellow M & Alderson G. Genus Streptomyces Waksman and Henrici 1943,339AL. In Bergey's Manual of Determinative Bacteriology,1989,4: 2453-2492
    154.Williams S T, Goodfellow M, Alderson G, Wellington E M H, Sneath P H A, Sackin M J. Numerical classification of Streptomyces and related genera. J Gen Microbiol, 1983a,129,1743-1813
    155.Williams S T, Goodfellow M, Alderson G, Wellington E M H, Sneath P H A and Sackin M J. Numerical classification of Streptomyces and related genera. J Gen Appl Microbiol,1983,129:1743-1813
    156. Williams S T, Goodfellow M, Wellington E M H, Vickers J C, Alderson G, Sneath P H A, Sackin M J, Mortimer AM.. A probability matrix for identi(R)cation of some streptomycetes. J Gen Microbiol,1983b,129,1815-1830
    157.Yahyazadeh M, Omidbaigi R, Zare R, Taheri H. Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J Microb Biot,2008,24: 1445-1450
    158.Yamaguchi H, Tanaka N. Inhibition of protein synthesis by blasticidin S. Ⅱ. Studies on the site of action in E. coli polypeptide synthesizing systems. Journal of Biochemistry,1966,60:632-642
    159.Yamaguchi H, Yamamoto C, Tanaka N. Inhibition of protein synthesis by blasticidin S. I. Studies with cell-free systems from bacterial and mammalian cells. Journal of Biochemistry,1965,57:667-677
    160.Yamaguchi I, Taguchi R, Huang KT, Misato T. Aabomycin A, a new antibiotic. Ⅱ. Biological studies on aabomycin A. The Journal of Antibiotics,1969,22:463-466
    161.Yoneyama K, Sekido S, Misato T.1978. Antagonistic mechanism of sulfhydryl compounds on cellocidin activity. The Journal of Antibiotics,1978,31:1065-1066
    162.Yoshida N, Hachiya Y, Tani Y, Ogata K. Studies on antibiotics produced by psychrophiles. Ⅱ. Cryomycin, a new antibiotic, Abstracts of papers, The Annual Meeting of Agricultural Chemical Society of Japan, Tokyo, J. Antibiotics,1971,119
    163.Yoshida N, Hayashi S, Tani Y, Ogata K. Studies on antibiotics produced by a psychrophile, Streptomyces sp. No.81, at moderate temperature, Abstracts of papers, the Annual Meeting of Agricultural Chemical Society of Japan, Sendai, J. Antibiotics, 1972,15
    164.Yuan W M and Crawford D L. Characterization of Streptomyces lydicus WYEC108 as potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol,1995,61:3119-3128
    165.Zheng Z, Zeng W, Huang Y, Yang Z, Li J, Cai H, Su W. Detection of antitumour and antimicrobial activities in marine organisms associated actinomycetes isolated from the Taiwan Straits, China. FEMS Microbiol Lett,2000,188:87-91
    166.Zhou L, Zhang Y, Rao L, Cao Y, Peng Y. Galactolipid depletion in blast fungus-infected rice leaves. Ann Appl Biol,2008,153:395-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700